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A STANDARD TEST SET FOR NUMERICAL APPROXIMATIONS TO

- TIlE SHALLOW WATER EQUATIONS IN SPHERICAL GEOMETRY

David L. Williamson

John B. Drake

James J. Hack

Rfldiger Jakob
Pa,ul N. Swarztrauber

Abstract

A suite of seven test cases is proposed for the evaluation of numerical l-nethods
intmlded for the solutioll of the sllallow water equations in spherical geometry. Tile
shallow water equations exllibit t.lw_lnajor difl:iculties associated with the horizon-
tal dynamical aspecl.s of atlnosl)lleric modeling on the spherical earth. These cases
are designed for use in the evaluation of nunJerical inethods proposed for climate
modeling and to identify the potential trade-offs which must always be made in
numerical Inodeling. Before a proposed scheme is al)plied to a full baroclinic at-

- mospheric model ii, must perform well on these problems in comparison with other
currently accepted numerical methods. Tile cases are presented in order of com-
plexity. Timy consist of advection across the poles, steady state geostrophically
balanced flow of both global and local scales, forced nonlinear advection of an iso-
lated low, zonal flow impinging on a_l isolated mountain, Rossby-Itaurwitz waves
and observed at.mospheric states. One of the cases is also identified as a coln-

puter l)erforma,_ce/algorithlll efticiet,cy ben('hlnark for assessing tile performance
of algorit.lims adapted to tnassivoly parallel colJll)uters.
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1. Introduction
m

The early days of global atlnospheric modeling saw significant efforts in adapting then

current numerical methods to solving fluid flow on the surface of the si)here. A large
component of this effort was directed toward finite difference approaches. The review

article by Willia, mson r. _t28] discusses the many finite difference approaches that were
applied to the problem at that time and gives a lengthy list of references. The intro-

duction of the spectral transform method by Orszag [15], and Eliasen, Machenhaner

and Rasmussen [7] made the spectral method cost effective in terms of storage and pro-

cessor time compared with finite difference approaches. The review by Machenhauer
[13] discusses the various applications of the spectral method in detail. The spectral

method presents a natural solution to problems introduced by spherical geometry in
part because it provides an isotropic representation in spectral space even though the
cominonly adopted underlying Ga.ussian grid does not. The spectrM transform method

is widely accepted as the basis of operational numericM weather prediction and global
climate models. Although not universally adopted the method has become the rule
rather than the exception. As a result little effort has been directed in the last decade

toward developing alternative methods of approximation for global atmospheric models.

Currently there is renewed interest in alternative methods for a variety of reasons.
The European Centre for Medium Range Weather Forecasts (ECMWF)has reported
[6] that al resohltions greater than those currently used in in operational numericM
forecast models the computational cost of the I,egendre transfornl associated with the

. spectral nlethod will become a significanl fraction of the total cost of tlm model. Thus

other lnetl_ods are likely to beconw econotnica,lly competitive. The spectra.1 representa-

tion contributes to Unl)hysical slructures iii tlm prec:.:ted fields such as negative water
" vapor [20]. Traditional finite difli_rellce a.1)proxil_lations also suffer from this defect.

However, recently shape preserving and essentially non-oscillatory schemes have been

developed to address this deficiency. Spectral models require a global domain and have
thus been based on a normalized vertical coordinate such a.s pressure divided by surface

pressure. Over steel) llmUllt.ains the horizontal pressure gradient force in such systems
is a small difference of two large terlns and difficult to approxinlate accura.tdy. Mesh
refinemellt near mountaii/s, oi' admittance of explicit lateral boundaries where moun-

tains call penetrate tile grid, a l)l)ear as potential alterllatives. The spectral method

also presents problelns with efficient inll)lelllcnta.tioll o,t SOllle of tlm new computer
architectures allhollgl, these are llot llecessarily unique to tlm spectrM method. The

global contmulli('atioll re(luir(,d I)v tile Sl)(,('Iral tra nsforln lllay be ditIicult to achieve

efficiently ell lllassively paralM (:Ollll)Ut(,rs with (listI'il)uted melnory. With grid point
based s('hellles a silnilar conll/lunicatiol_ i)roblelll nlay arise however a.ssociated with

the elliptic l)roblenl illtroduced by a selni-ilnplicit tilne stepping algorithm.
The renewed interesl il_ a lgol'ithlll dvvclopnlellt has led to the need to detine stan-

dar(t tesi (:as_._._witll which l)otenlial s(:liel_l(,s lnay be COllll)ared. Strict conlparisoiis

- based oil sucl_ lesl cases will aid in raliollallv clloosi_g IIi(, co_l)l'onlises which must be

ll_ade in _tul_erical _odelillg. \\:c prcsenl a suil_' of tesi cases iii this rP.l)ort for numer-
ical aPl)roxinlatiol_s to l.]_esl_allow wa_,r equatiol_s iii Sl>l_crical geoll_el, ry. The shallow

water equalio_ls o_ a retailing sl_l_{,r(,serve as a l)rinlal'y lest prc_ble_ for numerical
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me.tho(,ls used in modeliltg glol)al a tnlospheric flows. They describe the behavior of a

shallow llomogeneous incoinpressible and inviscid fluid layer. They present the major
ditficulties found in the horizontal a.spects of three dimensional global atmospheric mod-
eling. Thus they provide a. first test to weed out potentially non-competitive schemes

without the effort of building a complete model, ltowever, because they do not rep-
resent the complete atmospheric system, the shallow water equations are only a first

test. Ultimately schemes which look attractive based on these tests must be applied to
the complete baroclinic problem. We hope that the existence of a standard test set for

the shallow water equations will encourage the continued exploration of alternative nu-

merical methods and provide the community with a mechanism for judging the relative
merits of numerical schemes and parallel computers for atmospheric flow calculations.

We present here a suite of seven test cases in increasing order of complexity. Several

analytic treatments included in the suite provide objective standards for judging the
accuracy of numerical schemes and provide quick checks on the validity of code. The

first test consists of advection of a structure of compact support by a specified wind field
corresponding to solid body rotation whose axis is not necessarily coincident with that

of the rotation of the earth. As such this case deals with only a subset of the shallow

water equations, namely the continuity equation, but concentrates oll a scheme's ability
to deal witli the poles of the sl)herical coordinate system.

The second and third cases present steady state, nonlinear zonal geostrophic flow.
They are a global forlll witt, the wind corresponding to solid body rotation and a local

form where the wind field has compact SUpl)ort. In both cases the spherical coordinate
poles are not l_ecessarily coincidenl with the earth's rotation axis. As with the first

case these test a. scheme's ability 1.ohandle the poles, but in addition nonlinearities can
come into l)lay.

