CoNE-9108532

LA-UR-97- ’i 3 -] i

Title: | New Approaches to Thermoelectric Cooling Effects in
Magnetic Fields

REGEIVED
JUL 1% 1807
OST!

Author(s): | A. Migliori

T. Darling

F. Freibert

S. Trugman

E. Moshopoulou
J. Sarrao

Submitted to: [ 1997 Materials Research Society Spring Meeting
Conference Proceedings

San Francisco,. CA

March 31-April 2

DISTRIBUTICN OF T2 pastumyy 1o UNL!MFTE%

Q

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Govemment retains a nonexclusive, royalty-freelicense to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Govemment purposes. The Los Alamos National Laboratory

requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
Form No. 836 R5
ST 2629 10/81



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



New Approaches to Thermoelectric Cooling Effects in Magnetic Fields

A. Migliori!, T.W. Darling’, F. Freibert!, S. A. Trugman', E. Moshopoulou', J.L. Sarrao®

ABSTRACT

We review thermoelectric effects in a magnetic field at a phenomenological level. Discussions of the limiting
performance and problems with its computation for both Peltier and Ettingshausen coolers are presented. New
principles are discussed to guide the materials scientist in the search for better Ettingshausen materials, and a brief

review of the subtle measurement problems is presented.

Our intent in this paper is to provide a basic review of
thermoelectric cooling in materials in which a strong
magnetic field is present, and to indicate new directions
in this old and extensively studied area of electronic
transport in solids. The basic physical effects which
describe heat transport by charge carriers in solids are
the Peltier effect and the Ettingshausen effect. The
Peltier effect, governing all modern thermoelectric
coolers, is a thermal transport process requiring no
magnetic field in which a thermal gradient is created
parallel with an applied electric current. The
Ettingshausen effect, a somewhat obscure but powerful
refrigeration process, is a thermal transport process in
which a thermal gradient is created perpendicular to an
applied electric current and both these are perpendicular
to an applied magnetic field. Because of the extensive
literature on these processes and because of the detailed
complexity of the new approaches developed at our
laboratory, we will attempt only to present an accurate
but simple overview. We begin with an historical
perspective outlining briefly why there is some
motivation to revisit this old problem.

For some period of time, there has been an
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established interest in Bi, Sb, alloys for use in
electronic refrigerators. This appreciation was initiated
by the experimental work of Jain [1] on the electrical
properties of single crystalline Bi,,_,,Sb, and inspired by
the large magneto-thermoelectric figure of merit data
[2] of Smith and the equally impressive thermomagnetic
figure of merit data [3] of Cuff, et al. These data [2,3]
have shown that the orientation of the applied magnetic
field with respect to its rhombohedral crystal axes plays
an important role in optimizing figure of merit values in
Bi;;.,,Sb, alloys. In fact the behavior of the
thermopower in a transverse magnetic field for Bi [4]
and Bi;.,,Sb, [5] is very different, dependent on the
relative orientation of magnetic field and
crystallographic axes and is closely related to the crystal
symmetry and band structure of these materials.
However, little has been published to rationalize
physically this fact in terms of a microscopic picture.
Goldsmid [6] has attempted to justify a preferred
magnetic field orientation based on theoretical
predictions for the infinite-magnetic-field
thermomagnetic figure of merit as derived from
experimentally determined physical parameters for
single crystal Bi. Supported by this argument, the
preferred orientation requires the electric current to
flow along the trigonal direction, with the magnetic
field along a bisectrix direction and the generated
Ettingshausen heat flow along a binary direction. This
experimental orientation has become the conventional



orientation used in most experiments when determining
the optimum operating efficiency of Bi,.,Sb, alloys for
use in an electronic refrigerator. However the apparent
lack of understanding of the relationship between the
band structure of Bi and its alloys with Sb, and the
physics of thermoelectric and thermomagnetic effects
leaves an interesting approach open, to be described
below, that may provide substantially improved
materials for Ettingshausen cooling.

