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SUMMARY 

This pasper concerns the  ser;aration of i so topic  mixtures containing th ree  
components i n  a gaseous d i f fus ion  cascade operating over an i n f i n i t e  
reservoi r  I _  

u n i t  product i s  found and i s  compared. with the flow d i s t r ibu t ions  i n  
some other  t h e o r e t i c a l  cascades. 
ber  of s tages  required,* t h e  t o t a l  flow and the  concentration gradients  
f o r  both l i g h t  and middle isotope separat ion.  

The flow dis t r ihut , ion yielding the  smallest  t o t a l  flow per  

Curves are presented t o  show the  num- 
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INTRODUCTION--DESCRIPTION OF THE PROBLEM 

The physical  separation of i so topic  mixtures may be accomplished by var i -  
ous processes, e.g. ,  thermal d i f fus ion  and gaseous d i f fus ion .  The mathe- 
mat ical  expressions of t he  separative behavior of these  various processes 
a r e  very s i m i l a r .  These developments a r e  f o m d  i n  Ref. ( 2 ) .  

If a binary inixture i s  t o  be separated by gaseous diffusion,  t he  minimum 
power ( t o t a l  f low) requirements and the  associated in te rs tage  flow d i s t r i -  
but ion may be found by using the  so-called i d e a l  cascade theory.  This re-  
quires  t h a t  any streams which a r e  mixed have the  same composition, i . e . ,  
no mixing l o s s  i s  t o  occur. When more than t w o  isotopes a re  involved, it 
i s  not possible  t o  s a t i s f y  t h i s  no-mixing requirement. It i s  possible  t o  
require  t h a t  one component of t h e  mixed streams be present i n  equal con- 
cent ra t ions ,  and t h i s  matched mol f r a c t i o n  cascade i s  used as a b a s i s  f o r  
design considerations.  The cascades which r e s u l t  from the  requirement of 
matching abundance r a t i o s  have been considered i n  Ref. (1). 
case t h e  match mol f r ac t ion  and matched abundance r a t i o  cascades a re  the  
same 

I n  the  binary 

This paper i s  concerned with the  te rnary  problem and provides comparisons 
o f :  

1) The matched mol f r a c t i o n  ( x )  cascade. 

2) 

3) The minimum power cascade. 

The matched abundance r a t i o  ( R )  cascade. 

The t o t a l  power requirements, number of stages,  and concentration gradi-  
en t s  a r e  demonstrated f o r  some spec i f ic  problems with s ingle  cascades op- 
e ra t ing  over an i n f i n i t e  reservoi r  under t h e  above conditions.  

L(n) - 
Mixed Streams 

Figure 1 

The stages  of the  gaseous d i f fus ion  cascade are assumed t o  be connected 
as shown i n  Figure 1. 
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mol f rac t ions  of isotopes i n  te rnary  mixture 

abundance r a t i o  x/(l=-x-y) = x/z 

abundance r a t i o  y/z 

separation constar;t o f  x r e l a t i v e  t o  z 

separation constant of y r e l a t i v e  t o  z 

product withdrawal r a t e  

stage number 

mol f r ac t ions  of product stream 

m o l  f r ac t ions  of product stream 

in te rs tage  f l o w  r a t e  a t  stage n 

Figure 2 

The cascades considered a re  assumed to be operating over an i n f i n i t e  res-  
e rvo i r  of concentrations ( x  ) as shown i n  Figure 2 .  For a l l  problems, o? yo 

P = 1, 

and t h e  in te rs tage  flow rates a re  measured i n  units of production. 

The difference equations f o r  t h e  concentrations a t  each stage a re  found 
by combining materfal  balance and equilibrium re l a t ions .  These d i f f e r -  
ence equations a re  apyoximated by d i f f e r e n t i a l  equations.  
t i o n  has been shown t o  y i e ld  good r e s u l t s  wher? the  separation f ac to r s  a re  
small as they are  i n  gaseous d i f fus ion .  

This assump- 
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The d i f f e r e n t i a l  equations are : 
(XP - x>P 

'Yp - YIP 

x ( 0 )  = x 

x(N) = x 

0 - d x  - dn = q f l X ( l  - x> - w*xy - I, ' 
P 

8 nd 
Y W  = Yo 

Y ( N )  = Yp 
L '  aJT = 1C2yjl - y) - Q1xy - dn 

where N i s  t h e  total nwnber oY stages i n  the  cascade. 

