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Summary

It has been shown that the high current density
and magnetic flux density associated with superconduc-
tors can make the magnetoelastic energy a significant
portion of the total energy in a structural system.
The present work presents a procedure for evaluating
this magnetoelastic energy for use in the finite ele-
ment analysis of the structural dynamics and stability
of the superconductor. A simple, special case of the
element matrices is illustrated.

Introduction

The utilization of superconducting materials is
becoming increasingly common. In the areas of plasma
physics and fusion energy research the utilization of
Superconducting magnetics is often necessary for the
generation of the confining magnetic fields. The high
current density and magnetic flux density associated
with such applications contribute a magnetoelastic en-
ergy term that must be considered in an accurate eval-
uation of the structural stability and/or dynamic res-
ponse of the superconducting structure. Experimental
results and simplified analytical approximations have
shown that the magnetoelastic contributions can have a
significant effect on the structural behavior. In some
cases the estimated critical current density, necessary
to induce buckling, is less than published design den-
sities.

The current state of the art Is most accurately
described in the several experimental and analytical
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studies by Moon, et al . They have shown the mag-
netoelastic contributions to be quite significant.
However, these studies have practical limitations that
make it difficult to apply In general. Their approxi-
mate analyses are based on a single degree of freedom
Ritz approximation. For circular superconducting coils
their accuracy is fairly good. This is due to the u-
tilization of the known exact analytical form of the
mode shapes for given symmetrical support conditions.
This information clearly will not be available for a
general structure.

The single unknown constant in the Ritz analysis
represents the magnitude of the maximum deflection.
The approach used by Moon should yield good engineering
approximations of the magnetoelastic energy and the
strain energy. The latter quantity was evaluated using
the analytic expression for the strain energy in a
curved beam. The magnetic energy was based on an em-
pirically determined relation. As expected, both forms
reduce to a quadratic expression involving the unknown
maximum deflection.

These approximations were substituted into the
definition of the Lagrangian, L:

L * T + W - V (1)

where T * kinetic energy, W * magnetic energy and
V • strain energy. The new term, the magnetic energy,

is usually defined for a rigid circuit as W = i L
where i is the current density and L is the inductance.
The inductance depends on the geometry of the circuit
and thus is affected by the structural deflections.
Therefore, the magnetic energy could be written as
W • WQ(i) + W(i,iS) where <5 is tne displacement from the
original shape. Only the latter term will vary when
one searches for the displacement field that would ren-
der the Lagrangian stationary.

To determine the buckling current, it, causing
structural instability, Moon utilized the following
analytic procedure (since it closely followed his ex-
perimental procedure). Assume a current density, i.
Minimize the Lagrangian to find the natural frequency,
w., for a simple harmonic excitation. Repeat the pro-
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cedure for several i and generate eu - i plot. Use
this plot to estimate the buckling current magnitude,
1,., where u • 0.

Present Procedure

The contribution of Moon and his colleagues is
important. However, there are a number of obvious dis-
advantages with the classical Ritz type of approxima-
tion. First, one usually requires an analytic expres-
sion, or approximation, for the mode shapes. Thus, it
is difficult to treat general shapes and boundary con-
ditions. The calculation of the strain energy in terms
of given analytical mode shapes 1s restrictive. The
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extrapolation procedure using the u - i plot is ex-
pensive and inaccurate. However, Southwell plots can
be used to improve the accuracy. Finally, the analytic
procedure makes it difficult to introduce the geometric
stiffness so as to consider the axial loads and moments
that exist in most applications.

By utilizing the finite element method the short-
comings of the current procedures can be overcome.
However, a major problem still needs investigation.
That is the finite element formulation of the deflec-
tion dependent ; ortion of the magnetic energy. First,
the necessary integral form must be developed and then
it must be implemented into the standard finite element
methodology. While a number of formulations of the
magnetic energy are possible the initial emphasis has
been on the procedure described below.

Let Greek subscripts denote a circuit number. For
simplicity, consider conductors that can be approximat-
ed as line circuits. The displacement dependent por-
tion of the magnetic energy density, per unit length of
circuit a, due to the displacement of that circuit is
the negative of the work done by the magnetic forces.
That is

(2)
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where o is the displacement of a point on circuit a

and df o is the force on a due to a circuit S. Thus

the total displacement dependent magnetic energy of
circuit a due to circuit 3 is

dU'aB (3)

At a point, P, on a the force due to circuit 8 is giv-
en by

" 1 (4)

where 5 o is the magnetic flux density vector at point

P on a due to circuit 6, 1 is the current in a and

3s 1s the unit tangent vector at P. The magnetic flux

density in the deformed configuration is

t06 (5)
Figure 1. Definitions of Displacement Vectors

where from Figure 1,
or

rct6 (6)

and r - \r\. This step is important since i t separates
data about the original geometry, ft, and the c i rcu i t

deformations, t. Usually <S «R so r ; RJ. Substi-
tuting the above identi t ies gives

(7)

There are two common special cases of interest in
structural applications. The first is where the for-
cing circuit S is rigidly supported so that If- = 5.