ZERO MAGNETIC FIELD

The root of all thermoelectric effects is the small
variation of the energy and momentum distribution of
charge carriers caused by temperature gradients. Such
variations produce, among other things, a non-zero
electric field inside electric conductors - the Seebeck
effect - and it is the coupling between this electric field
and electric current that provides thermoelectric power
generation or refrigeration (the Peltier effect). The size
of the effect is dependent on the energy scales and
temperature of the solid. In a degenerate metal, where
only a few charge carriers near the Fermi energy &, (e/k,
is of order 30,000K, k, is Boltzmans constant) are out
of their ground state, the effects are small. In semi-
conductors and semi-metals where only a few charge
carriers are present (Bi has 10° fewer charge carriers
than Cu, and g/k, is ~1000K) and very few in the
ground state, the effects are large.
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Figure 1. Shown is a simple schematic of a Peltier
refrigerator consisting of a p-type and an n-type
semiconductor bar joined at the cold end.

However all large thermoelectric effects, meaning
those of sufficient strength to be of practical importance,
arise only in solids that can be made to carry electric
current via carriers (quasiparticles) of both negative (e
or electron-like) and positive (h or hole-like) charge. Of

course, there are really only electrons, but holes in the
electronic distribution act just like real particles with
positive charge-that is they move in a direction opposite
to electrons in an electric field. Because of this
“reverse” motion, systems can be constructed where,
although electric current circulates, “particle” current is
unidirectional, and it is the particle current that carries
heat. This is shown schematically in figure 1 for a
Peltier cooler that consists of two legs, one of a p-type
semiconductor (holes are the majority carrier) and one
of an n-type semiconductor (electrons are the majority
carrier). The details of the operation of this device have
been reviewed extensively by Harman and Honig [7],
but several key points, relevant to what follows, should
be mentioned. One is that any holes in the n-type bar or
electrons in the p-type bar will carry heat toward the
cold end, degrading performance. Another is that
ordinary thermal conduction is doing its best to carry
heat from hot to cold. A pair of simple definitions [8]
serve to quantify this as follows:
j=olE-57T) M
j, =oSTE +(cS*T - K)VT @
where j is the heat flux, j is the electrical current, G is
the electrical conductivity tensor, K the thermal
conductivity tensor, F the electric field, S the
thermopower tensor and 7' temperature. The thermal
conductivity has two important components, K, the
phonon thermal conductivity and K, the electronic
thermal conductivity. The third equation of importance
to a phenomenological understanding is
VO_]q—EO_]:O A3)
which is a continuity equation for a time-independent
temperature distribution inside the Peltier device,
expressing the necessity for a balance between the
difference between energy (heat) flowing into and out
of a small volume (first term) and the electrical energy
consumed in that volume (second term). Substituting
(1) into (2) we obtain
j,=SIj—KVT 4
which has the curious property that the total heat flow
is the simple sum of the heat flow from ordinary thermal
conduction and the heat pumped by the Peltier effect.
For a one-dimensional system, ( is independent of
position) and using (1), (3) and (4) we obtain
ST dT_J ©
dTdx dx* o
from which all the important quantities can be
calculated. Note first that the second derivative of
temperature with position is a critical piece, meaning




that no matter how short the Peltier device is, if it is
operating in a useful region, we cannot neglect the
variation of the temperature gradient. Second, in the
usual treatments [6] the first term is neglected. This
term is basically the Thomson heat, and for the
cryogenic refrigerators our work is focused on where T
varies substantially, it can be of comparable size to the
other terms and should not be neglected. However, to
get a feel for what goes on, let’s neglect it anyway, as
well as the temperature dependencies of all the other
material properties and solve (5) using (1) and (4) with
the hot end (x=/) anchored at T}, and the cold end (x=0)
at T,. We also assume that the n-type and p-type
semiconductors have the same material properties (true
for Bi,Te,, the most popular material, but difficult in
general to achieve) except for the sign of S and that the
total area of both materials is unity (it can be shown that
nothing clever can be done by shaping the bars of
semiconductor to improve things) [9].

Keeping in mind that Peltier refrigerators, though
capable of coefficients of performance (COP) greater
than unity, are never competitive on an energy usage
basis with conventional refrigerators, we shall emphasize
maximum heat pumped from the cold end, NOT
maximum efficiency or COP. We find by twice
integrating (5) that
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and, finally
COPO =ﬁ_=lz;—]::o £
Jgo 2 L,-T, 1,
where T, is the minimum possible temperature, j, is the
current for maximum heat pumped j,, (Which, of course,
is valid when T,=T, as well), W, is the electrical power
per unit area required when maximum heat is pumped
and COP, is the COP for maximum heat pumped. Note
that if 7, is close to 7}, the best COP, is less than 1/2.

