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THE HIERARCHICAL SPATIAL DECOMPOSITION OF

THREE-DIMENSIONAL PARTICLE-IN-CELL PLASMA SIMULATIONS

•" ON MIMD DISTRIBUTED MEMORY MULTIPROCESSORS

David W. Walker

Abstract

The hierarchicalspatialdecompositionmethod isapromisingapproachtodecomposing

the particlesand computationalgridinparallelparticle-in-cellapplicationcodes,sinceit

isabletomaintainapproximatedynamic loadbalancewhilekeepingcommunication costs

low.In thispaperwe investigateissuesinimplementinga hierarchicalspatialdecomposi-

tionon a hypercubemuhiprocessor.Particularattentionisfocusedon thecommunication

needed to update guard ringdata,and olltheload balancingmethod, The hierarchical

approachiscompared withotherdynamic loadbalancingschemes.
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1. Introduction

For the last two decades the particle-in-cell (PIC) algorithm has been the method of choice for

ma_;' types of plasma simulation computation [3, 10]. Current state-of-tile-art, three dimen-
" sional, PIC simulations involve millions of particles, and several hundred thousand grid points,

and thus impose heavy computational requirements. However, it. is difficult to implenwnt

the PIC algorithm efficiently on most. advanced architecture computers because it performs

gather/scatter operations and recurrent data accesses [16, 17]. On MIMD distributed menlory

concurrent computers (or multicomputers) these difficulties manifest, themselves as load imbal-
ance and communication overhead. These two types of overhead can be traded off against, each

other, depending on the type of data decomposition scheme used. Thus, selecting the best,
decomposition scheme is of crucial importance in designing an efficient parallel PIC application

' code.

This report discusses issues concerned with implementing a PIC code that uses a unitary

hierarchical spatial decomposition on a multicomputer, Ip. this type of decomposition scheme

the problem domain is subdivided over each coordinate direction in turn so that the total

computation arising from the particle and field updates in each time step is balanced among

the processors. In section 2 a brief description of the PIC algorithm is given, Section 3 outlines

• approaches to decomposing PIC problems, and describes the hierarchical method in more detail.
Section 4 is concerned with the communication necessary to update a processor's "guard data."

In section 5 other decomposition schemes are considered. Section 6 presents a summary and
some conclusions.

2. The PIC Algorithm

" The fundamental equations governing the evolution of a plasma system are the equation of

motion for the particles, that relates the acceleration of a particle to the electromagnetic field at

its position, and Maxwe!l's equations, that determine the evolution of the electromagnetic field.

In the PIC method the field equations are solved on a regular tensor product grid. ttowever,

the particles are not constrained to lie on the grid and can be located at, any position in the

problem domain. The particle motion is driven by the electromagnetic field, so in advancing

the particle positions it is, therefore, necessary to interpolate EM field values on the grid to

each particle's position. Similarly, the evolution of the EM fields is determined by the current

i density g,,nerated by the motion of the particles, so when updating the EM fields by Maxwell's

equations the cunent density at each grid point must be found by summing the contributions

from ali particles in neighboring grid cells. Thus, the coupled equations of particle motion and

EM field evolution are solved by a time stepping algorithm, each step of which consists of four

'_ phases:

(A) The scatter phase, in which each particle scatters its contributions to the current density

i to tile vertices of tile cell in which it lies (its home cell) using a linear weighting scheme.
(B) The field solve phase, in which the current, density on tile grid evaluated in the scatter

- phase is used to integrate Maxwell's equations forward one time step.(C) The gather phase, in which each particle gathers contributions to the electric and magnetic

- fields at its position by summing over the vertices of its home cell.
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(D) The push phase, in which tile equation of motion of each particle is advanced one time

step using tile EM field values found in the gather step,

3. Decomposing PIC Problems

In general, in a parallel PIC plasma simulation code there are two distributed data objects: tile

set of particles and the computational grid. In seeking an efficient implementation on MIM D

distributed memory concurrent computers we wish to distribute (or decompose) these two data

objects over tile nodes of tile concurrent computer so that, communication and load imbalance

overhead are simultaneously controlled to within reasonable limits, so that. the total overhead

is close to minimum. The push phase involves no interprocessor communication, while tile field

solve phase only requires communication of boundary values between processors. Thus, we are

mainly concerned with controlling communication overhead in the scatter and gather phases of

the parallel PIC algorithm.
If the distribution of particles remains fairly homogeneous throughout the simulation then

load imbalance is not a problem, and communication overhead can be minimized by applying

the same uniform spatial decomposition to the particles and the grid. This is referred to as

an Eulerian decomposilwn. Clearly, if the particle distribution is inhomogeneous an Eulerian

decomposition will suffer from significant load imbalance, as some processors will contain more

particles than others. In this case, an alternative approach would be to decompose tile grid

spatially as in tile Eulerian approach, but to apply a nonspatial decomposition to the particles

by placing approximately the same number in each processor without regard to their location.

