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1. Introduction

Most experimental workers first define a qualitative model, then

use experimental data to compute the parameters of that model. For

instance the model appropriate to dilution phenomena is a set of

ordinary differential equations with constant coefficients, while for

diffusion phenomena partial differential equations are to be used, for

delay phenomena finite difference equations, etc. Of course, the

gnosiological value of the parameters computed in this way depends on

the chosen model. An ideal situation would be to define parameters

that are independent, or almost independent, of the chosen model.

The compartment model,, so often used in nuclear medicine and in

pharmacaklnetlcs, is formed by a set of linear differential equations

of order one with constant coefficients; Its validity depends upon the

hypothesis that the system described contains a finite number of
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components, and that each component is homogeneous. These hypotheses

exclude the presence of diffusion and of age-dependent processes, or

in general of transport of a non-Markovian nature. The fact that

frequently the experimental data agree with this model does not

necessarily prove the model is appropriate, but only that it is

flexible*1)' "'
? . ' . \ i - S •'•• •'*•

In fact any number of classes of functions and an infinity of

functions within each class will fit any contiguous single-valued

correspondence with time to an arbitrary closeness. Among the most

well known demonstrations are those for polynomials^) and for

trigonometric functions.^) in the specific case of n compartments,

the model is a set of n first order linear differential equations in jn

state variables; they contain n^ parameters. With 11 large enough,

this model can be made consistent with many experimental data, but at

the price of a considerable complexity of the model i tself .

Frequently, many coefficients of the differential equations are set

equal to zero, thus simplifying the differential equations of the

model and the fitting of the data. The price paid for this

simplification is a reduced flexibility of the model. In addition to

the consistency with the experimental data, an obvious conceptual

requirement of the model is that i t s parameters could be interpreted

in terms of perceivable physical properties.

All this considered, we shall try to show how the experimental

data can be examined in terms ?f a model making a minimum number of

assumptions and giving the best physical interpretations to the

parameters involved.

2. Stochastic transport

Consider the transport of a particle through a living system as a

stochastic process, i . e . as a random phenomenon that arises through a

process controlled by probabilistic rather than deterministic laws.

The only requirement we need is that the particle itself behaves in a

way independent on i ts past history, but depending only on its actual

location and chemical association-

Many papers have been published recently on stochastic

compartments,^) where the number of particles present in a

compartment is a time-dependent random variable; those models require

the same general assumptions made with the ordinary compartments, and



in most cases lead to distributions with very small relative

variances.* /

As an alternative model, consider as random variable the time a

given particle reaches a certain state in the system, or the interval

of time it takes to move from one state to another; the distribution

of this random variable can be analyzed and compared with the

experimental data available.

With the hypotheses made, call A(t) the probability density

function of the time a given particle is present in a certain state,

B(t) the probability density function of the interval of time for the

transition from that state to another specified state, and finally

C(t) the probability density function of the time the same particle is

present in this last state. More precisely,

A(t)dt = probability that a given particle is in the first state at a

time between t and t + dt,

B(t)dt = probability that a given particle takes a length of time from

t to t + dt to move from the first to the second state,

C(t)dt =• probability that a given particle is in the second state at a

time between t and t + dt.

Then, ignoring infinitesimals of order higher than one,

A(T)dT'B(t-x)dt

is the probability that a given partiele left in first state during

the interval ~,t+d" will be in the second state during the interval

t,t+dt. Taking the integral of the expression above for all values of

T from 0 to t, one gets the probability that that particle is in the

second state at a time between t and t+dt if it was in the first state

at any time from 0 to t, i.e.,

|^A(T)B(t-x)dx = C(t). (1)

This i s the well known convolution integral representing a l inear ,

invariant system, without invoking the properties of homogeneous,

well-mixed compartments.



3. Definition of the moments

Many properties of the convolution integral in (1) can be analyzed

by first defining the moments of the functions in it.

Given a generic function F(t) defined for all values of t from 0

to +00, call the moments,

F± - f — F(t)dt (1=0,1,2,...), (2)
JO *!

the relative moments,

fi - ^TF(t)dt/Fo, (1=1,2,3,...) (3)

and the central moments,

F(t)dt/Fo, (1=2,3,4,...) (4)-
'0 i!

provided that the integrals above converge.

A few comments are necessary. First, the definition of moment in

(2) differs from the usual definition by a factor i ; we have

introduced this factor because i t considerably simplifies many

expressions we shall find later on. We shall not discuss the general

conditions necessary for the convergence of the integrals in (2), (3),

(4), but section 3 shows what can be done when one of those integrals

does not converge. Finally, definition (4) applies only to values of

î  larger than one; for convenience we complete that definition with

• l - f l . (5)

so that in the following pages we shall use central moments for any

positive integer i_.