(10)

It is seen that everything depends more or less on T,
which is a function of the dimensionless quantity,
oS*T/K, historically called Z7, a particularly unhelpful

appellation. Much more revealing is to note that K/o7,
has units of thermopower squared (LV/K)? so that a
critical thermopower S, can be defined such that

So:\/f (11)
ol

which expresses a value for the thermopower that must
be achieved for any reasonable thermoelectric material.
If the material were such that the phonon thermal
conductivity could be neglected, the quantity inside the
square root is the Lorenz number L=(155uV/K), a
constant that comes from the Wiedemann-Franz law, a
very general relationship between the electronic thermal
conductivity and the electrical conductivity [8]. Thus
any material with a thermopower less than about
155uV/K is not going to be a good candidate for a
Peltier refrigerator, especially if X, is not negligible. S,
computed from measured properties, is then a simple-
to-measure break point for material searches because

2
Ty 2S5

It can be seen that the search for good thermoelectric
cooling materials is a battle to make S greater than .S,
(/Sy=1 for very good materials) and minimize K, (not
much can be done about K, because one is not going to
beat the Wiedemann-Franz law substantially in a system
with enough carriers to pump heat). Note that (12)
neglects the variation of thermopower with
temperature, as stated earlier. Some numerical studies
have shown discrepancies greater than 10% [6] for
(12), an error comparable to the target of many
research programs in thermoelectrics.

EFFECTS IN A MAGNETIC FIELD

We are, however, not working on Peltier
coolers, but on the more complex Ettingshausen cooler.
The complexities come in because the material
properties must be treated as tensors and the analysis is
more difficult. Figure 2 exemplifies this. In figure 3 we
show a schematic of what the charge carriers must do.
Referring to figure 3 it can be seen that the idea is to
use a single material in which both electrons and holes
are present. An electric field in the y-direction makes
the holes travel roughly upward and the electrons
roughly downward. The magnetic field B, however,
deflects both carriers to the positive x-direction, and it
is this effect that, exactly analogous to Peltier cooler,
pumps heat. Notice that just as in a Peltier cooler, the
electric current carried by holes is opposite in direction
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Figure 2. Shown is a bar of material in a magnetic
field, and the various transport quantities that
contribute to thermoelectric cooling (the
Ettingshausen effect) and thermoelectric power
generation (the Nernst effect).

to the current carried by electrons but there is a net flow
of particles toward the hot end.

Our goal here is to provide guidance in the selection
of optimum Ettingshausen materials. It is clear that one
quality of importance is to maximize the total number of
particles moving toward the hot end. If the number and
x-component velocity of electrons did not equal the
same quantity for holes, then very quickly, charge would
pile up at the hot end, creating a voltage (the Hall
voltage) that would reduce (or stop if only one carrier
were present) the flow of the majority carriers,
degrading refrigeration. Therefore, the ideal
Ettingshausen material must have equal numbers of
electrons and holes with equal mobility. This is called ‘e-
h symmetry’. Such a system has ZERO thermopower
and would produce no temperature drop if used in a
Peltier cooler. The key guide for materials searches is,
then, the electronic band structure. In what follows, we
shall consider systems with parabolic bands in which the
energy € of the electron or hole is p%/(2m,) where p is the
momentum and n; is the effective mass of the i carrier.
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Figure 3. Shown is an Ettingshausen refrigerator.
The angles will be discussed below.

This is the same dispersion curve as a free particle.
However, the electron band, a parabola facing up (it
would hold water) and the hole band, a parabole facing
down, can overlap (the top of the hole parabola, or hole
band edge, is above the bottom of the electron parabola
or electron band edge) or not. If the bands overlap at
the Fermi energy €, the material is a semi-metal. If they
do not overlap, the material is a semiconductor. In both
cases, €, lies between the band edges, its exact location
dependent on the band masses m; and temperature. The
number of electrons available for conduction is the total
number below g; and for holes it is the number above &;.
In a semi-metal like Bi, & crosses the two bands at a
level such that there are exactly the same number of
holes as electrons, but because the curvature of the
parabolas (which determines the effective mass) is not
the same, the masses are different, and so are the
mobilities.