The succeeding (.est cases are of increasing cOinl)lexity and realism, exercising the

more subtle aspects of atniosl)heric flows. One case uses an analytic t'orcing function to
drive a low around the sphere. Tlie case mimics the more complicated local structures

observed in the a.tmost)here. Another case coilsists of zonal flow impinging on an
isolal.ed Illoulitain iii which a dov,'ltstrealll wa.vetraill is set til). A Rossby-Itaurwitz

wave (`:ase is also inclilde(,l. Analytic solutions for (.he Rossby-Haurwitz wave in the
shallow wa.ter context are ltot kit(,)wn bul t l_is wave has become a standard test case in

niel(,::or(Jlogy. :\ reference solution is l)rovide(,t by a high resolution spectral transform
nlodel integralioll. Filially, acl.ual weather patterns are presented for initial (,:on(li(ions.

Since tllev ol)viouslv have n()analvti(," sollltioll a rel'(,reilce solution is provided again l)y
a lligli l'esollltiol_ sl)ectral tralisfor)i_ tliodel full. As )llei_tioned above, analytic solutions

for tlle last tllree cases are no( kil()wll, llef(,rellce solut.iolis will be l)rovided by a. high

resollll, ioii Sl)(,('Ira] iranst'orili liio(lel. For ii lo I)e ac(el)le(,l ii. llltlSl be (,lUl)Jical,ed by a.
liigli Ies(,)lutiotl ,-,oltilioli l)rovi(le(l I)\' al ](.';|sl Olle other diii'etch( llietitod.

\Vill_ (,a(,'l) l,('Sl (';IS(' V,'(' asli, ['()I a variety of sl)ecilic ii_(,asures of (lie (,,rr(`)roi" tile

l)ul)leri(al s()l)iliol_..]usi a_.,,t.l)er(, is l_()sil,gle ideal lest (';-tS(:', there is lie sillgle liieasur(,,
tlial (,tel('riiiiiie.,, lli(, (lllalilv cii a s('ll(,llie f()r aliiiOSl)lieri(" ll_odelil_g. We include tl_e

vari('l\' (,)1' tes! cas(,s all(l orr()r iii(.',l_liros lo pi'ovid(,, as ili_ich illforlllat, ioii a.s p(,)ssit)let,o
woilld-I)e Ilsor.,_ s(`) tj,ev (,'ali (!valilate ll_(' \'aiieus Ira(,leofl's iiivolved witli l, lle Sclleliies.

'l']ie >_'COild l('sl ill iii(' siiil(' is als() I)i'()l)()se(l ii,<-;a t)erforllia, llCe ])elichliiarkili<g pi'oi)-
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lena. Such benchmarking is particularly important since the efficiency of schemes must

" be evaluated considering tile computing environment for which they are designed.
As an initial ba,sis of comparison we provide in a companion report solutions to

. these problems from a, spectrM transform a.pproxiination at resolutions currently used

in atmospheric models. Spectral models are widely but not universally adopted in
climate modeling and nuinerical weather prediction. We encourage centers currently
using other methods to run these tests with their schemes and to submit the results for

comparison. To facilitate comparison of schemes, a machine readable copy of standard
FORTRAN routines which calculate the initial conditions and analytic or reference

solutions is available ft'ore netlib@ornl.gov. A file summarizing performance statis-

tics contributed by members of the community will also be maintained. In addition

a list of corrections to this pa.per will be maintained along with a bibliography of re-

ports presenting results of tests of numerical schemes based on this test suite and any
modifications to the tesi: suite generally agreed upon by' the community. Please sub-
nlit additional performance data and references for the bibliography as they become

available to John Drake (bbd@ornl.gov).

2. The Shallow Water Equations on a Sphere

For convenience, we summarize nlany forms in which the shallow water equations can

be written. The reader is referred to standard texts such as Holton [10] and Haltiner

and Williams [8] for more general developnlent.
mi

2.1. Flux Form

" The shallow water equa.tions on a. rotating sphere can be written in flux forlll aS

Oh,'v
+ V. (vh'v)= -fl_ x h,*v- 9h*Vh (1)Ot

and
Oh"

0--7+ v. (h'v)= 0, (2)

,vhere h* is the depth of the fluid and h is tlle height of the free surface above a reference

sphere (sea level). If h,, denotes the height of the underlying mountains, h = h* + h,.

The horizontal (on the sphere) vector velocity is denoted v with components u and v

in the longitudillal (A)and latitudinal (0)directiolls respectively. The V operator is
the spherical horizontal gradient operator given by

i o j0
v()- - ()+- () (3)a cos00,_ a ¢-)g

a,lld V. is tl,e sl)llerical horizol,tal (tivergence oi)era, tor given by

1 "i). O( t,,cos O)]
V.v- [/_A+ ] (.1). c_)s0 i)O

,)
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Tile longitudinal, l_ztitudina,l a,nd outwa.rd radia.1 unit vectors are [, j and 1<,respectively,

f is the Coriolis imranleter, g is the gra.vitationa,l consta, nt _tnd a is the radius of the
ea,rth. Tile ('oriolis para llwter is givezl by 2Q sin 0 where [] is tile rotation rate of the
ea,rth.

The equations for the sl_herica,l conll)onents ca.n be derived by writing v = 'u_+ vj

_tnd using
dh,*v _.dh*u _dh*v di ^
,zt - 'd-_. +a--_ + h,',,_ + h.'v_. (5)

Equa,tion (1) ill ternls of spherica.1components is then

Oh,'u ( u ) 9h" OhO----7-+V.(h,'uv)- f +-tanOa h,'v+ acosOOA =0, (6)

Oh" v ( u ) h" gh," Oh,0----7-+V'(h*vv)+ f+-atail0 'U+'a 0O - 0. (7)

2.2. Advective Form

The _tdvective form of the horizontal nlonientum and mass continuity equations can be
written

d_.y_v_ _fr{ x v- gVh. (8)
dr,

a,nd
dh"

d--7-,+ h'V. v = 0 (9) -

where the substantia.l derivative is given /)y

d 0

_( )= 3-7()+(v.V)(). (lo)

The equ_tions for the spherical conli>onents are

0,,, ( ,. ) g Oh0--7+v'Vu- f+-atan0 v+ acos00k - 0, (11)

0,., ( , ) o Oh,0-7 +v'Vt'+ "f+-_ztall0 u+ a00 = 0, (12)

i-t lid

Oh" h," (O. O_,,cos0)Ot + v • Vh" 4 -- + = O. (13)a,cos0 k_ 00

2.3. Vortieity Divergence Form

'l'l_v Iloliz{)illal IllollioJ.tUl_l {';til also lm Sl)ecitivd iii terllls o[" rela,tive w)rticity,

( -- k.(_" , v). (l.I)