A s ingle  stage of an isotope separation cascade w i l l  produce concentra- 
t i o n  differences i n  some o r  a l l  of the  components. 
?end on equilibrium re l a t ions  only and m y  bear l i t t l e  r e l a t i o n  to t he  
desired cascade separation The proper flow d i s t r i b u t i o n  i n  a cascade 
depends on t h e  degree and nature of t h e  sepal-ation required.  

These differences de- 

Two separation problem aye considered i n  t h l s  paper, 
problem of enriching the light,es?l of three isotopes.  The model chosen 
i s  t h e  U 235, U236, UgTC syszer;? and t h e  Sinary U, 

as a comparison. The e f f e c t  of contamination by U i s  s tudied.  

in t h e  second problem t h e  middle isotope i s  t o  be enriched. 
235J U2s6, u2s8 system is used but t h i s  time the  U236, U U 

The f i rs t  i s  the  

U system i s  used 
L N  235' 238 

236 
Again t h e  
binary sys- 238 

tein i s  used as a b a s i s  f o r  conpa-risori, and the t J r ,  i s  t r e a t e d  as a con- 
ta aminant . c35 

-- Light Isotope Separation Problem* 

Th.e conditions are : 

x = I$ 
0 

= 2'3y -. . 
wi-th t h e  cascade operating os'er an i n f i n i t e  reservoi r  with concentrations 
xC,, yo. The y concentration i s  vasled and t h e  e f f e c t  of t h i s  contamina- 

Lion on t h e  t o t a l  flow and nuriber oi' stages i s  calculated.  
0 

r 
w 

Figure 3 shows the e f f e c t  of y 

I?, arid minimum ?owex cascadEs. There i s  l i t t l e  d i f  Perenee i n  t h e  power 
requirements f o r  t h e  three cascades for y The behavior of t h e  

matched R cascade at  y 

on total flow f o r  t h e  mztched x, matched 
0 

+ 1-.5%. 
0 -  

= 2% i s  exph ined  i n  A2pendix I .  
0 

F x i s  t h e  mol f r ac t ton  of U r T r ,  y i s  the mol f r ac t ion  of U, 
d J 2  236 * 
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Figure 4 shows the  e f f ec t  of  y 

grea te r  difference between the  proposed modes of operation than w a s  t h e  
case f o r  t he  t o t a l  f low.  The matched x cascade does somewhat b e t t e r  than 
t h e  matched R cascade i n  t h i s  respect .  
t h e  minimum power cascades give the fewest stages,  thus indicat ing t h a t  
t he  nmber  of  s tages  required f o r  minimum power separation of te rnary  
rfiixtures increases moderately with t h i r d  isotope contamination. 

on the  number of stages and shows a 
0 

It i s  of  i n t e r e s t  t o  note t h a t  

Figure 5 represents  x concentration versus stage number f o r  one spec i f ic  
jr with t h e  associated binary idea l  gradient p lo t t ed  t o  provide a compari- 

son. The matched x gradient i s  always l e s s  s teep  than the  binary as may 
be seen from the  d i f f e r e n t i a l  equation. 
s5eeper gradients  a t  t he  bottom of the  cascade than does the  idea l  binary.  

Figure 6 represents  y concentration versus s tage number f o r  t he  same case 
as Figure 3 .  
seen t o  be considerably higher than i n  the  minimum power cascade. 

0 

The minimum power cascade has 

The maximum concentration of y i n  the  matched x cascade i s  

Figure 7 shows the  flow versus stage number for t h e  case of Figures 5 and 
6 with the  binary i d e a l  taper  represented f o r  comparison. 
power cascade has higher flows a t  the  bottom than the  matched x cascade. 
This i s  r e l a t ed  t o  t he  f a c t  t h a t  t h e  minimum power cascade requires  fewer 
s tages .  

