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Abstract

This oaper presents a method for obtaining
electron energy density functions from Langmuir
probe data taken in cool, dense plasmas where thin-
sheath criteria apply and where magnetic effects
are not severe. Noise is filtered out by using
regression of orthogonal polynomials. The method
requires only a programable calculator (TI-59 or
equivalent) to implement and can be used for the
most general, nonequilibrium electron energy dis-
tribution plasmas. Data from a mercury ion source
analyzed using this method are presented and com-
pared with results for the same data using stan-
dard numerical techniques.
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Introduction

Langmuir probes are among the most elementary
plasma diagnostics. Their simplicity renders them
useful for obtaining information on plasma proper-
ties in a variety of circumstances. Langtnuir
probes are particularly useful in the cool, dense
plasmas of ion sources. There, Oebye lengths are
much shorter than typical probe radii, which in
turn are much smaller than plasma dimensions. Mag-
netic fields are relatively weak, and ions are
much cooler than electrons so that thin-sheath
criteria apply to current collection. The plasmas
are reasonably isotropic.

It has been shown^ that electron current,
Je, in the electron-retarding segment of the
probe characteristic is related to the electron
energy distribution function, g(e), by

If the electron energy distribution function
is Maxwellian, i.e., if
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where k is the Boltzmann constant and T e is the
electron temperature, it is easily shown that the
probe electron current is exponential and that
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For saturation electron current,
the electron density n may then
be found from
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In the non-Maxwellian case, when g(t) is more
complex than Equation (2), more general equations
must be used to obtain electron energy character-
istics. Since temperature no longer has its strict
meaning, the average electron energy is simply

=J

To find g(e), one may use
function nSg(e)
(0 < V < « • ) . *
for g(e),

if ,/dV
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Equation (1) to obtain the
is known over

The normalalization relation

neS 2e/ d V2 V = e

where

n = electron density

e = magnitude of electronic charge

S = probe surface area

Me = electron mass

e ~ electron kinetic energy per unit
charge (volts)

V = electron retarding potential
(volts).

1

may then be used to obtain n and hence g(e):

1/2 ,2,

(6)

nS g ( e ) 4/".\

nS q (e )

j nS g(e) dc

V2 V = e
(7)

(8)

* The upper l imi t need only be a few times e
for reasonable accuracy. ~ i ~
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may be decomposed into a Maxwellian group satisfy-
ing Eauation (2) and a non-Maxwellian or primary
electron group, which is effectively monoenergetic
at £Q, such that for primary electron
fraction v

+ vd (e - (9)

where Tra is the temperature of the Maxwellian
l ()
e e ra is t e temperat

electron group and s(e-e_
function with units of o

wil

is the unit impulse

If eep » kTm, the probe electron current
be similar to that shown in Figure 1. Thee similar to that shown in Figure 1

linear current component produced by the

< ' Electron retarding potential V

Q.
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Probe potential (V)
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Figure 1. Idealized Langmuir probe trace for a
plasma with monoenergetic primary elec-
trons at an energy well above the Max-
wellian electron temperature.

primary electrons may be subtracted from the total
electron current. Then primary electron density np

is given in terms of Jp , the primary electron sat-

uration current, by

(10)

The remainder of the electron current, that due to
Maxwellian electrons, may then be analyzed using
Equations (3) and (4).

In the less special case, when the primary
electrons are still monoeneroetic, but eEp > kT m
as shown in Figure 2, the same technique may be'
used. However, estimating the slopes can be very
difficult.

Beattie^ has developed a computerized tech-
nique for fitting the probe electron current in
(0 <_ V <_ Ep) to the equation

Je = al ' a 2 V

Special Cases
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It is possible to avoid dealing directly with
the function g(e) in the special case when g(e)

Electron retarding potential V

Probe potential (V)
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Figure 2. Idealized probe trace for a plasma
with primary electron energy near the
Maxwellian electron temperatuare.