To express a central moment in terms of the relative moments,

expand the binomial in (4),

I \ C-
j=OJo

•i - I \ C-DJ T T ^ - 7 , F(t)dt/Fo

i-2 f,j

3lo
 (-1)J I T "-'



(6)

In particular we can write

*! = f i

z 2

*3 - f3"flf2 + 37 fI3

}rfi2f2 - — fi

and so on.

4. Properties of the convolution

Multiply both sides of equation (1) by tx/i '• and integrate from 0

to w,

r t1 (t c t1

ly A(-)B(t-T)dfdt = * C(t)dt,
Jn x" JO -In x"

'0
where i is any non-negative integer; change the order of integration,

rao ra>

A ( T )

JO •'x

B(t-x)dfdT

change the

A(i
0

r

y fM

» var

:>f
JO

•) r
Jo

W
in particular,

Al B0 J

and so on.

-co
h A0B

K AXB

1- A2B

iable of the inner integral,

(t+r)1

Bftidt*dx - C-

j)! ' T Jo j!
 B t

Bj = C±', (i=0,l,2,...)

1 - Ci

1 + A 0B 2 = C 2

1 + A1 B2 + A0B3 - C3

(7)



Dividing both sides of equation (7) by Ao'Bo we get

i
I a -bj = C i , (1=1 ,2 ,3 , . . . ) - (8)

j=0 X~J

From equation (1) again we get

O i ! '0'0 J 0 1 !

where i i s any integer larger than one; proceeding as before,

B(t—c)dfdx =
i!

f n B(t)dfdT

ct-B1)J(x-o1)i-Jr r i ctB1)(o1)
ACT) i ., ; ; — B(t)dfdt = Yic0,

i r (T-ai)i-j r (t-si)^
y A(T)dx- 1— B(t)dt = Y lC 0;

;£o >Q (1-3)! Jo 31j

observing that

f (--Ol)A(T)dT
;o

we get finally

i-2

and in particular from definition (5),

and froa equation (9),

cs2 + 32 = Y2

°3 "*" ̂3 = ̂ 3

and so on.

In general the number of particles in a given state is very large,

and if it can be observed as a function of time it is a very good

approximation of the probability density function defined in

Section 2. This means that the functions A(t) and C(t) corresponding

to two given states can be measured, their moments computed, and

finally the moments of the unknown function B(t) obtained using



equations (7), (8), or (9).

These last moments can be given a clear physical meaning; for

instance Bo is the fraction of particles leaving the first state that

actually reach the second state, bj is the expected interval of time

for a particle to move from the first to the second state, $2 is twice

the variance of the above time, etc.

5. A simple compartment

It may be interesting to compare the actual values of the moments

of a specific system. Take for instance a single compartment, i.e. a

well mixed pool of homogeneous particles, all with the same

probability udt of leaving in the interval from t to t+dt, where v is

a constant; in other words the probability of leaving the compartment

does not depend on the absolute time or on the time when a particle

entered it. If A(t) is the probability density function

characteristic of the compartment, i=e=, the probability that a

particle is in the compartment at time t, then

A(t-Mt) = A(t)'(l-ydt)

is the probability that the given particle present in the compartment

at time t is still there at time t+dt; rearranging this equation,

dA/dt = -yA(t),

and integrating,

A(t) = A(0)«e~'Jt,

where A(0), the constant of integration, is the probability that a

given particle is present in the compartment at the initial time.

Using the definitions (2), (3) and (4) we get for a simple

compartment,

A± = A(0)/^
i + 1, 1=0,1,2,...

a.± =

l/3p3

3/8y4

6. Synthesis

Consider two systems in series, that is twa systems such that all

particles entering the second of them are originating from the first;

the first system is called the unique precursor of the second.6) If



A(t)dt = probability that a particle entering the first system at time

0 leaves it in the interval t,t+dt,

B(t)dt = probability that a particle entering the second system at

time 0 leaves it in the interval t,t+dt,

then, ignoring infinitesimels of order higher than one,

A(T)dT-B(t-x)dt

is the probability that z particle entering the first system at time 0

moves to the second in the interval T,T+dT and leaves this one in the

interval t,t+dt. Taking the integral of the expression above for all

values of x from 0 to t, one gets the probability that a particle that

entered the first system at time 0 leaves the second at a time between

t and t+dt, no matter when it moved from the first to the second,

i.e. the convolution

rt
A(T)B(t-x)dt

'0
is the probability density function characteristic of the system

formed by two systems in series.

Obviously the properties of the convolution described in section 4

apply in this case also.

If two 'iystems are in parallel, i.e. a particle can enter either

system ana be detected when it leaves either of them, then calling

A(t) and B(t) the probability density functions of the two separate

systens, the probability density function of the two systems taken

globally is A( t) + B(t) . Obviously in this case the moments of the

resulting system are

A2+B2

For the relative moments we have

Aj^Sj _ Ai A0 ^ B1 B0

A0+30 B o A0+B0

where _i_ is any positive integer and

A0 B0

called the weight') of the two systems, are factors representing the



probability that a particle goes through one rather than the other

system.