The minimum 

Figures 8 and 9 show t h e  power requirements and s tages  needed fo r  matched 
x and minimum power separation as a function of  y 

difference i n  the  number o f  s tages  f o r  t he  two modes of opeyation i s  of 
i n t e r e s t  since it indica tes  t h e  engineering requirement of fewer s tages  
i s  not incompatible with increased ef f ic iency .  The minimum power curves 
were not obtained beyond y 

Figure 10 i s  a p lo t  of p = dx/dn (o2erat ing)  + dx/dn ( t o t a l  r e f lux ) .  
a matched x cascade, p ( x )  = 1/2. The point of m i n i m u m  p f o r  the matched 
R cascade i s  t h e  po-int, of maximum y.  The minimum power cascade has l e s s  
f l c w  i n  the  top  and moye irl the bottox tha9 does t h e  matched x cascade. 
T5e matched R cascade i n  t h i s  p lo t  i s  ogeratizlg with y = 1.375% which i s  
c lose to t h e  l i m i t  of 2%. 
cade with smaller yo has the  same shape as shown except t h a t  i t s  departure 

from the  l i n e  p = 1/2 i s  smaller.  

from 0 e y 4 99%. The 
0 -  - 0 

= 30%. 0 

For 

The curve of p versus x f o r  the matched R cas- 

Middle Isotope Problem* 

The c m d i t i o n s  a r e :  

x = 1% 

k = 3 / 2 ,  

0 

x = 40% 
P 

* x i s  t h e  U mol f r ac t ion  and y i s  t h e  U,> mol f r a c t i o n ,  
236 -35 



--- I 

with t h e  plant  operating over an i n f i n i t e  reservoir  with concentrations 
xo, yo. 

t i o r ,  on the  t o t a l  flow and nwiber of stages i s  calculahed. 
i s  studied onljr f o r  those concentratioas y 

can be obtained throughout t he  cascade. 

Tne y concentration i s  varied and the  e f f ec t  of t h i s  contamina- 
0 

This problem 
f o r  w3ich a posi t ive dx/dn 

0 

FIguye 11 shom the e f fec t  of yo 02 t o t a l  flow f o r  matched x, matched R,  

and rninLmm power cascades. There i s  not much difference i n  t h e  flow re-  
quirements f o r  t h e  thpee modes showri. The matched R cascade i s  s l i g h t l y  
b e t t e r  than t h e  matched x cascade, 
matched R cascade has higher in te rs tage  Plow r a t e s  than the  matched x 
cascade. 

For the  middle isotope problem, the  

I n  t h e  l i g h t  isotope s i tua t ion ,  t he  reverse i s  t r u e .  

F-igme 12 shows t h e  e f f e c t  cf yo on stage requirerneats. 

the most s t r ik ing  difference between the  pro3oseci methods of operation. 
For t h i s  case, t h e  matched X cascade i s  -mbrke21y b e t t e r  than the  matched 
x cascade. 

This i s  again 

Figure 13 shows t h e  x concentration versus stage number obtained f o r  
matched x, matched R and minimum power cascades with the  same y . 
t h e  marked s imi l a r i t y  between the  matched R and t h e  minimum power cascade. 

Note 
0 

Figure 1-5 shows t h e  y concentration versus stage number obtained fo r  t he  
same th ree  cascades, 

Figure 15 shows t h e  flow versus s-kage number for the above case number and 
demonstrates t h e  remarka3l-e carres1Gondesce between t h e  minimum power and 
matched R cascade. 

Figure 16 i s  a p lo t  of p versus I: Tor t h e  th ree  cascades and fur ther  shows 
-!ke correspondence between the  matched R, matched x, and minimum power 
cascades f o r  the m i d d l e  i so tope  p r o b l e m .  

For t h e  cases stud-ied, t h e  r c s u l t s  ind ica te  t h a t  i n  a l i g h t  isotope prob- 
lem t h e  matched x cascade i s  b e t t e r  bas i s  Tor design than t h e  matched R 
and t h a t  t he  reverse i s  t r u e  for the  middle isotope problem. I n  any case 
t h e  rmtcht3d R cascade i s  E a s i l y  calculated using t h e  methods f o r  R e f .  (1) 
axd should be used as a comparison i n  any design problem. The r e l a t i v e l y  
good agrement  between t h e  t o t a l  Plow requirements of a l l  ’cinree cascades 
ind ica tes  t h a t  the lo s ses  incurred by squaring off  sect ions f o r  an ac tua l  
p lan t  should be smna_ll, a3 they are i n  a csscade used t o r  binary separa- 
t i o n .  The r e s u l t s  also ind ica te  t h a t  t h e  o2iimun flow d i s t r i b u t i o n  i n  an 
actual- cascade should be calcul-ated with the e f f e c t  o f  a l l  isotopes con- 
s idered.  
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Figure 3 
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L m r  IsoroPE PROBLEM 
CONC€NTRArlON GRADIENTS FOR MATCHED X AND MINIMUM 