To get a feel for Ettingshausen cooling, let’s
proceed under the assumption that we have two bands,
e and h, with the same masses and with the same mean
free path-that is, perfect e-h symmetry. Equations (1)-
(3) are still valid except that there is no ordinary
thermopower and no Hall effect. This is expressed as
follows

c=|°" 0 and S = 0 S (13)
0 o, -8, O

where o, , S,, are the non-zero components of the




reéistivitj'r and thermopower tensors. We shall assume X
to be a scalar. Noting that j =E =dT/dy=0, we can
obtain two more equations

, dar
Jy = Gll(Ey +9p E)

and (14)
dar
dx
except that the current j is not independent of position,
while E, is. Thus (14) is not of the same form as (5), as
is occasionally stated [6]. Another key point is that now
6,,8,,2T/K cannot exceed unity because if it did, heat
would flow from cold to hot with no energy input to the
system. Thus the boundary of unity on a set of
parameters not obviously constrained by physics is
another key difference between the two refrigeration
processes. The resulting differential equation for an
Ettingshausen refrigerator, and its solution for
temperature-independent parameters are

d(o,,S d dr
~Eloy, = Eyr% +E|:([K~O'HS122T]) E] 1)

Jo = GllSIZTEy _(K_o'u 122T)

[(&-0uS3T])dr = [ (~xE}s,, +const) dx

where we dropped all terms arising from departures
from e-h symmetry. The integral solution to the
differential equation is of particular note because on the
left is an integral with respect to 7, not x, over materials
properties, mitigating the huge problem of position
integrals over material properties when T is not known.
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Figure 4. Shown is the Fermi surface of Bi. Under
some doping conditions, it may be possible to
eliminate the hole in the middle, so that at
temperatures of order 100K, both electrons and holes
would be where only the electron pockets are now.

Even though the conductivity appears on the right
under the integral, this is only one material property to
be dealt with. Unlike the Peltier case, the use of a
temperature-independent thermal conductivity is
justified because the magnetic field greatly reduces the
electronic thermal conductivity which is usually
proportional to temperature, leaving only the phonon
term.

Because E and j are perpendicular to the heat flows,
two or more Ettingshausen coolers (EC) in series can
make electrical contact between the hot end of the
smaller stage and the cold end of the larger stage,
making it possible to produce a sequence of staged
coolers simply by machining the correct shape from the
bar of single material. Therefore, in a properly
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Figure S. Shown are expanded views of the band
structure of Bi near the heavy hole at the L-point and
the light electron/light hole at the T-point. These
calculations were provided by R.E.Allen and are the
same values used in a recent publication [12].



engineered EC, there is no obvious minimum
temperature, I varies strongly with length, and a set of
formulae like those for the Peltier cooler is not very
useful. Nevertheless, it is interesting to note that (15)
can be solved for the minimum temperature if materials
properties are independent of temperature- the equation

T =1~=L where

L. 2L (16)
K S.T

T = >T,and E , = 212<,

’ °'11S122 i ¥

Because of the form of (16) one must be very cautious
about defining a figure of merit, but using T}, as a
parameter is at least simple. However, for the
Ettingshausen cooler, the minimum value of T,/T;, =1/2
when T=T,[10].

As is obvious, no really simple direct comparison can
be made because the Peltier figure of merit can be
unbounded while the Ettingshausen equations apply only
to an unrealistically simple geometry. Furthermore, the
equations are fundamentally different, even though some
authors attempt to map the EC problem onto the Peltier
problem by using different definitions for K and o [6].
Such attempts are no help to the materials scientist who
is interested only in how well the refrigerator can be
made to work. The best approach to developing an EC
material is to use measured values of the conductivity
tensor, the thermopower tensor and the thermal
conductivity, and the complete version of (15) to
optimize the shape and driving electric and magnetic
fields. It is our belief that this has never been done as
well as it is possible to do and that the real potential of
EC’s has not yet been realized [11].