This is referred to as a Lagrangian decomposztion, and ensures good load balance, ttowever, a

high communication overhead is incurred in the scatter and gather phases of the PIC algorithm
as particles do not, in general, lie in the same processor a,s the grid points with which they
must interact.

Other more sophisticated decompositions attempt to keep communication costs low while

simultaneously controlling load imbalance by dynamically changing tile decomposition as the

system evolves (see [5, 18] for an overview of some dynamic load balancing methods). In

the adaptive Eulerian decomposition [11], a static uniform spatial decomposition is applied to

the grid, and a non-uniform dynamic spatial decomposition is applied to tile particles. Tile

two decompositions are coupled so that some degree of data locality is maintained, and by

dynamically changing the particle distribution reasonably good load balance can be achieved.

In the scatter and gather phases it is necessary to transfer pieces of the grid between nearby
processors.

In the unitary, hierarchical, spatial (UHS)decomposition [4] the same dynamic spatial
decomposition is applied to both the grid and tile particles. Again the dynamic decomposition

ensures good load balance, and by applying the same spatial decomposition to the particles

and the grid communication costs in the gather and scatter phases are kept low. tlierarchical

spatial decomposition has previously been independently proposed as a load balance method

by McCormick and Quinlan [13]. McCormick and Quinlan call their load balance method the

"multilevel load balancer," and have used it in solving partial differential equations using tile

asynchronous fast adaptive composite (AFAC) grid method [8, 14]. Since the use of the UItS
decomposition in PIC problems is tile main concern of this report, we shall describe it in more
detail,

A spatial domain is first, divided into n_ subdomains by partitioning the domain orthogonal
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Figure 1: ttierarchical spatial decompositions of (a) a two dimensional domain decomposed
onto a 4 x 4 processor mesh, and (b) a three dimensional domain decomposed onto a 4 x 4 x 4
processor mesh.

to the z-axis. Each subdomain is then further partitioned orthogonal to the y-axis into ny

" pieces. At, this stage we have n_ •nz subdomains, each of which is next partitioned orthogonal

to the z-axis to produce nx • nu • n, subdomains. Examples of the UtlS partitioning of two-

and three-dimensional domains are given in Fig. 1. The subdomains are then assigned to

processors, that can be regarded as forming a logically regular processor mesh. Ira this report
we shall assume that one subdomain iJ assigned to each processor, although it may be desirable

to overdecompose the domain so that each processor is assigned more than one subdomain.

This overdecomposition permits communication and calculation to be overlapped. At each
stage of tile decomposition process the partitions are placed so that the workload in each of the

resultant subdomains is approximately equal, lt should be noted that no assumptions have been
made about how the partitioning orthogonal to each coordinate direction is done. Fast heuristic

methods based on a smooth approximation to the workload distribution across the coordinate

direction of interest provide an attractive way of positioning the orthogonal partitions [4, 12].
In a strict unitary decomposition the workload in a subdomain consists of the work done

processing both particles and grid points, and communication between processors is permitted
only at the start of each time step. Tile basic unit in the spatial decomposition is a cell of

the computational mesh, where a cell consists of the particles within the cell plus the root, grid
point of the cell (i.e., the first grid point in ttre cell as we sweep first over tbe z, then the y, and

. finally the z direction). The decomposition method described above divides the domain into

n_nvn, rectangular blocks of cells that are then assigned to processors. In the gather phase

we need the grid point data at each cell vertex in order to find the EM fields at the particles
" within a given cell. This can be done without additional communication if at the start of each
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time step a "guard layer" of grid points is added to the three positive faces of each processor's

block of cells. This requires communication with neighboring processors. To do the field solve ,.

phase without additional communication we need to be able to update each grid point that

takes part. in the gather phase in a processor. If we are using a method that roquires data from

grid points G grid spacings away, then the guard layer must be extended to G + 1 grid points
on the positive faces, and G grid points on tile negative faces. For the simple finite difference

scheme often used G = 1. Finally, to perform the scatter phase to find the c _rrent density at

each grid point used in the field solve phase requires a guard layer of particle data (G + 1) cells
thick on each face.