,_ll(l lJ.,,_tiz(,lllz,t] (]ivt're, j,lt('_,,

,_ _ V • v. (15)
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The curl operator is given by
lt

l_.(Vxv)- acos0 0h 00 "
g

Using the vector identity

(v.V)v = V (-_) + _'1_x v, (17)

the horizontal momentum equ_ttion t)ecomes

0V V" V

O---t= -(( + f)f_ × v- V(gh + -_ ), (18)

o1"in spherical component form

0--7= (( + f)v gh + (u 2 v 2acos00,\ _ + ) (19)

0-7 = -(_ + f)u- -- oh+ + ) • (20)a O0 '2

Applying the curl and divergence operators I_.V x ( ) _nd V.( ) to the momentum
equation yields

. 0( _ -V "(i + f)v (21)Ot

06_f_ V x((+f)v V 2(gh+-_), (22)
_ •

" 0Z

or in terms of spherical components

0¢ _ 1 0
Ot - acos00,\[( q +.f)u]

1 0

acos0 00 [((" + f)v cos 0] (23)

05 1 0

0-7 = acos00A [(_ +f)v]
1 0

(l cos 0 O0 [((, -5 f)u cosO]

- V 2 gh+ :_(u 2+v 2) (24)

W h (21'(2

. _-72( ) : ] 02( ) ]. 0 (cosO0())a_cos2 0 OA2 + . (25)a2 cos 0 00 O0
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2.4. Bounded Differential Expression Form
N

The spherical vector component forms of the equations contain individual unbounded

differential expressions approaching the poles. Swarztrauber [3] has developed a form

for tile equations containing only bounded differentiM expressions

Ou u v Ou u Oy g Oh
m = ii +- + fv (26)Ot a a O0 a --_ a cos 0 c0A

Oy u u Ou v Ov g Oh
O---t, = a E" a O0 a 09 fu - -_. (27)aO0

2.5. Stream Function, Velocity Potential Form

The spherical velocity COml)onents can be avoided by the introduction of a horizontal

stream function, _", and velocity potentia.1, _:. Tl_e equa.tion relating horizontM velocity
a.nd these two scalar quantities is

v = l_ x V_, + VX. (28)

The spherical wind components are related to the stream function and velocity potential
bV

1 Oy., 1 O,k
u = --_ + (29)a O0 a cos 0 OA

1 0_/' 1/)X
"' = a cos 0 OA + a 00 " (30) "

The al)plication of the curl and divergence ol)erators to (29) and (30) gives the
absolute vorticity

q- _'+f = V2_/,+f (31)

and divergence

O = V_\. (32)

11l terms of the streaz_l function alt(l velocity potential the horizontal _nomentum and

mass contilltlitv eqtla.tions call I)(, written [14]

Oq + v. - J(,j, = 0, (aa)Ot

V.(TIV¢,)-,](TI, k) = -V2(K + gh,), (34)t)t

a I1 d

Oh"
+ V. (h'V\) - J(h', _,) = 0. (35)Ot

II_ sl)herical (:oordizlat_,s the .]a('ol)iall ()l)(_'rator is defined by

.J(c,,A) - l (d/clOA 0o03)a2 cos-' 0 OA O0 O0 -_ " (36)

1 ) 1,2llere l( is the kil_elic (!'l_ergy 5("'+ )al_(t(allbeexpr(_ssedin terms of strealn function
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and velocity potential as

lt'=_l[T-(_'Vc)- _'T'2_.'+V'-(\V\)-,tV2_]+J(_,,k). (37)

The J an:l V. operators, curl and divergence, have the following integral properties

according to Gauss's theorem.

f /4J(a,d)dA= fcaO_3ds_ (38)

and

V. (oV3)dA = o--_ndS (39)

where _L is the derivative along C and 0 is the derivative normal to the curve.

2.6. General Orthogonal Coordinates

The general orthogonal coordinate form is useful when considering approximations

based on various map projeclions. Let (.r.y) be the orthogonal coordinates and mz

and ,n_ be the metric coeflicimlts so the distance increlnent (di) satisfies

(d[)2 m 2dy2= ,n;'.da "2 + • ('t0)

- "rbe velocity vector v has contl)ol,el_ts

ria"

. l" = m.d.-d-7 (41)

dr/

l= _,_y_ (42)

in rite .r and y directiolts, respectively. The equations of motion are

.. [ .(., ],+__=0 ....dt f + I" Om O,n_.'_ . g Oh,,,:,,,_ b._" --:d7 / "_x Ox

(lt -t- f + 1 _' l I + = 0 (44)

d it l i) I 0

,/-7= o-7_ + " (45 )i._ i).r ._., i.)y

I'll(-' conliiiuitv e(tualiolt i-

dh" h" [ i, i., ]
" -- _--- (_,_ li+--l:J,_.i) =0. (-16)

dt ti_ ,_i!, H.r v iJtl'

.
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Note, for spherical coordinates

:r = A , y= 0 (47)

mx = acosO , ))_,y= a (48) "

dx dA

. = m_.-_- = a cos Od-_-_ (49)

dy dO

": )"_7i = "_ (50)

Comnmnlv used lnat) projections are north and south polar st ereographic

1 4a '2

m_.= m u = :_( l :i: sin 0) = x_+y2+4a 2 (51)

and Mercator's

r,_,. = ,J)_ = cosO. (52)

Al! nlajor n,ap projections are described fronl a geographical point of view by Steers

[')31_,. Saucier [')9]_..discusses tit(, ('o111111Ollprojections used in meteorology. More recently

Pearsoll [17] llas sulllnlarized the tield.

2.7. Three-Dimensional, Constrained Form

('ht(" [-1]developed a tltlee-(linmnsional vector fol'ln for the horizontal inomentum equa-

tions usi_tg the undeterinined l.agrange nlultiplier method to constrain the motion to

be on the surface of the spl,ere.
dV

= F + ttr (53)
dt

W ] le l'e
dr

v = -- (54)
dt

i> tile lliree-(tilllellsio_lal vel()(ilv ve(lor iii a rolaling fralne.