For self-induced magnetic forces a = 8. In such cases
che ratio of <5/R is not small over all regions of in-
tegration. It may be necessary tc use the identity
that

1 « 1 fl + (<5/R) Cos 0 + |{o/R)2{3 Cos2 0 - 1) + ...j

• Z (6/R)n P {Cos G) (8)
n=0 n

where P is the Legendre Polynomial of order n, and

? • t = 6R Cos 0.

-The finite element theory enters in defining the
displacement vector components in terms of unknown no-
dal displacements and a set of element interpolation
functions. The application of such an approach leads
to the definition of an "element geometric inductance"

matrix, [Lg]. Thus for a typical application the sta-
tionary Lagrangian leads to the eigenproblem

(9)

where

[M] = system mass matrix

[Lg] = system geometric inductance matrix

[K^] = system elastic stiffness matrix

Kg] = system geometric stiffness matrix

and where i is the current density and LJ is the fre-
quency of the simple harmonic motion. The sign of the
current term in the above expression depends on the di-
rections of the currents but will usually be positive.
Thus the magnetoelastic effects are destabiliiing.

For simplicity assume that u *
interested in a stability analysis.

0 and that one is
The presence of



the geometric stiffness introduces the axial loads, P.
If the current density, i, Is known then the above
problem can be solved for the critical buckling load
Pb. However, it is more likely that in a practical

application the axial load would be a tension (stabi-
lizing) force that is directly proportional to the
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square of the current. That is P * ki where k is a
known constant. In such a case, it is possible to
solve for the critical buckling current, i. .

Example: Parallel Conductors

Consider a typical conducting element, of length

Is, centered between two parallel, infinite, rigid
conductors. For the system shown in Figure 2, the
quantities defined above are

S e « (Axi - D}j), ty* (Axi n O2j)

\ ' S • 3sy * dxi' 1a " h ' 1 *

Thus the magnetic energy of the element is

w " w o

(10)

(11)

where

dx

where [H] and {6 } denote the interpolation functions
and nodal displacements, respectively, gives

W * WQ +|{6 s }T [L®]{6e } (15)

where the symmetric geometric inductance matrix for the

element, [Lg ] , is defined as

2

[J] i \ f [H(x)]T[H(x)]dx . (16)

This form is very similar to the consistent mass matrix
for the element.

Assume circuit a is divided into NE finite ele-
ments. The total Lagrangian of that circuit is the
sum of the element contributions, i.e.,

l-f
l

whe 3

We - Ve

(17)

(18)

and where the kinetic, magnetoelastic and strain ener-
gies are

4ir *? t dx (12)

f K§]]{6e>. (19)

The Integrals from -» to « could be evaluated numeri-
cally by existing inductance calculation codes. How-
ever, in this simple case an analytic solution isa-
vailabie. Noting that 0 = R Sin 9 * Rd0, and
-oo <_ x <_ °« corresponds to u _< 0 <_ 0 this reduces to

If the element is a cubic beam element [11] subject to
an axial tension load P then the typical terms are:

.2

(20)

or

u2(x)dx (13)

Introducing a standard finite element model such that
the displacement! u(x), is given by

u(x) = [H(x)HSe} (14)
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Following the procedure of Przemieniecki [11], one
would expect a two element model analytical solution
to give critical values accurate to within 2O». Of
course, one can easily increase the accuracy by in-
creasing the number of elements and carrying out the
eigenanalysis numerically.
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Figure 2. Example of a Three Wire System

Numerical Results

The above special case has been implemented in a
finite element analysis. It has been applied to the
buckling of a simply supported center conductor with
no dynamic or axial loads (i.e., w = 0, p = 0). The
problem parameters were selected to provvde a rough
approximation of the ORMAK system. The free span was
I » 6 m and the distance between the conductors was
D " 1 m. The elastic modulus and moment of inertia
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were E = 1 * 10" N/m and I = 9 < 10 m , respective-
ly. The system was analyzed using 1,2,3 and 4 cubic
beam element models. The single element model was in-
cluded for completeness only since experience suggests
a minimum of two elements is required for an accuracy
of about 30% in the buckling values. The calculated
mode shapes and buckling currents seem reasonable but
have not yet been verified by alternate solution tech-
niques.

The calculated buckling currents for the first
three modes are given in the table below. They illus-
trate the importance of increasing the number of de-
grees of freedom (D.O.F.) in a stability analysis.
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Table 1. Cri t ical Buckling Currents

.Number of

Elements

1
2

3

4

Acti ve

0.0.F.

2
4

6

8

Calculated i^

Mode 1

7.906
5.056

4.116

3.562

Mode I

36.23
22.36
16.64

U.30

106A

Mode 3

56.21

41.08

34.74
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