POWER CASCADES AND T'HE RELATED BINARY IDEAL CASCADE 

Figure 5 



- 11- 

N X  10-3 

LIGHT IsoroPE P R o t u M  
MlDDL€ /SOTOP€ CONC€NTRAT/ON GRADENTS FOR MATCHED X 

AND MINIMUM POW€R CASCADES 

Figure 6 



- 12- 

1400 

I ,000 
9 

8 

7 

6 

0 I 2 3 
N x 10-3 

4 5 

LIGHT /SOTOPE PffOBLEM 
FLOW vs STAG€ NUMB€R FOR MATCMD Xr 

MlNfMUM POWER, AND /D€AL BINARY CASCAD€ 

Figure 7 

6 



. . 

r 

- 13- 

0 20 40 60 80 100 

y o %  

Figure 8 



- 14- 

r 

P 

0 20 40 60 00 
yo% 

LIGHT /SOTOP€ PROBMM 
NUMB€/? OF STAGES R€QU/R€D FOR MATCH€D X AND 

MINIMUM POW€R CASCADES vs BOTTOM CONC€NTRATlON OF 
MIDDLE isorom- 

Figure 9 



-15- 

X %  

c 



- 16- 

Figure / I  

c 



t 

- 17- 

0 . I  .2 .3 

5% 
A .5 .6 

Figure 12 

t 



- 18- 

I 2 3 4 5 6 

N x  io-’ 

Figure 1.3 



-19- 

0 2 3 4 

N X  10-3 

5 6 

M/DDL€ ISOTOPE- P/IOBL€M 

LIGHT /SOTOP€ GffADl€NT Y CONC€NTRAT/ON vs STAGE NUME/? 

Figure 14 



- 20- 

IO 

4 

,000 
9 

2 3 
N x io-J 

4 5 I 

Y 

MIDDLE /SOTOP€ PffOBL€M 
FLOW vs STAG€ NUMB€R FOR MATCHED Xr 

MATCH€D R, AND M/N/MUM POW€R CASCADES 

Figure 15 



-21- 

L 

0 IO 20 30 

X %  
40 50 

Figure I6 



-22- 

M!lTHEMATICAL DEVELOPMENT OF 

CONSIDERED MINIMUM FLOW CASCADES 

Material  balance equations and equilibrium re l a t ions  a re  combined to y ie ld  
enrichment equations i n  a gaseous d i f fus ion  cascade. Equilibrium re l a t ions  
a re  analagous t o  vapor phase-liquid phase equilibrium re l a t ions  i n  a dis- 
t i l l a t i o n  t r a y .  These two considerations do not suf f ice  t o  specify com- 
p l e t e l y  t h e  cascade design, since t h e  energy inpzt per stage or in te rs tage  
flow Yate must a l so  be s e t .  

I n  a cascade connected as i n  Figure 1, it i s  possible to specify e i t h e r  
t h e  in te rs tage  flow r a t e  o r  some re l a t ion  between t h e  two streams which 
a re  mixed a t  t h e  i n l e t  o f  each s tage.  The concept of a m t c h  function as 
set forth i n  Ref. (1) leads t o  a spec i f ica t ioa  of t he  l a t t e r  kind. 
m o l  f r ac t ion  cascades and  matched abundance r a t i o  cascades a re  specif ied 
i n  terns of  match functions.  

Matched 

I n  a binary cascade the  concepts of match function, value function and 
minimum power operation a re  a l l  re la ted ,  i . e . ,  t he  proper match function 
i s  t h e  mol f r ac t ion  ( o r  abundance r a t i o ) ,  Cascades so  constructed admit 
value functions and the  flow taper  so specif ied i s  the  minimum power f l o w  
t ape r .  

IE Ref. (1) it i s  shown t h a t  value functions applicable t o  multicomponent 
cascades a re  obtained from matched abundance r a t i o  cascades. One purpose 
of t h i s  study i s  t o  firid o u t  i f  r i t ebed  R cascades have the  same minimum 
power pmper ty  as t h e i r  b k a r y  comterpa?%. Although the mtched x cas- 
cade does not provide a v a h e  fimetion, it to3  has the i dea l  sascade as 
i t s  binary counterpart and because of th i s ,  it too w a s  considered rela- 
t i v e  t o  the minimum power problem. 