A strict unitary decomposition requires both grid point, and particle data to be exchanged
between processors at the start of each time step. This can result in significant overhead,

particularly in the transfer of particle data. If we relax the restriction that. there be only

one communication phase in each time step, and allow grid point data to be communicated

between the scatter and field solve phase then no particle data need be transferred to update

the guard layer. This avoids some redundant computation in tile scatter phase, and reduces the
communication overhead. In this case we only re,_uire a guard layer of grid points that is G+ 1

and G grid points wide on the positive and negative faces of each subdomain, respectively. If

we further permit grid point data to be communicated between the field solve and gather steps
then the communi,:ation overhead is reduced even more since then the thickness of the guard

layer need only be G grid points on each face. This of course introduces a synchronization point
in the PIC algorithm bet,ween tile field solve and push phases that, destroys the unitary load

balance of the grid and particle based update, ttowever, this loss of unitary load balance may

be worthwhile if tile relative cost of tile field solve pilase is small, and so does not. significantly ,,
contribute to the workload.

4. Communication of Guard Layer Data

In this section we discuss how each processor determines with which processors to communicate

when updating guard layer information. We begin with some notation. We shall denote the

set of consecutive integers running from It to I_, inclusive, by {I1, I:_}. Regular grids are

represented in terms of tensor products. For example, a N, x Nv x N_ grid, G, is written as,

G= {1,N:.)®{1,Nv)®{1,N:} (1)

This representation explicitly shows that the grid points are indexed starting at, 1. The extent

of each subdomain can be expressed in terms of the global index range in each coordinate

direction. Thus, tim subdomain at position m - (i, j, k) in i_he logical processor mesh can be

described by,

D(m) = Di(m) ® D:2(m) ® Da(m) (2)

where,

D,(m) = {d,(m),d,(m) + n,(m) - 1} (3)

and l = 1, 2 and 3 corresponds to tile x, y, and z coordinates, respectively. Here, d(lll) =

(dl(m),d2(m),da(m)) refers to the global index of the first grid point in the subdomain at

position ni of the processor mesh, and similarly, n(m) is a vector whose elements are the

number of grid points in each direction in that subdomain. We can succinctly refer to the

index set of a subdomain by means of a vector whose elements are the global index ranges in
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each coordinate direction, Thus,

D(na) = {d(m),d(m)+ n(m)- 1} (4)

- is just a vector whose elements Dt(w.) are given by Eq. (3).

We shall use the term augmented subdomain of a processor to refer to that processor's

subdomain together with its associated guard layer. The augmented subdomain of tile processor

at position na in the processor mesh can be represented as,

A(m) = {d(m) - G1,d(m) + n(m)- G_ - I} (5)

where GI and G2 arevectorsgivingthewidthoftheguard layeron thenegativeand positive

faces,whichingeneralcan be differenton eachface.Ifwe usetheexpressionS(m --,m') to

refertothe data thatthesubdomain atpositionm must send to thesubdomain at position

na'toupdatethe guard layer,thenwe may write,

S(na -- m') = D(m)N A(m') (6)

meaning that we must send the intersection of the subdomain at na and the augmented sub-

domain at na'. Similarly, the data to be received by the subdomain at position m from the

subdomain at position na' can be expressed as,

R(m .- na') = D(m') ClA(m) (7)

The hierarchical spatial decomposition first divides the problem domain into slabs. These

slabs are then divided into rows, and the rows are divided into the subdomains and assigned

"' to processors, lt therefore follows that when updating the guard layer a processor will only

have to communicate with processors in the same slab ms itself, and in the slabs that lie above

and below it. Within the slabs above and below, a processor may have to communicate with

any processor. Within the same slab a processor may have to communicate with any processor

in the adjacent two rows of processors, in addition to communicating with the adjacent two

processors in the same row.

We have written a prototype parallel code that updates the guard layer for a hierarchical
decomposition, and runs on the Intel iPSC/2 hypercube. The update for some processor, P, is

done in the following steps:

1. Processor P gathers together information about the decomposition in its slab. This

information consists of the positions of the boundaries between the processor subdomains

in the x and y directions, i.e., di(i, j, k) and d_(j, k), where here we have shown that for

a hierarchical spatial decomposition the positions of the y boundaries depend only on the

location in the processor mesh in the y and z directions.