T m, and
Here the a-j are experimentally determined con-
stants that contain the parameters n, v, m,
cp of Equation (9). If the primary electron
energies depart significantly from being mono-
energetic, thei this method also is insufficient.

General Case

In the general case, which frequently appears
in ion source work and where Equations (1) and
(5)-(8) must be used, it is critical that a good
estimate of d2Je(V)/dV

z be obtained. Various
electronic schemes have been proposed to accomplish
this differentiation during data collection.
Because of electrical noise, considerable filter-
ing is needed. This Often presents an undesirable
complication to experimental apparatus.

Medicus3 has given a graphical technique
for obtaining g(e) directly from the probe cur-
rent characteristic as recorded on an X-Y
plottar. This method can be tedious and of some-
what questionable accuracy because it relies on
visual estimation of tangent slopes.

Taylor4 has presented a numerical technique
that uses a minicomputer to do polynomial
regression of the probe characteristic to the
equation

k R. V1 (12)

where R,- are the regression coefficients and 1
is typically 8 to 10. Equation (12) is then
analytically differentiated giving

i(i-l) R. V1'"2. (13)

This technique has two inherent limitations. One,
which often is acceotable, is that a free exponen-
tial must be approximated by a polynomial. The



other is that because of limited curvature in a
polynomial, a delta function is difficult to repre-
sent without going to a very high order. Both
limitations are mitigated by increasing 1 at the
expense of longer computational time. Addition-
ally, the polynomial regression of Equation (12)
necessitates inversion of large matrices. While
this is not difficult, as a rule it requires the
capabilities of at least a minicomputer.

Objective

The objective of this study was to develop a
method for reducing Langmuir probe data with, the
following additional features:

• Capability of handling general, non-
Maxwell ian distributions

• Capability of'smoothing out inherent
electrical and digitization noise with-
out losing the resolution needed to see
a narrow primary electron spike

• Suitability for use with small, card-
programable hand calculators to accom-
modate the experimenter who does not
have ready access to a larger computer.

Approach

Two physical observations are made first.
One is that even though there may be a reasonably
large fraction of non-Maxwellian electrons present
in the plasma, the majority of electrons, in ion
sources at least, tend to be in thermal equili-
brium. Hence the probe trace will generally
approximate an exponential function in the
electron-retarding region of the probe charac-
teristic or trace. This is illustrated in
Figure 3 where the distributions of Figure 3(a)
yield idealized probe traces as shown in
Figure 3(b).

The second observation is that the feature of
a probe trace that indicates the presence of a
primary electron spike is the sharp curvature or
slope discontinuity suggested in Figures 1 and 2.
The information contained in such an irregularity
can be easily preserved only by piecewise
smoothing. •

These observations suggest that the probe
electron current may be most easily analyzed if
separated into three parts: one an approximating
exponential current and the other two residual or
remainder currents, one on either side (in retard-
ing potential V) of any sharp curvature or slope
discontinuity. Figure 4 illustrates this separ-
ation. If the exponential current Jex is sub-
tracted from Je, what remains contains all the
information about the non-Maxwellain electrons as
well as all the noise. Assuming there is at most
one primary electron spike at ep in g(e),
and choosing that value of V as the separation
point between Jn and Ji (see Figure 4), Jn
and J-j will be smooth functions and can be suc-
cessfully approximated by an appropriate
polynomial.

Smoothing Technique

The technique chosen for smoothing is
polynomial regression using the orthogonal
polynomials^

n / \
P nn, ( x ) •

3-5 x,m = 0, 1 , 2, . . . , n (14)
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Probe potential (V)
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Figure 3. Various electron energy distr ibut ion
functions (a) give dif ferent idealized
Langmuir probe traces (b).
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Figure 4. Decomposition of probe electron cur-
rent into an approximating exponential
and two residual currents ( inset) , one
above (Jh) and one below (0-|) the
irregular i ty in the probe trace due to
primary electrons at energy ep.