F = -fr :< V - gVh (55)

al,d I_i.,, til(' l.agrallg(, lnultil)l(,r deterlnil,(.(l I)y requiring

)

r. r = ." (56)

be .,atisti(,d for ali _illle" r is tit(' l)().,,ili()l_ v(,clor. Evalualioll of tlw l,agrange multiplier

t(.)r IIi(, (oillilluous (,(luali()lt.,, _ix'(,.- i_= -V . V alt(t lea(ts 1o tile usual l:'uleriaxl fornl.

lll('re are advax_ta_('.,,, ttow(,v(,r, i_, (t('l(,r)_i_ing lhc I.agrange _nultil)livr after lhc ti]_m

(ti>(r<,liza_i()_ [')i. I1_1l)i.,,a_t)l)r()a('l_ l l_(, )])r('(,-(li_lt('_si()_tal (,(lualio)_ is solved rallmr ll_an

l it(' _a.,_al _x_,,-(ii_ii,')t.-i()l,al ;_l_([ /,r r('l)r('>('l_l._ at .,Ul)l)lo_(,)_lary force wl_i('l_ keel)s fluid

('l('l_)('_))-()I_ l l_,' >_rfa((, (>I Ill,, >l)]t,'r, ,. .\fl(,r di._(l(,lizalh)l_, l_()\v(,\(,r, lit(, cal('ulalk)_)

(-;,_ i)(, (;,rri,,(l ())_I i_ (xv()-(li_(,_,>i,)_Lal >l)a(( ,.
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2.8. Cartesian form
i

_T;may be advantageous to evaluate tile surface derivatives using _t Cartesian form. By
extending the surface vector v = (u, v) T to the three-dimensional vs = (w,v, u) T the

• shallow water equatiol_s can be embedded in tile system

OVs
+ S(v_)vs+ a + _ + 6 = o, (57)Ot

w here

-57,- _(3-¢ -v) _co_0_o._ - ucos
Oy 1 1 Ov

S(v_) = o-7 _( + w) _,:o_0(E_,_- usin0) , (58)

o_0__7 _ao_o0 __-_0 (_-_._1o_ _ v sin 0 + w cos O)

7"is the radial coordinate (7' = a at the earth's surface) and

a = 0 , (59)
0

(°)= _ , (60)
_..K.__ Oh
_cos0

and

(0)- _ = f_, . (6J)

If we defille V = (X. }'. Z):/' as tile velocity iii ('artesian coordinates (x, y, z) then

v., = QV (62)

W hel'e

cos(¢cos A cosOsin A sin 0 '_Q- -siI, OcosA -sinOsil, a coso ) . (63)- sin X cos A 0

Substituting (62) into (.57) all(l multiplying I)y Q'/' we obtain the Cartesian form

OV
+ CV + QT(a + ft+ $) = 0. (64)Ot

In tl_is equatioll

- _ _ ,_=,--7
;:j_." ,,) } ,j Y

C = QTSQ = _ :,_ 7,7 , (65)

,'__,z ,,z ,_'Z
,:t 2" ,") .t/ ,'-t 2
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.r(X + },-2+ Z 2) )

QT a _ __1 U(X 2 -t- y2 -t- Z 2) , (66) "
(t 2

z(X 2 + Y'2 + Z 2) ,

- z 0 -x , (67)

a2 -y X 0 Z

_nd

QTfl = PV_h (68)

where

g a 2
P = -_7 -.ry - y 2 -yz , (691)

--xz --yz a 2 - z 2

a, 11d

V,.h = Ox' Oy' Oz (70)

Similarly the continuity equation iii Cartesian form is

Oh,"
+ vTpvvch * + h'V_: • V = 0. (71)

Ot

The matrix P projects an arbitrary C.artesial_ vector onto a, plane tha, t ;s ta,ngent to the

sphere a,t the point (x, g, z). Fox' lnethods of evalua.ting the C lna.trix and the Cartesia.n

gradient t.he reader is referred Io [2.1].

3. Test Cases

Tire following test cases are l)rOl)osed to evalua, te and conlpare numerical schemes

illtell¢led tbr global alnlosplleric lnodels. The series increases iii complexity. We suggest,
l.lle tests be l'ul, iii order witlL_ul proceeding to the next until the numerical schelne
is rea.sonablv successful oil tile curlenl ol_e. For solIle schelnes some of the requested

l)araxxlel.er sellings (lt,til,e Irivial tests alld realistically provide only a. superticia,1 check
of Ill(' _o(t(' ral Iter lllali it us(,tul Ill(,asur(' of l.ll_,quality of file schenw. These sitlla.tions
.,,lloul_l I_, idt, lllitiv(l s_ l llal li()false ('_),tclusio_s are (lraw_. Ideally tlw full set sliould

1)_'r_.porle(t for (,acl_ i_rol)O.,,('<ls('l_t'_l(' a,,<l trivial cases for l liar stilt,lilt a.ck_lowledged.

('ase 2 also provides a bm_('l_l_arl< for l, illlil_g i_l)lc_nenta.tio_ts on various _achi_t,s.
Ii ox(.,rci.,,_'.,lit(, co_lll_lele s(,l of t'(li_atio_,s a_ld siltce ii is a steady state solulio_ no

extra co_l._utalio_s art' rcquirod d_ring l l_e i_llegralion. For l.iliiixig l>urposes a_l i_te-

gl'a,liol_ sl_ould I._ l)ertor_v<l \vil]_ ali 0xlra OUll)Ul, processes rex_oved all,tr it. l_as been
(]()lllOllSl, l';4l(,(l [.]lill I11(' ,'4(']ltHllt' llll(t co&,s solv(' l l,e l_rol)lex_ l)rOl)t'rly.

l'l,ese losls I'('I)I'OSt'III IIO('(_SSatI'V coltdiliolts o_tly, i.e. a_y sch¢,x_e must do well ixl
l.}l('b(' It, sl.', co_l)ared I(_ c_lrr(,_llv acc('l)la])](' s('lte_lies. Any scheliie l liar l)ert'orlliS well

i_l I]_os(' lt'sls (;_ llt_'_t b(' il_cOrl)(_l'a_lt'd i_l a g,lobal barocli_ic ge_,eral (,irculalion _()¢1(,I

wil]_ slal,,'-of-lll_.'-al'l pl_ysics a_td _l(,ti_ilive Ii'Sls 1";tll 1)1' conducle(t.
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Parameters relevant to tile earth and ali test cases are

a = 6.37122 x 106m (72)

. _ = 7.292 x lO-Ss -1 (73)

g = 9.80616 m s-2. (74)

Unless specifically mentioned, the height of the mountains is taken to be zero (hs = O)
and h* = h.

3.1. ,*_dvection of Cosine Bell over the Pole

This is the only case of the suite that does not deal with the complete shallow water

e,_uations. It tests the advective component in isolation. Many shallow water codes can

be easily changed for this test by overwriting the predicted wind field every time step
with the analytically specified advecting wind. Since this wind field is nondivergent

the equation for the height of the free surface reduces to the advection equation. For

some llmthods, semi-implicit for example, some a.dditiollal changes may be required to
isolate the height forecast t'ronl the willd forecast.

A cosine bell is a(tvected once around the sl)here. Several orientations of the ad-

vecting wind are specified including a,round the equator, directly over the poles and

minor shifts from these two orienta.tions to avoid symmetries. This case is specified in
eqns. (4.2)-(4.5)of Williamson and Ra.sch [31]. The advecting wind is given by

, = ,0(cos (_cos a, + sin (_cos Asin ,_') (75)

• _' = -_*0 sin ,\ si,i o.. (76)

In terlns of strea.lll fullction and velocity l)olelll, ial tllis is

_' = - a,u( si n _)cos _ - cos Acos 8 sin e_) (77)

x = 0. (78)

The para nleler (_ is the angle between l he axis of solid body rotation and the l)olar axis

of the spllerical coordinate svsteIll. Tests slmul(l be run with a. - 0.0, 0.05, w/2- 0.05
alld rc/'2.