2. Processor P exchanges information about its slab with the processors above and below it

in the processor mesh. P now has the decomposition information for the three slabs with
o which it must communicate.

3. For each of the three slabs we check to see which augmented subdomains overlap with

•_ the subdomain of processor P. This is done by first checking y boundaries, and then x
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boundaries. That is, for each slab, k = K - 1, K, K + 1, we find ali j' such that,

D2(j,K)NA2(j',k) isnot, empty (8)

and then for each of these j' we find for each of the three slabs tile i' such that,

DI(i,j,K)NAI(i',j',k) is not empty (9)

The set of indices (i'(j', k), j'(k), k) for k = K - 1, K, K + 1 gives tile set of subdomains to

which processor P must, send data, and the overlap between the augmented subdomains

of target processors and the subdornain of processor P can easily be found to determine
which data should be sent.

4. For each of the three slabs we check to see which subdomains overlap with the augmented

subdomaill of processor P. For each slab k = K - 1, K, K + 1 we find ali j' such that,

D,,(j', k) V1A2(j, K) is not, empty (10)

and then for each of these j' we find for each of the three slabs the i' such that,

Dl(i',j',k)NAl(i,j,h') is not empty (11)

The set of indices (i'(j', k), j'(I,,), k) for k = K - 1, K, h" + 1 gives the set of subdolnains

from which processor P must receive data. Again, the overlap for the communicating
processors can be found to determine where in its guard layer each processor must store
the data received.

5. Processor P sends the appropriate data to its target processors, and then receives data
from its source processors. The data received are copied into the guard layer.

In the prototype code the hierarchical decomposition is produced by perturbing the boundaries

of a perfectly regular decomposition by a random amount. In a full code the data accumulated in

steps 1 and 2 could be determined and stored while performing the hierarchical load balancing.
In the prototype code each processor sends its messages independently when updating guard

layer data. An alternative approach would be the use a "dimensional router". In such a scheme

each processor would frst send ali the messages destined for the slabs above and below in just

two big messages. The messages are now in the same slab as their destination processor, and are

next moved in the y direction until each is in the correct row of the processor mesh. Finally, the

messages are moved along the rows to their final destinations. Thus, in the dimensional router

messages are routed synchronously over each spatial dimension in turn until they reach their

destination, and this may result, in a lower communication cost than the independent routing

strategy, particularly if the topology of the communication network contains a three-dimensional

grid. In addition, dimensional routing avoids congestion in the communication network that

could occur if independent routing generates too much message traffic. Otto and Felten [7]
found that a type of dimensional router called the "Crystal Router" was more efficient than

the independent routing method for sufficiently Ligh message volumes on the nCUBE/3200.
More recent multiprocessors have different computation and communication characteristics, so

this type of work needs to be on machines such as the Intel iPSC/860 hypercube, to determine

the best message routing strategy. A third approach would be to employ a hybrid strategy

!
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in which a dimensional router is used for messages that must. be sent to processors within a

.., certain distance in the processor mesh, and independent routing is used for the more distant

(and hopefully fewer) processors.

5. Other Decomposition Methods

lt is important to note that at the data parallel level it is not possible to split the PIC problem

as a whole into independent subtasks. The finest granularity that one might use corresponds to

that of the grid cells, which are interdependent because of the interaction between grid points

and particles in the gather/scatter phases, and because of the interaction between grid points
in the field solve phase. This spatial interdependency between tile grid and the particles is a

fundamental characteristic of the PIC method, and precludes the use of load balancers that

assume independence between the tasks to be balanced. In the push phase the particle positions

are updated independently, and so such methods could be used just for this phase. In such a
scenario a regular Eulerian decomposition would be used for the scatter, gather and field solve

phases, and the push phase would be run under control of the load balancer. At the end of

the push phase it, would be necessary to "write back" the particle information to the original

Eulerian decomposition. On currently available multiprocessors the communication overhead

needed to do this would be too large.

Baden and Kohn [2] have found orthogonal recursive bisection (ORB) to be an efficient way
of maintaining load balance. As they point out, the imposition of a CFL condition ensures that

load imbalance grows slowly, with the result that only a relatively small number of particles need

- be transferred between processors when the load balancer is run sufficiently frequently. Baden

and Kohn found in their experiments on a 32-node Intel iPSC/860 hypercube that updating the

,, guard layer is a much larger source of overhead than load balancing. Baden [1] has developed
a programming abstraction called GenMP that simplifies the task of developing applications,

such as PIC simulations, that require the problem domain to be dynamically partitioned on

MIMD concurrent computers.