The polynomials Pnm(x)
 ai"e mth order polyno-

mials in x, with the property that

x =
Pnj(x) 0, (15)

An analytic function y(x) can be approximated by
the sum

y ( x ) « a o P n o ( x )

(16)

re
nt

cu
r

co

el
ec

t

a

5

>^PIasma potential Vp - * »

/
/ . Electron

jr retarding-*-
S*^ region

Ion
••-retarding

region

Probe potential (V)
1NEL-J-1152

The a-j here are regression coefficients given
for n + 1 equally spaced data points in the inde-
pendent variable x by

Figure 5. A frequently used technique for deter-
mining plasma potential from a single
probe trace in moderate-to-dense plasmas.

a.
i

-, i = 0, 1, 2, ..., m. (17)

x=o

The orthogonality property of Pnm(x) alleviates
the need to solve simultaneous equations; hence it
is practical to program the solution iri the lim-
ited capacity of a programable calculator. The
only requirement is that the data points Je be
equally spaced in v.

Differentiation

The second derivative of the smoothed resi-
dual electron current J1 can be obtained by differ-
entiating Equation (16) once the a-,- are known.
However, it is more convenient to use simple cen-
tral second differences to approximate it
according to

J'(V + + J'(V - &V) - 2 J'(V) (18)

where it is assumed that the residual electron
currents J1 are smoothed vatuas separated in V by
&V. At the slope discontinuity the second deriv-
ative is taken to be the difference in slopes on
either side divided by AV. This specification
is needed because the smoothing functions don't
generally give the same value for Jf at the break-
point Sp.

Other Considerations

Plasma potential is assumed to have been
determined by ordinary means such as the double
probe technique^'? or by locating the inter-
section of extensions of the currents from
electron- and ion-retarding regions^ as illus-
trated by Figure 5. Note that Figure 5 is a
semi logarithmic plot of probe electron current.

The choice of the separation point ep is
an important one. Obviously if there is no slope
discontinuity or sharp curvature in Je(V), then
there is no great advantage to dividing the resi-
dual current about ep. On the other hand, if
there is an irregularity at some point other than

Cp, the smoothing process (which is intended
to filter out point-to-point departures from
simple curves) will mask it, and its information
will be lost.

As suggested by Figure 3, it is not always
easy to determine where such a division point
should be. This process can be materially aided
by semi logarithmic presentation of the raw data.
Semi logarithmic plots of the probe trace curves
often show a sharp curvature or slope discon-
tinuity, which would require separating the resi-
dual currents. The current from a purely Max-
wellian electron population, which in the absence
of ion current would appear as a straight line in
a semi logarithmic plot, would be entirely exponen-
tial, leaving no residual currents to deal with
once the ion current was removed.

The discussion thus far has dealt with ideal-
ized curves and fairly simple distribution func-
tions. A number of complicating factors tend to
cloud the results. These include such things as
the tendency for the J and V axes to become
nonrectilinear, the variation in work function
over the probe surface area, secondary emissions
from the probe, probe insulator contamination,
noise in the plasma, electrical noise in the probe
circuitry, plasma perturbation by the probe, and
magnetic effects. The present method does not
address these issues.

Ion current has also been neglected until
now. In the electron-retarding region of the
probe characteristic, ion current is saturated.
Two factors tend to make it negligible in probe
data reduction using the present method. The
first is that it is much smaller in magnitude than
electron current in most cases, due to the mass
disparity between electrons and ions. The second
is that it tends to be a very weak function of
potential in the electron-retarding region,
usually approximating a first-order increase
(decrease in Je) with electron-retarding poten-
tial V. When the second derivative is taken,
there is little or no contribution from this con-
stituent. Hence it may be ignored. It is useful,
however, to shift the entire Je curve to lie on
the positive side of the V axis.