The illitial cosine bell tesl, ])al.l, el'll t[lat is to be advecte(l is given by

{ (1_o/2)(1 +co,s_) if r < RI_(,\.0) - () ii' r_> R (79)

where h0 = 1000 III all(I l' is l lie gr(,al circle distance I)elweell (A,0) and the center,

initially take_, as (,\,_, 0,.) = (_.(,).

,. = ,, az',',:os[si_,e,,sin _ + cos#,.cose cos(;_- A,:)]. (s0)

The radius R- _ and tlle a(lve("i;_g; xs'i_l(lvelocity tl0 = 2rra(12 days), which is
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equivalent to about 40 m/sec. This solution translates without any change of shape.

Error nzeasurca: Plots of contour lines (interval = 100 m with zero contour) on

orthographic projection with persI)ective centered over the true solution. True solution

should also be contoured on the same plot with da, shes but without the zero contour. b

Plot after one rotation. Contour maps of the error should also be provided after one
rotation.

Some global measures of the error are also desirable. Define I to be a discrete

approximation to the global integral

I(h) = h.(A, 0) cos OdOdA, (81 )
2

which is consistent with the numerical al)proximations being tested; for example, Gaus-

sia.n quadrature would be selected for the spectral transform inethod. The following

nornmlized global errors should be gra.l)hed a.s a funct.ion of tinle sampled each time

step where hT is the true solutioll.

e,(h) - /[l/,(,x,h)-/:-r(A,O)l]/1[Ihr(A,O)l] (82)

c2(/,) = {I[(h(a,O)- hr(a,O))"i}_/{_[hr(a,O)2]}½ (83)

t._(h) = n_a×lh(a,0)-/,r(,X,O)l/maxlhr(,X 0)1. (84)
" all,\,0 alLX,0

In addition, the lmrmalized lneall, variance, minimum and nla.xinlum values should be

graphed _ s a t'ul_ction of tillle sa.llll)led each tillle step. Let /z denote the mean

ii = i[h(,\,0)]/4,r, (85) "

then the normalized mean and variance are written

:AI = (i) -/i.r)/i,o (86)

_ = {1[(h- i,)_]- :[(ht-/ir)2]}/l[(ho-/,o) 2] (sr)

aJ,d tl,¢' lllinix_lUlll and lllaxi,_LUlll

It.,ax = lll',,X/l(,\.O)-- lllaxl_'l'(,\,O))/.__l_ (88)
all.\ ,¢) all,\,0

t_min = Illili I_(,\.O)- lllill t_.l.(,\,O))/:xh (g9)
all.\,& altA.0

wllere __/_ is ll_, _liff_,re_c_, I_e_w_,_l_ vlcc' _l_axiu_)u_ and mi_i_nu_ values of" the true

solu_lO_ i_i_iatlv a_t /_-_ a_t /_u are l l_, lrue solu_io_ a_d initial field respectively.

3.2. Global Steady State Nonlinear Zonal Geostrophic Flow
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tieht. Tile Coriolis paranmter is a function ot" latitude and longitude so tile flow can

be specified with tile spherical coordinate poles not necessa.rily coincident with earth's

rotation axis. Again severM orientations are specified.

" Tile velocity field fi'om eqns. (4.1)-(4.2)of Williamson a.nd Browning [29] is initially

(and for all time)

U = U0( COS0 COS_:t-Jr-cos ,,_Sill 0 Sill Ct) (90)

V = --U0 sin A sin ct,. (91)

!n this report t*,,; a.ngle a has the opposite sign as that ill Williamson and Browning [29]

but the same sign as that in Williamson and Rasch [31]. In terms of stream function

and velocity potential, the velocity field is

_z,= --,,,L0(sill 0 cos a -- C.osA cos 0 sin a') t92)

\ = O. (93)

Tile absolute vorticity is

'1 = ('2u0 + 2_ _) (_ cos A coso sip. (.,.+ sin 0cos _). (94)
\ a /

The analytic h. tiehl is given by

(9h = 9h,o - a_ uo + -TS ( - cos A cos Osill "a'+ Sill 0 COSC_')2. (95)

lt may be desirable to modify the initial wind and height tiehls so they satisfy a discrete

lloltlinear geostrophic relationship consistent witl_ the schellm being tested. This couhl

pl'eveltt spurious gravity waves t'roln conta,llinating the numerical solution. The discrete

balance nlay also I)e used to det_il,e the true solutioll for the purposes of cMculating the

error diagnostics. Tlmse clla llg(,s are allowed but lllU.st be reported with the results

along witll llle error colnparing tl,o discrete initial state to tile analytic. The Coriolis

l)aI'anleter associal._,d with li,is s_)lulio,, is

,f = 2_(--<'_sAcos0silt_ + sill0Cc>(_). (96)

"l'liv para.lll_q.er values usv_l sllolll_l I_, "o = 2rra/(12 da.ys) a.s ill case 1 a_d 9ho =

2.94 / 104 n(e/.s 2.

Tesls sl_oul_l be ru_ witlt (_ - ().0,0.(15, ,'r/2- 0.05, alld rc/2.

Error t,_.a._,r_:.s: ('o_l,our l_al_S <_ al_ _rt I_ogral_l_ic l>rojection ce_tered o_ (3:r/2, 7r/4)

of h tield a l_d error after live' da\s. (;ral>l_s of l.he {_, (-"'2,a_d (,-×. orl'()l'S ol'h and v versus

til_e. Tlle /_ _,rrors are <'_1>_1_,_1 as i_ (s2) - (S.l). TI_e v errors are given by

l[{(,,(a.o)-,,,r(A o))_+ (,,(A o)-,,,r(,x,o))-_}_]
_,(v) = ' ' (97)

- /[t ,,,_(,\. 0)-'+ ,.,z(,\,0)_}_]
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e2(v) = {I[(_L(/\,0/-uT(a,0)) 2+(v(a,0)- vr(;_,0))2]}½ (9S)
{I[_,T(a,0)2+ vw(,_,0)2]}_

<,_,(,,) = maX_ll,\,o[{(u(A,O)-UT(,X,O))2+(v(,_,0)--,VT(a'0))2}_] (99)
lllaXall.\,0 [{ "/ZT(,,_, 0) 2 + "07"( a, 0) 2 } g ]

In addition to these graphs a mesh convergence study should be performed. The g2(h)
and f2(v) errors at five days for three different resolutions should be shown and a rate
of convergence fox"the method estimated.