OPTIMIZATION OF MATERIALS

Even without a complete solution to (15), there are
very good ways to attack the material development
problem based on a) the search for e-h symmetry, and b)
the need to minimize the effective mass. We can
quantify this second point, and at the same time provide
a proper basis for the historical choices of B, E, and j in
a Bi-based EC cooler. Then, we will use this and the
band structure of Bi-Sb to suggest improvements. In
figure 4 we show the Fermi surfaces of Bi. This set of
surfaces is the intersection of g, with the dispersion
curves of the electrons and holes. Even though there are
several electron surfaces, the total number of electrons
equals the number of holes. Where the surfaces are

narrow, the dispersion curves have a lot of curvature,
yielding low effective masses. Remembering that one
goal is to maximize the total flux of heat-carrying
particles, can we find a rule that will tell us what
directions B, E, and j must be in? If all the surfaces
were spherical, then any direction is as good as another
because the masses (inverse of the curvature) would all
be the same. However, in a low-symmetry metal like the
rhombohedral Bi, the electron masses vary with
direction by a factor of 30, and the hole masses
somewhat less. If we consider what happens when
simple resistive transport occurs we find that for one of
the carriers,

m, B

A 2 E,
ne’t  nec _ (17)
_2 M)

nec ne*t \J» E,

where n is the number of electrons (or holes) and ¢ is
the speed of light, e the charge on an electron, B is the
magnetic field, T is the mean time between scattering
events, m, the carrier mass in the x-direction, m, in the
y-direction. The low mass would occur for particles
traveling across a narrow direction of the Fermi surface.
A second version of (17) for the other carrier would
look the same except that the signs of off-diagonal
matrix elements are reversed. We can find the overall
response by adding current densities linearly for the
electrons and holes. If we have a system in which e-h
symmetry is present, i.e. a good EC material, then when
the full problem is solved, E, would be zero (figure 2
gives the geometry) and so would the total j.. However,
what we are after is a very large positive value of j, for
one carrier and a large negative value for the other,
summing the electric current to zero but maintaining a
large particle flux toward the hot end. We can,
therefore, solve each of the two version of (17)
separately to maximize j /j, -that is we want the
maximum possible transverse component of current for
each carrier separately for a given current drawn from
the battery. However, we know that E, will be zero
when both carrier contributions are summed, so we set
it to zero in (17) to obtain

) (18)
] y mlc

where o is the cyclotron frequency. This remarkable
result shows that the particle current in the heat-
carrying direction depends on the effective mass in that
direction alone (figure 3), and that the angle that the
current makes with the electric field is the Hall angle
©=tan(wt), the angle that the x- and y- components of



the électric field would make with each other if only one
carrier were present and j,=0 (figure 3).

Maximizing (18) is a very important (if ot is of order
unity the magnetic field is considered strong) priority
but one cannot simply increase the magnetic field
because if B exceeds 1T or so, permanent magnets can’t
be used and the system becomes a laboratory curiosity.
Thus it is important for the effective mass to be very
small, typically 0.01 or less than that of a bare electron.
We can, however, keep electronic scattering down (and
hence © up)by minimizing alloy elements that change the
electron count, and we can make sure that the
temperature gradient points in the direction of lowest
mass. This is the first rule. In Bi, the electron masses are
much less than the hole masses so the hole pocket forces
the temperature gradient to be perpendicular to the
trigonal axis. The next rule is to note that in a magnetic
field, electron orbits shift and re-quantize with an energy
spacing ho ( h is Planck’s constant) so it is important
that the magnetic field not align with the low-mass
direction or else large gaps will form in the energy
spectrum (Landau levels), affecting the ability to get e-h
symmetry because usually only one carrier will align.
Thus the electrons, which are very light must not have
the long axis of their pockets along B. This is the second
rule. Thus B must be along the binary axis, leaving j
along the bisectrix, as shown in figure 4.
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Figure 6. Shown is the response of a sample of
Biy0sSby, alloy to the application of a constant current.
The current turns on at the beginning of the trace,
about 40ms after the start of recording.