Dragon and Gustafson [6] have proposed a load balancing method that is efficient, both
in terms of concurrent overhead and memory usage. In this approach subcubes exchange

individual particles, based only on knowledge of the positions of the two particles in each

subcube nearest the partition between the twosubcubes. By successively performing particle

exchanges at finer spatial scales the domain can be partitioned exactly.

: Other partitioning strategies result in approximate load balance, and typically are based on

an approximation to the workload distribution obtained by averaging over some spatial scale,

such as over cells [9]. Approximate load balance can also be achieved by approximating the

work load density at tile boundaries between partitions [15], although the accuracy of such

methods for unitary decompositions is reduced since the work load density is not a smooth

t function of position. Another approach that might be worthwhile invest:gating is similar to

t that taken and but instead of individual subcubesby Dragon Gustafson, exchanging particles,

exchange slabs of cells one cell thick. This has the advantage of keeping processor boundaries

aligned with the computational grid.

° Hinz [9] has di.,',cussed the use of N4 nets for dynamically maintaining unitary load balance

of spatial two-dimensional domains. An N4 net is a regular rectangular mesh of quadrilaterals

such that any two neighboring quadrilaterals in any row or column have only one boundary in

common, as is illustrated in Fig. 2(a). To maintain approximate load balance each processor

I
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(a) Co)

Figure 2: Example of the use of (a) an N4 net, and (b) rectilinear partitioning in decomposing
a two dimensional domain onto a 4 × 4 processor mesh,

is responsible for moving the top lefthand corner of its subdomain. Processors lying along the

bottom and righthand boundaries may move two points. The four corners of the domain are

fixed. An attractive feature of the N4 net approach is that each processor needs to communicate
only with its nearest neighbors in tile processor mesh - the complications discussed in Section "

4 that arise from non-neighboring communication do not occur. A disadvantage is that some

additional bookkeeping is necessary to deal with the non-rectangular subgrids in each processor.

Hinz's results with N4 partitioning of two-dimensional domains are encouraging, and it would

be interesting to apply the N4 method to three-dimensional problems.

Another interesting way of dynamically maintaining unitary load balance of spatial domains

has been proposed by Nicol [15]. In this approach we seek a rectilinear partitioning of tile do-

main, such as that shown in Fig. 2(b). As for the N4 net method, this rectilinear approach
has the advantage of requiring only simple communication patterns between processors when

exchanging grid and/or particle guard layer data at ttle start of each time step. Nicol presents

an algorithm for the one-dimensional Rectilinear Partitioning Problem (I_PP), and uses this

to find a conditionally optimal rectilinear partitioning of a two-dimensional domain. This is

done by an iterative refinement procedure in which the optimal partitioning in one dimension is
found with the partitioning in the other dimension held fixed. The resultant, partitioning in ttle

first dimension is then held fixed, and the partitioning in the second dimension is optimized.

This procedure is iterated until no further change in the partitioning occurs. Nicol compares

load balance and communication metrics for regular and irregular grids for partitionings pro-

duced by the rectilinear, binary recursive, and hierarchical spatial (called "jagged" by Nicol)

decompositions. The general conclusions of this work were that rectilinear partitioning is most

useful for grids that are not too irregular and when global communication is expensive. The

rectilinear partitioning strategy may be appropriate for the Connection Machine.
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6. Conclusions

"" In tile implementation of parallel PIC simulations a common, unitary, spatial decomposition of

the particles and grid is necessary to avoid the high cost of communication in tile gather/scatter

steps of the PIC algorithm. The hierarchical spatial approach promises to provide a partitioning

strategy that dynamically maintains such a decomposition at. low cost. Communication is

necessary before and after each scatter step to update grid point, values in each proccssor's

guard layer. In general, this will involve communication between processors that are not nearest,

neighbors in the processor mesh. We have implemented this type of communication using

independent routing, although other strategies involving dimensional routing may be more
appropriate on different multiprocessors.

N4 nets and rectilinear partitionings provide other means of dynamically maintaining a
unitary spatial decomposition, and require only nearest neighbor communication within the

processor mesh to update guard layers. Further research is required to investigate the appli-

cability of these methods to three-dimensional problems. A fast heuristic approach based on a

smooth approximation to the workload distribution may provide a quicker way of performing

rectilinear partitioning in three dimensions.
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