3.3. Steady State Nonlinear Zonal Geostrophic Flow with Compact Support

This case is similar to the previous excel)t the wind field is nonzero in a limited region.
It was introduced by, Browning et al. [3]. In the editorial process fox' that paper some

terms were drot)l)ed from the last equation in the first column on page 1068. It. should
read

g, = .(cos _ cos,_sinAsin

- cos Asin Asin (_+ sin a. sin Acos 0). (100)

This case is easiest to write tirst in a coordinate system (A',0') whose poles are

coincident with the Earth's rotation axis, followed by a rotation through an angle
(t to the system (A, 0) in which the jet is not parallel to the coordinate lines. This

is essentially the process used to derive the equations above for solid body rotation,

however, in the case with coral)aCt SUl)l)ort it is more difficult to write the equations
in closed fornl in the (,\,0)svstc'm. Therefore, we present the equations in a series of

steps. The velocities (:oJllt)onents (u', v') iii the (A', 0') system are given by

u' = u,-,b(x)b(a'_- x)e 41_'_ (101)
I

_, = 0 (102)

W IlO I'0

b(.r) = _" O. :_""£-0--.1"-- 1

L c 0 < .r

all(l

., = .,(O' - 0_,)(0,- 0;,)-_ (lOa)

The l)aralllet(:rs are uo = 2Tr(z/(12 (lays). Ot: = -Tr/(i, 0e = 7r/2 altd x,. = 0.3. Note
tltat u' is illtil_itely (titl'erelitial)le all(l 1Las(:Ollll_aCt sut,port. The streanl function alld
velocity potential are givelL I)y

_3 " J" .1.,-,

O, - 0_ i.,. - _'l :_') d,r', ( 1().1)_.'t(,C ) = --(l _10_ 4 ( __
,_' ¢ •., ~

_-ilid
!

\ = 0. (1()5)
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Following (5.13) to (5.17) of [31] (with AA = 0 and OA = c_) tile rotated forIn can be
" written

. vcosO = -u'sino, sinA' (106)

ucosA = vsin0sinA+u'cosA' (107)

with the coordinates related by

sin0' = sin 0 c)s ct - cos 0 cos A sin ct (108)

sinA'cos0' = sinAcos0. (109)

The quadrant ill which ,V falls can be determined by insuring that

sin ,0 = sin 0' cos ct,+ cos 0' sin c_,cos A' (110)

is also sa.tisfied. Equa, tion (tl0) ma.y suffer from precision problems because of the

nesting of trigonornetric and inverse trigonometric functions. A more stable test is

that the principM va.lue (A'p)i,s used ibr ,\' when

cos ct cos Acos 0 + sin ¢_,sin 0 >__0 (111)

otherwise A' = 7r- A_,. This rela,tionship can be obta.ined by transibrming to Cartesian
coordinates, rotating the (_:artesian coordina.tes and noting that the principal value is

- needed in the primed system when x' >_0. (The x and z coordinates are chosen to go

through (A,0) = (0,0)and (0, _), respectively, and the y coordina, te call be ignored.
The Coriolis parameter in the two systems is

f = 2ft sill0' (112

f = 2f_(-cosAcos0sinc_, + sin 0 cos ct). (113

li'or a steady state solutioll h' mllst satisfy

(u')_ tan 0_ g Oh/
+ +fu' = (). (114)o a 00'

For the general case tl,e l,eigllt is (lillicult to obtaiil analytically. Therelbre, we integrate
tile, form ii, life priliiO s\:ste,ll

/, Ilo a /'°: ( tr'("/-) ta.li T )
= - - 2_ sin r + u.'(r)dr (11.5)

g. _ ,_ a "

nul_mrica,llv to obta.il_ a Itigl_ly accural._, h. 'l'lle I_ackground height, h,o, is given by
tj/to = 2..().1× 104 nl2/,s :_as ii, ('.ase '2 a_,d tile linlit 0' is rc,lat(_d to (A,0), the point at

- whicl, tile geopotential is (tesirod, 1)v (l()S).

Tests sltould be ruz_ will, (__---0.0, al,d 7r/3.

Error i.(a,_.,r( _: (:oi,tour ltlal_S (_1'tield all(l (,rr()r afl.(,r tivo da,ys oil _tn orthogr_tl)hic
l)roje(:lioll conlere(l ()1, (37r/2. rr/.1) . (;ral)lls of ll,e C1._2 alld C,>:,errors of h and v
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as functions of tinle. In addition to these graplls a inesh convergence study should be

performed. The (2(h) and t°2(v)errors a,t five da,ys for three different resolutions should
71"

be shown for the ¢_= _ case and a rate of convergence for the method estimated.

a.4. Forced Nonlinear System with a Translating Low

The nonlinear steady state tests presented iii the previous sections art,. the simplest
nieasure of the adequa,cy of a, i)ai'ticular numerical method. The performance, of a

scheme on the nonlinear unsteady equatiorts is also desirable, but analytic solutions

are ali but nonexistent. Thus, we take the approach followed by Browning et al. [3]
who choose a flow ft, b, and [z that is similar in structure to ttows observed iii the

atmosphel'e. This flow is a solution to the forced shallow water system which can be
written in advective form as

d'u uv tan 0 g Oh,
+ fv = I;,],, (116)dt a a cos 0 0,\

d v uu tan 8 g Oh
d-7+ a t- -a -_ + .f u = F,,., (117)

di,. h. [ Ou Oy cos O]
d--7+ + J = /:)' (118)a cos O L0.\ O0 '

where the height ot" the moultta,ins h,. is taken to be zero and the substantiM derivative
is defined _s

d 0 u 0 v 0

rl5 -- 0--7,+ + , (119)a cos 0 OA a O0

and the forciiig ternis are defined a,s

d/7 5,b ta,n 0 g 0h,
- + fb, (120)1:'_ dt a a cos 0 OA

i,;, _ d_, '_'/i.tan 0 g 0]_
" - (I--7+ a + -a _ + ffi' (121)

d,D D, [0_, 0_,cos0]I'),- _+ + -- . (122).. cos 0 _ t)O

'I'll(' flow is gi\'(,li t)V
_/',(,i

i) = . (123)
(l

(.' .\
f'= _-- (12.i)

(t C()S 0

_jD,= gD + .I_', (125)

wli(,r(, g/to --- l():_,',,21.s-' , ./ii = 2_)siii 4 alid

U .... UtlSill1"1(20), (126)
=
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ro
. gh = gho- ] [al(r)+ 'ii(r)tanr]_(r)dv, (127)

J_ rr
2

I--C

. _(A, O, t)-- ,/,oe-a '+--4-v. (128)

wi, _b0 -- --0.03 gh°--)g-,a = (12.74244) 2 and

C = sin 0o sin 0 + cos 0o cos 0 cos(A - uo t - Ao). (129)
a

The center of the low is initially located at (Ao, 0o) = (-7_-i-_,_)" The velocity potential,
X, is zero while the stream function is given by

,_b(O,A,t) = -/o a_zir)dT" + _b(O,A,t). (130)
2

The flow is _ translating low pressure center superilnposed on a jet stream which is

symmetrical about the equa.tor. Figure 5 of [3] illustrates the initial height field. This

field exhibits some of the properties of middle level tropospheric flow (i.e., a short-wave
trough embedded in a westerly jet).