The exponential current, Jex, is defined by
the values of Je at e^ and at one other location,



usually one close to plasma potential. Difficul-
ties are encountered should J(ep) be nega-
tive. Again, the effect of this shift vanishes
when the differentiation occurs.

With the second derivative of the residual
currents obtained as described above, the total
second derivative is the sum

0.06 [

d J
Q H 2 I . ,
1 = 2 - ^ - + B̂A exp (-BV)

d V d V

(19)

where A and 8 are the constants of the exponential
approximation

Jex ("BV) (20)

determined by the two chosen points as described.
The distribution function q(e) is then obtained
from of Equations (1) and (5).

Results

The foregoing process has been implemented on
a card-programable calculator. Figures 6, 7,
and 8 show the calculated distribution function
data for three idealized probe curves. The
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Figure 7. Energy density function for Maxwellian
electrons and monoenergetic primary
electrons.
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Figure 8. Energy density function for non-
Maxwell ian electrons.
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Figure 6. Energy density function for purely
Maxwellian electrons.

distributions shown as inputs were converted to
probe traces by numerically integrating
Equation (1) twice and plotting. Normal digiti-
zation noise was introduced as data were then
extracted from the plots and entered into the
calculator for analysis. Fifth-order smoothing
was used in data reduction. Except for the very
sharp curvatures associated with the quasi-
monoenerqetic primary electron spike in Figure 7,
fifth-order smoothing appears to be adequate.
Even there, the area under the input curve and
calculated point representations are very nearly
the same, suggesting the same density of primary
electrons in each case. Choosing higher-order
smoothing or spacing data points closer would give
a more accurate representation of their energy
spread.

Figure 9 shows several distribution functions
obtained from actual probe traces taken in an
operating mercury ion source. These traces were
taken at different locations within the source
under steady state operating conditions. Differ-
ences in electron density and energy characteris-
tics are plainly evident.

For comparison, the probe traces whose dis-
tributions are shown in Figure 9 were analyzed
using Beattie's method (Reference 2). Results are
listed in Table 1 together with some corresponding
parameters obtained using the present method.
Agreement is reasonably good.

Conclusions

The method presented here for reducing
Langmuir probe data is one of many available. It
has the advantages of requiring only a card-
programable calculator for implementation and of
enabling the experimenter to deal successfully
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Figure 9. Comparison of calculated electron energy
density functions from measurements at
four locations in an operating mercury
ion source.

with non-Maxwellian electron energy distributions,
including those containing spikes of primary
electrons. While it has inherent limitations, it

has considerable versatility, and its accuracy
appears to be satisfactory considering the uncer-
tainties of other aspects in an experimental
system.
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Table 1. Comparison of Parameters Calculated for Four Traces Using Different Methods

Beatties Method

Plasma potential (V)
Maxwellian electron temperature (eV)
Maxwellian electron density (cm~3)*
Primary electron energy (eV)
Primary electron density (cm"3)*
Total electron density (cm"3)*
Average electron energy (eV)

Present Method

Plasma potential (V)
Apparent Maxweilian temperature (eV)
Primary electron energy (eV)
Total electron density (cm"3)*
Average electron energy (eV)

Trace 1 Trace 2 Trace 3 Trace 4

38
7.0

1.84 +
30.9

2.40 +
2.09 +

12.8

37
7.2
32

1.65 +
15.1

11

10
11

11

40
7.

1.26
32.

1.48
1.40
13.

38
7.
31

1.36
13.

3
+ 11
3
+ 10
+ 11
2

0

+ 11
0

3.

9.
3.

3.

41
4.
63
25.
73
77
7.

39
5.
22
19
7.

7
+

2
+
+

5

0

+

8

10

8
10

10

45
3

1.04

1.04
5

40
2
9

1.12
2

.9

_
0
+

.3

.4

+

.5

10

10

10

* a.a + bb implies a.a x 10 b b.