The curves presented demonstrate that nei ther  the matched R cascade nor 
t h e  m,tche.l x cascade yields the op-kimim flow +,aper, and show some condi- 
~ i o ~ s  uzde- which these cascsldes proui6e su i tab le  approximations t o  the  
sniilirnmm powes c a s c d e  

The eid eondit'ions specl.fied grea t ly  affect; t h e  so lu t ion  obtained. I n  t h e  
problem studied, t h e  reservoir concentrations and t h e  product concentra- 
t i o n  of the desired isotope a re  kept f ixed.  These r e s u l t s  d i f fe r  from 
%Lose which would be obtained by f ix ing  a11 product concentrations and 
o x  reservoi r  eoncent ra t im.  A cl-ude analogue which demonstrates some 
of the differences between the two above s t a t ed  problems i s  shown i n  
Figure 28. 

A 

Figure 18 



19 t h e  f igure,  l i n e  (3,l) i s  the  shortest  distance between point 3 and the  
l i n e  ( 0 , A )  and l i n e  (1,2) i s  the  shortest  distance between point 1 and the  
l i n e  ( 0 , B ) .  
ex t r end ,  i s  to 'be fixe? m y  charge the  solut ion t o  the  .problem. 

Tl?e problem studied i n  t h i s  paper m y  be described as follows: 

O.;i+, of a l l  of t h e  poss-ibie flow tapers  L(n) which w i l l  provide a solut ion 
t o  ecpations (1) and (2) c h o s e  t h a t  flow taper  f o r  which the  t o t a l  flow 
as neasured by 

This example shows t h a t  t he  choice of which end point of  an 

N 
v* C = g L(n)dn 

i s  the  least. 

Giverr any admissible flow tayer ,  i .e., oxie which permits t h e  solut ion of 
equations (1) and ( 2 )  t o  be &tained, a value f o r  t h e  in t eg ra l  V* may be 

calculated.  The problem i s  t o  choose from the  c l a s s  of admissible f l o w  
t ape r s  t h a t  one f o r  which the  i n t e g r a l  V* i s  least .  

C 

c 

The ca lcu la t ion  scheme i s  as follows. 

(1) 

(2) Calculate V:? 

( 3 )  Improve t h e  t ~ o v  taper ,  

Find any admissible flow taper ,  

(4 )  Calculate VE. 

The successful appl icat ion of  t h i s  scheme requires  f i r s t  t h a t  an admis- 
s i b l e  flow taper  be specif ied and second, t h a t  a method be found which 
w f l l  systematically improve the  flow taper .  Steps (3) and ( 4 )  may then 
be repeat,ed u n t i l  no fwrther improvement i n  V* i s  obtained.&/ The in- 

E.=:'?al. flop ta;?er i s  f o u d  by u s i y i g  t he  matched x cascade equations and 
the pr inc ip les  of ,the zal.culns of var ia t ions  a re  applied t o  the  problem 
of im- p o v i n g  the f l o w  t,~pe:c. 

C 

The  nmbers  V* are s e a l e l  f o r  cmvenience and- the  measure of t o t a l  work 
used i s  c 

1, It can be sh.clwn t h a t  V*- is bounded below by i t s  value f o r  t he  appropri- 
a t e  binary cascade. 
sequence obtained by the  calculat ion.  

c 
This assiwes the  convergence of any decreasing 



The problem studied may be expressed as follows: find numbers N and y 
and a function L(n) such that 

P 

is a minimum subject to the constraints (1) and (2). 
is also restricted to be continuous* and such that 

The function L(n) 

dx - + 0. dn 

The second restriction is physically plausible since the cascade is re- 
quired to enrich the isoto2e whose concentration is denoted by x, This 
restriction permits the problem to be transformed so as to eliminate the 
parameter n. 

With the following definitions: 

(x - x)P 
9 , 1 P 

L ( 3 )  P = -  ( g  - 
g 

and the appropriate change of variables, the problem may be written as 
follows. Find a number y and a function p(x) such that 

P 

is a minimum subject to 

Y(X0) = Yo. 