The analytic expressions for the forcing are presented _bove tbr momentum. Schemes
predicting other va,riables such as vorticity/divergence or stream function/velocity po-
tential must be able to accept the forcing in terms of momentum as that is what is

provided fl'oln the para.lneterizatiolts iii a tntospheric models (see for example [30].)
" Thus solutions should be provided using the momentum forcing as prescribed. How-

ever, for the purpose of comparison with other schmnes it ma,y be advamtageous to
, specify' the forcing analytically in t.erms of the predicted variables if other than mo-

nmntum. This appro_ch is a.lso allowed for these tests, but if it is chosen, then results

with montentunl forcing should also be presented.

Tests should be l'ttll with ao = 20 and ,10 m/s.

£'rror nteasure'a: Contour ma.ps of solution a.nd error after 5 da,ys on an orthograt)hic
projection centered on (A:, rc/4 ), where ,\_. is the lollgitude of the center of the cell. The

(;1,g2, (,_, errors of h/ and v' should be plotted as a, function of time. Here h' and v' are

the perturba.tion fields obtained by sul)tra.cting tlm background zonal flow

h' = h- h (131)
/

u = _l - u (t32)

_" = ,.' (133)

where u and h _re giveli by (126) a zld (127) respectively. The true solution is modified

in tl,e sanle way for tl,e error ca lculatioll. 'l'he _llea.xlzonal colllponent is removed so

tl_at the error t)rilllaxilv l'Cl)l'esoIIl, s l.]lal associated witll tile cell. 'l'lle gra.plls should
include data sal,ll)led every l.i]ll(, step so l.]lz_t,l ally oscillatory behavior ca.li be seeJl.
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3.5. Zonal Flow Over an Isolated Mountain
4.

This case was used by Taka, cs to study the effect of a posteriori methods for conservation

of integral invariants [25]. lt consists of zonal flow a.s in case 2 impinging o11a mountain.

Tile wind and height field a.re a,s in case 2, with a = 0, but tile mean height is changed
to h0 = 5400 m. The surface or mountain height is given by

Iz_= h_0(1 - r/R) (134)

where h_0 = 2000 m, R = 7r/9 a.nd r 2 = nlia[R2,(A - ,\c): + (0 - 0c):].
The center is taken as ,_c = -rr/2 and 0c = 7r/6. As no analytical solution is

known, a reference solution will be pr,ovided by a, high resolution spectral transform

model integration. This will be provided as spectrM coefficients at 5-day intervals and

a routine to generate point values a,t arbitrary points. Agreement must be found with
a.t least one other high resolution solution provided by a different numerical scheme in
order to ha.ve confidence in the error measures.

Error measures: Contour maps on a. rectangular latitude/longitude projection

(A;_/Ax = LO/Ay) of tile h, field and error a.t days 5, 10 and 15. Graphs of the
(:l, b_.and (,_, errors of h a,nd v ca.lcula.ted 'ver_'us the high resolution solution plotted
a.s a function of time sampled daily.

3.6. Rossby-Haurwitz Wave

Rossby-Haurwitz waves are ana,lytic solutions of the nonlinear barotropic vorticity equa-
tion on the sphere [9]. Although they are not analytic solutions of the shallow water

equations they have been used so frequently tbr meteorologicM tests that since Phillips'

[19] first tests they have become de fitcto standard test cases although generally with
different parameters selected by each investiga, tor.

The initial velocity field is nondivergent and given by the stream function,

¢, = -a2c¢ Sill 0 4- a'2h" cos R 0 sin 0 cos RA, (135)

where _,h" and R are constants, tlaurwitz [9] showed that this pattern moves ft'ore
west to east without change of shape in a nondivergent barotropic model with angular
velocity u given by

R(3 + R)_- 2f_
,., = (136)(1 + _)(2 + R)

The velocity components a,re given by

u, = _l,,'cos0 + ab" cos 1¢-10( R sin:- O - cos20)cos R,\ (t37)

u = -al(l_('os I¢-1 0si_10sin RA (138)

and the vorticity by

(,"= 2_.'sill 0 - A"sill 0 cos tC0( l?" + 3R 4- 2 ) cos RA. (139)
q,

Tile height is obtained froln tit(, slreaxll filn('li()ll by solvillg the balance e(lua.tioll so the
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initial tendency of the divergence is zero [19].

gh = gho + a2A(0) + a2B(O)cosRA + a2C(O) cos(2RA) (140)

¢0 1

A(O) = 4_(2_ + oa)cos 2 O+ _1( 2cos 2R 0[(R + 1)cos 2O (141)

+(2E 2 - R - 2) - 2R 2 cos -2 0]

B(O) - 2(f_ + w)K R2- cosR0[( + 2n+ 2) (142)(R + 1)(R + 2)
-(R + 1)2cos20]

1K2cos2RO[(R + 1) cos2 0 - (R + 2)]. (143)C(O) = 4

In the past the qualitative aspects of the solutions have generally been examined.
To compliment the qualitative aspects we provide a reference solution fl'om a high

resolution spectrM transform model integration. This will be provided a,s daily spectral
coefficients and a routine to generate point va,lues a,t an arbitra, ry point. The parameters

__ - o,,R 1are _ h" = _.o,_ x lO-(_sec - and h,o = 8 x lO3 m. Only _ wave nunlber 4 is chosen

for the initial condition. Unstable waves [11] are not chosen since slightly different
t)erturba, tions m_y lead t,o growth oi' (liffereltt unst_ble modes as nlight be indicated in

Kreiss and Oliger [12].
Error mca,ures: Contour maps on a recta,ngular latitude/longitude projection

(AA/Ax = AO/Ay) oi" the h, field a,nd error a,t (lay' 0, 7 and 14. The t_l,g2,goo er-
rors of h und v calcula, ted versus the high resolution solution plotted as a function of

- tilne sampled daily. Various normalized global inva,riants of the continuous equations

should _lso be plotted a,s a function of time. Define the norma,lized integral

:_('_.,(t.))= {/[_',(a,O,t)]- I[v,(,\,o,o)l}/l[V,(,\,e,o)] (144)

where the discrete integral operator I is detined as (81). The tbllowing invariants should
be presented"

geopotential (i= 1)

_/'= gh., (145)

tot_tl energy (i=2)

_:'= h(gh + v. v/2), (146)

vorticity (i=3)

_,= (, (l,t7)

divergc'xlce (i=4)

" _,,',- ,4, (148)
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and potential enstrophy (i=5)

3' = 0.5(_" + f)2/(gh). (149)

3.7. Analyzed 500 mb Height and Wind Field Initial Conditions

The last case consists of atmospheric initial conditions of the 500 mb height and winds
from several atmospheric states. The first is for 0000 GMT 21 December 1978, which

Ritchie [21] used to test his semi-Lagrangian sclmme. This case, with strong flow over
the North Pole, has pointed out shortcomings of schemes in the past. A second case is

0000 GMT 16 January 1979. This case is characterized initially by two cut-offlows. The
flow pattern develops into a typical blocking situation. It has been studied extensively

by Bengtsson [2]. The third case is 0000 GMT 9 January 1979, which initially has

strong zonal flow. The last two cases are from the FGGE case studies selected by

WGNE and discussed by Baumhefner and Bettge [1]. The shallow water equations
should not necessarily be expected to predict the atmosphere well in these cases. The
variety is chosen to illustrate any variability in the characteristics of schemes depending
on atmost)heric state.