If a system forms a loop, i.e. a particle can reenter it

immediately after leaving it, put

A(t)dt = probability that a particle that entered the system at time 0

leaves it for the first time in the interval t,t+dt;

M(t)dt = probability that a particle that entered the system at time 0

leaves it in the interval t,t+dt, irrespective of the number

of passages through it.

The convolution I M(x)A(t-x)dx is the probability density
•'0

function corresponding to a particle going through that system two or

mere times; by adding to that convolution the probability density

function corresponding to just one passage, we should get again the

function M(t), i.e.,

M(t) = f" M(T)A(t-T)dT + A(t);

Jo

taking the moments of the functions above, using equation (7),

Mo - MQAQ+AQ

M2 =

M4 =

h e n c e

M0 =

MX -

M2 -

M3 -

M4 =

M Q A 4 " H I ^ A 3 + M 2 A 2 ' + M 3 A ^ + M 4 A ( ]

A 0

1-Ao

1

1-Ao

1

1 - A Q

_ _ [ A 3 ( MQ+1 )+A2M1+A1M2 ]
1 - A Q

1
F A/ (Mrt+l ^+A**M 4-A M 4

1 -A O

(11)



and

m2 =

m 3 =

(12)

7. Analysis

The formulas of the previous section can be inverted to compute

the moments of separate subsystems if enough data are available. At

this point it is convenient to introduce a new notation. Call Fn*3

the n-th moment of the transport of a particle from state 1^ to state

j_, and Fn*-* the tv-th moment of the transport through a cycle

beginning and ending in state jL. Also call F n ^ * the n-th moment of

the one-time transport through the cycle around 1^, and F^JC4'111' * * •)

the n-th moment of the transport from 1^ to j_ excluding the particles

that are going through the states l_,m,..., indicated in parenthesis.

Furthermore, if j_ is one of the superscripts in parenthesis, then from

that moment the transport along a cycle through j_ is excluded.

With this notation equation (11) for instance becomes

and equation (12)

n-1
f n j j " fn3j*(F03i+1) + I f&J'j* Fn-a; (14)

Jl=l
by inversion,

f 1 (f 33 _
f n T3 tfn 2.

FO
JJ+1 1=1

Suppose now that two states, î  and j_ have been observed, and from

experimental data the moments Fn*-J have been computed for a

sufficient number of values of 11. From section 6, remembering

equation (7),

1 n l

and remembering equation (8),



1=0

because the direct transfer of a particle from state jL to state j_ is

followed by an indeterminate number of recyclings of that particle

around state j_. If in the two equations above we substitute the

values of F Q ^ and fnJJ given by equations (13) and (14), we have a

number of equations giving the relationship between the moments

F Q 1 ^ ) , f n 1 ^ ^ of the direct transfer from jL to J_, and Fo^*,

fnJj* of a single recycling around j_, on one side, and the moments

FQ^J, fn*-J of the global transfer from ±_ to j_, as observed

experimentally. By inversion of those equations, the moments of the

subsystems can be computed; they describe the behavior of a particle

during transfers not d-'rectly observable.

8. Non-converging moments

The definitions given in section 3 required the convergence of

certain integrals, in particular of

r |TF(t)dt; (15)

this requires that function F(t) decreases fast enough when t

approaches infinity. It is a known fact**) that most functions found

in biological modelling are of exponential order, i.e. they have the

property that a constant a > 0 exists such that the product

is bounded for all values of t larger than some finite value T; for a

function of exponential order the integral (15) always converges, no

matter how large i is. A notable exception is given by a closed

system, i.e. a system from where not all particles are eventually

lost; in this case

lim F(t) = 0,

and the integral (15) does not converge for any non-negative value of

i. Obviously the expected time spent by a particle in such a system

is infinite. We shall not consider this case, but the more

interesting case when function B(t), as defined in section 2, is of

exponential order, while function A(t) is bounded but does not

approach zero as t approaches infinity. This corresponds to feeding a

"regular" system with an endless stream of particles. Equation (1)



shows that function C(t) also will have a non-zero limit, therefore

neither the moments of A(t) and of C(t) are defined, while B(t) has

defined, but unknown moments.