It is clear from figure 4 that it is very difficult to get
e-h symmetry in Bi as it is. However, Bi is a low
symmetry metal so that in certain symmetry directions
the bands can cross or nearly cross at g;. This is
illustrated in one of the best band structure calculations
for Bi, done by Liu and Allen [12], where we show in
figure 5 the very unusual, non-parabolic near-
intersection of the light electron band with a normally
unoccupied, perfectly symmetric light hole. If this light
hole could be occupied equally with the light electron,
perfect e-h symmetry would result. This has never been
exploited, even though it is well known that the
addition of Sb to Bi moves the heavy hole ( the hole
discussed above, which is normally the only hole
present) down and out of the way, forming a
semiconductor above 4%-7% Sb. If Sb is added, then
the heavy hole moves away, the Sb scatters phonons
well (its mass is very different from Bi), reducing the
phonon thermal conductivity, and Sb has a minimum
effect on 7 (it does nothing to the electron density),
keeping the Hall angle large. In fact, as the hole moves
down and out of the way, the electron pockets shrink to
zero. This might seem to be a problem, and it would be
if the cooler were operated at a few K, however, at
100K or so, thermal excitations produce a good supply
of e-h pairs, comparable in number to the number
present in pure Bi at OK, and, of course, the pairs are
symmetric. A little doping will produce a system in
which the very light electron and its symmetric hole are
present in equal numbers. Under these circumstances,
rule 1 tells us to put the temperature gradient along the
trigonal axis, now picking up all three e-h pockets
equally, instead of only part of one, as in pure Bi. Rule
2 says B must not form widely spaced Landau levels, so
B goes along the binary axis, leaving j along the
bisectrix. It is this that our work is aiming toward, with
doping and Sb concentrations being investigated now.
There is almost no systematic study of this region of the
direction/concentration space [13] so much new data
must be taken.

MEASUREMENTS

In order to explore carefully new alloys of doped Bi-
Sb, a very tedious collection of somewhat difficult
measurements must be made. These must include the
resistivity tensor, the thermopower tensor and the
thermal conductivity for many alloys over a broad
temperature range in varying magnetic field. In
addition, the measurement techniques are non-trivial.



The'difficulty arises because a good thermoelectric
material (Peltier or Ettingshusen) generates huge
thermoelectric voltages and substantial temperature
gradients when current is passed through it, mixing up
thermopower and resistivity signals in a nearly
impossible-to-unscramble way.

If we start with a uniform temperature and magnetic
field in a sample to be measured, and drive a constant
current through it, electric potentials are set up almost
immediately, and then, with some time constant, thermal
gradients develop which may change measured voltages.
The measured voltage may be a strong function of time,
with time constants less than 1 s. The constant voltage
measured after a long time, when the gradients are
stable, is the adiabatic value. Measurements made
quickly give the isothermal values. Figure 6 shows a
typical measurement of the time dependence of the
longitudinal voltage on a Bi-Sb alloy. The curved region
arises from a compounding of the Ettingshausen effect
and the Nernst effect. The isothermal value of the
voltage, combined with the known drive current, yields
the resistance while the difference between isothermal
and adiabatic voltages, combined with the thermal
conductivity, yields the Nernst (or Ettingshausen)
coefficient. This also provides a direct measure of the
critical thermopower and 7, in the material [14].

Two fast, ultra low noise amplifiers in a differential
instrumentation amplifier configuration are used in the
voltage measurements. The output of the amplifiers is
digitized at rates near 1 kHz to measure over a time
scale of approximately 800ms, by which time the
voltage approaches a steady value. The timing of the
current switch is controlled by a PC over a GPIB bus
and the timing of the digitization cycle is adjusted to
catch the voltage level before the current is switched on.
Fitting a simple exponential growth to the curve gives a
time constant of t~150 ms, although the time
dependence is not expected to be exactly exponential
[13]. Such measurements, combined with static
measurments of thermal conductivity, are required to
predict the performance of a material used in an EC
cooler.

SUMMARY

We have reviewed the Peltier and Ettingshausen
effects, discussed accurate phenomenological equations
to describe the Ettingshausen cooler and indicate how
the Ettingshausen cooler can provide better performance

for the same effective material properties than a Peltier
cooler via geometry optimization. Rules are described
for determining the best directions to use in
Ettingshausen materials, and the key difficulties with
measurements are reviewed.
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