In all cases the initial data are truncated to T42 spectral resolution, which includes

all scales resolved by' the analyses. Ideally, nonlinear normal mode initialization con-
sistent with the scheme being tested should be applied to the initial data to prevent

gravity waves from contaminating the solution. The changes made by the initializa-

tion scheme should be submitted along with the error summary. However, because of
tb.c extra work necessary to develop the initialization codes, an initialized data set is

also provided which is obtained via nonlinear normal mode initialization _vith a high

resolution spectral transform model. Although it may be advantageous to use an ini-
tialization procedure consistent with the scheme being tested, the choice is left to the
scheme's proponents.

Erro, measures: The 'true' or reference solution wi!! be obtained initially with

the spectral transformation method applied to the finest resolution possible. Agree-

ment must be found between at least two different schemes at high resolution to have
confidence. The reference solution will be provided in terms of spherical harmonic

coefficients so that it can be reconstituted on any computationM grid. The g_,e2 and

f._ errors of h and v should be plotted daily from 5-day forecasts. In addition, plots
on north and south polar stereographic l)rojections of the forecast and forecast error

should be provided for day' 1 and day 5. The five global invariants listed with the

Rossby-Ilaurwitz wave (Case 6) should also be graphed a.s a, function of tiine.

4. Performance Bellchmark

To exhibit the perforinance of" a llUlnerical sch(_,me on a givel_ conJputer system, the

computer CPU ).into and storage re(luiremellts for a, .5-day run of case 2 with ct = rr/,l
(to avoid mosl syIilnletries) should be rel)orted for various resolutions. The number

of time steps taken al|d the errors iii h and v at 5 days, as in (82)-(8.:1) a,nd (97)-(99)
should be giveii for eacl_ resolutioll. Ally tinle step restrictioxls or special cases should
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be recorded so that tile computational effort corresponding to a climate simulation

can be judged. Enough data should be provided so that comparisons can be made

between schemes based oil the computational resources required to achieve a given

• level of accuracy. These should include the total CP[" tiine required, tile number of

operations required for the calculation, a nleasure of the sustained computational rate

in gigaflops, and the data space storage required for each resolution. The machine and

the compiler used should also be documented.

For parallel coinputers tile wall clock time. as measured on til,: host computer.

should be reported as well as the nlaxinluln time spent on any one processor. The

maximum size of the data space reqt,ired on any processor should also be reported.

Execution times for a given resolution with tile use of increasing numbers of proces-

sors. should be given to indicate how the algorithm scales. The speedup and parallel

efticiencv for each resolution should be given as a flLnction of the nuinber of processors.

The parallel speedup is detined as S v = T1/Yp. where T1 is the time required to execute

the sequential algoritltnL on a single t)rocessor and Tv is the execution time for tile

parallel algorithm using p processors. The parallel efliciency is given by E v = Sp/]).
The.e lneasure- may require an approximation of ]'L due to memoI'v constraints in the

.-ingle proc,_,..-v)l ca.-,,,, llte lla?tl_)d and as.-_umptions used to approximate I"L should be

clearly stated. No oulplll or unlLecessarv computation should be t)erformed during the
5-day sitiaulati(_)l,.

5. General_ Colnments

hteallv, ali c,>ntourin,,.., should be via linear interpolation on the original computational

., grids _vitl,,..m_ smoothing or additional interpolation to an intermediate grid in order

to provide an indication cfanv noise in the solution. The utility of the various tests

ilicluded il_ thi- >u;te will I)ecolne al)l)arent as inore i,lvestigatoi's al)ply their schelnes

to thellt, \Vr, hot)e inve..tigator.- will use ali tl.. tests and puNish ill refereed jour-

x_al.- ..t'lected re.-ults tliat illustrate both rite strengths alid weaknesses of the schemes.

lu-t_ouse tectinical reporls containing the results froin ali the tests could provide the

conlplete docunlentation of a scheme. \Ve exi)cct the suite will evolve inforlnallv with

tim,., ,,s investigators l)Olnt out weakne..,ses in the tests and suggest altei'nativ(s with

arounient-.,_ a_ to why tltev are good test cases. Several other cases are currently under

consideration for inclusion. 1lies(, consist of Thompsol_'s nonlinear series soiution to

tt_e equatit,zts {26] and Hto&m., in ..,t)l_crical geometry ['27]. The latter do _tot have an

;:: ,alvtical sol,ltioIt I\-_r tlte shallow water equations and iihi,,h resolution nunLerical

,.v>luti()t_ will be re(luired f()r a r('l;._rel_ce solution. 3. ('(!)td {l)ersoltal comnlunication)

i- 'l,'a t'h)t)il_'--'._',_"') _a'_' I'oth)_ ilt",_ til''. _CC:.')tl "tudie." O1"i)le,'_ial. _))t)tit))_ o)) tire sl)here

I(;. _I'<7. -l)ii- (:a:v a ill c()_)l)Iri_,,_) rh,' l)U"r adv(_,cti__)It ('a.-e I ai_tl deal OlllV with

I"!;_, IIi()IIl(>llIl.illl (.'qllltli_)It.',.

lit,' t."st ,,uit(. ',_ill o_lv b('c()_,.' -,taIl(tar(t l() til(_' exl,.l_! tl)t, ('¢)llllLlllltit\' ti_(ts it

" :<,'f_;!. I i_i- -_ai),'i- I'airlx l.re,'_;_l) c,)_tai,_-a ;.rietvoft(,s_ cases a_d err()rm(,asures.

Ii_i. ',.rf,rx i- _,',.,t,.,t i_ efd('!" )()l)rOx i<t,, a.- _u('l_ illforll|ali,)ll ats possible to wouht-I)e

. _,-,':- s(, tt_,'_ _a,_t ,,x.l,l.),, )t_,' i_,l,()_);_c,' ()f tit,.' va_iou.- )radeotl's required in tlteir

.[,l)iic.T i,,_t-.
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