From the hypothesis that A(t) is bounded, it follows that

is of exponential order for any 6 > 0; the convolution integral in (1)

can be rewritten as
rt

e-5TA(x)*
00

showing that the multiplication of both A(t) and G(t) by e~5t is

equivalent to the multiplication cf B(t) by the same exponential

function. The new functions e~5tA(t) and e~5tC(t) have finite

moments, and using equations (7), (8), (9) we can compute the moments

of e~5tB(t); calling B^* the moments of this last function, then

i* = T l T e~5tB(t)dtB

- (-6t)J t1

i ± + j 1=0,1 ,2 , . . .

and by inversion

tJ l,2,... (16)
00

Incidentally, if the functions A(t) and C(t) are evaluated by

measuring the activity of a radioactive tracer in two states of the

system, then the "true" probability density functions are multiplied

by the exponential function e""^, where 5 is the decay constant of

the nuclide used. If the true functions A(t) and C(t) are not

corrected for the radioactive decay, then the moments B^* should be

corrected using equations (16); these last corrections are frequently

easier than the correction of A(t) and C(t) because in general the

infinite series in (16) converges very rapidly.

9. Blood flow measurement

Most local blood flow measurement methods relate back to the

original Kety-Schmidt equation^);

dQg/dt = F(CA-CV), (17)



where

Q = amount of tracer present in the organ,

C ,C = arterial and venous concentrations of tracer,

respectively,

F = flow rate of blood through the organ;

this equation states simply that the amount of tracer circulating

through an organ is conserved. An additional assumption is usually

made, i . e . ,

Q
s

where

W = volume of the organ,

X = partition coefficient between organ and blood.

This assumption implies that the amount of tracer present in the organ

is simply proportional to the venous concentration. From the

assumption follows

d V d t + X* QS = FCA'
Calling Cg the concentration of the tracer in the organ, and f

the blood flow rate per unit volume of tissue,

f = F/W,

the differential equation atove becomes

dCB/dt + - CB = fCA- (19)

Supposing Cj = 0 at t = 0 and f constant, then

C_(t) = f f C.COe-C^Xt-OdT. (20)

By using an infusion pump and a servo amplifier^) we were able

to produce a linearly increasing arterial concentration of radiotracer

in experimental animals. In this case

CA(t) = at

with a constant, and equation (20) becomes

c B ( t ) = ax{t-i + h . ) ;

the last term in parenthesis becomes negligible after a very short

time, therefore

CB(t) = oX(t-X/f). (21)



If the values of CJJ versus t are plotted, one gets, after a

short transient, a straight line of slope aX; by extrapolation this

straight line intersects the t-axis at a point equal to X/f. Because

a is known, X and f can be computed. We were in fact able to verify

the model in cats and to determine how the brain partition coefficient

X of A-^F-fluoroantipyrene, and the brain blood flow rate f changed

in the same animal by changing tu. -terial concentration of CO2

during an experiment.

By observing that equation (20) is a special case of equation (1),

using equation (7) and the results of section 5 we get

B o = XAo

Bx = XAi + X
2/f AQ

B 2 = XA2 + X
2/f Ax + X

3/f2 AQ

where Ao,Aj,A2,•••, BQ,BJ,B2,... are the moments of the functions

C^(t) and CB(t), respectively.

In particular these last equations show that X is the zeroth

content, X/f the first relative moment, and (X/f)2 the second relative

moment of the function describing the blood flow through the organ.

Of course the equations above are redundant; only AQ,A^, BQ,B^ are

necessary to compute X and f, nevertheless the higher moments may be

useful to check the validity of the assumptions made, i.e. the

correctnass of equation (20). The mainpoint here is that by using the

moments, the arterial concentration function does not need to have a

special form, as was required for the validity of equation (21), but

can be any function with converging moments.

10. Positron emission tomography

Equation (17) is based on the principle of conservation of mass

and is therefore valid in general, provided that both C^ and Cy

are uniform throughout the whole organ considered, or if not uniform

that an appropriate average value is used for them. On the other hand

equation (18) requires an instantaneous equilibration between the

concentration in the organ and in the venous blood, i.e. it requires

that the organ behave like a perfect compartment.

From the results of section 5 we can say that the probability

density function of the organ described by equations (17) and (18) is

fe-ft/X# Other hypotheses are possible; for instance different

parts of the organ may have different partition coefficients, or blood



may diffuse without mixing through the organ or through some parts of

it; in all these cases the probability density function of the

particles moving through the organ is of course not a dimple

exponential function as before. If its moments are computed from the

experimental results, then the zeroth moment is not the partition

coefficient X as defined by equation (18), but is the fraction of

tracer particles that are transferred from the arterial blood to the

organ; the first relative moment is the average time spent by a tracer

particle in the organ; the second central moment divided by two is the

variance of that time, and so forth.

We intend to use a high resolution positron emission tomograph

(PETT VI)H) to determine the successive moments describing the

blood circulation through different sections of the brain, for

example. Wherever the relative moments form a geometric progression,

the circulation in that section follows the rules of a perfect

compartment; if this is not the case, the method of section 7 can ba

used to describe the behavior of a tracer particle in that part of the

organ.
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