It can easily be shown that for yo= 0, the answer to this problem is 

1 
= 0 and p(x) = - .  yP 2 

* The continuity of L(n) and of dy/dx can be demonstrated by using the 
Weierstrass-Erdmann corner condltions. Cf. Bliss "Lectures on the Cal- 
culus of Varia'iioLis" Chicago 1946, in particular Chapter l, Section 6. 
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d9 The r e s u l t  produces t h e  idea l  binary cascade. The value p = 1/2 implies 
t h a t  the  mixed streams at  the  stage l i nks  have the  same x concentration, 
i . e . ,  no mixing l o s s  i n  the  desired isotope i s  incurred. 

With the  def in i t ions  

and 

t h e  problem may be wri t ten:  

X 

V C = / ’ G d x ,  
X 

0 

* = f with y(x  ) = yo. ax 0 

The range of i n t e r e s t  of p(x) i s :  

0 4 p 4 1 since 

p = 0 implies dx dn = 0 and 

P = 1 implies L(n) =a . 
The first variation of V is calculated by considering variations in p of 

C 

t h e  spec i f ic  form, 

( 8 )  
* 

P = P + EP? 

where 1-1 i s  t o  be a continuous function of x .  

From (7 )  and (8) one obtains:  

av = - I = f X P  ($ + -  aG &*I ) ax? a€ €=o ay a€ €=o 
X 

0 

with the  conditions 

dY* = f p + f  - 
Y 

aYp+ 

+ f  a €  
yP 

E =O € =O 

(9) 
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and I 

where - dyx = f(x,y*,sp,y:,p*) with y"(xo) = yo. 
dx 

Equation (11) i s  not a condition 03 t he  c l a s s  of admissible var ia t ions  
p(x)  since it i s  only the  requirement t h a t  t he  bottom concentration yo 
remain f ixed .  

I f  t he  order of d i f f e ren t i a t ion  be interchanged i n  (10) and a function 
#(x) be defined by 

(12) 

then (10) and (11) may be wr l t ten  a s  follows: 

with 

@(.X P = 6 P and @(x  0 ) = 0. 

Equation (13) i s  the  l i n e a r  va r i a t iona l  equation f o r  ( 7 ) .  The v a l i d i t y  

of t he  interchange operation depends upon the  cont inui ty  of both - and d Y  
dx 

PCX) 

Defini t ion (12) i s  used f n  (9) t o  get  

AV = ( G  # + G p) d x ,  
C Y P X 

0 

and by defining, 

one f inds  the  solut ion t o  (13)  t o  be 

sd(X) = & Dp - D ( t )  f ( t ) d t  - /"p pDf P d t .  (17) 
X yP D(x) 

Unless otherwise noted, t h e  superscr ipts  stand for p a r t i a l  der iva t ives ,  

e .g . ,  f = 
af 

yP 
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Grs Use (17) i n  (15)  t o  ge t  

I f  t h e  order of in tegra t ion  i n  t h e  second i n t e g r a l  of (18) i s  interchanged 
and t h e  terms a r e  col lected,  the  f irst  var ia t ion  may be wri t ten:  

1 x G  
av = @ f - x[xp D ( t ) f  ( t ) d t  dx 

P X  0 yP 

Evaluate (17) at x = x 
0 

L 

noting t h a t  D (x ) 
0 

= 1 t o  obtain:  

Define , 
J" f kp - JXp Dfyp d j  dx 

-- 0 K = - -  

D - D f  dx 
P X  0 yP 

and combine ( 19 ) with (20) t o  eliminate fl with t h e  r e  
P 

s u l t  : 

The only r e s t r i c t i o n  placed on p i s  t h a t  of cont inui ty  and by t h e  usual 
methods of t h e  calculus  of var ia t ions ,  the  requirement t h a t  AV = 0 i m -  
p l i e s  t h a t  C 



.- 

Define, 

s o  t h a t  

H f = - -  

P2 

and note t h a t  
x- - x 

Subs t i tu te  these expressions i n t o  (22) and with some rearrangement, ob- 
t a i n  the  r e s u l t :  

This i s  t h e  equation whose numerical solut ion i s  obtained as follows: 

(1) Assume p(x)  = 5 1 , 

( 2 )  Calculate y(x) using (7), 

(3)  

( 4 )  Calculate v using equation ( 3 ) ,  

Calculate the r i g h t  hand side of (24) including K, 

C 

(5) 

(6) 

Solve f o r  a new p ( x )  using (24.), 

Return to s t ep  (2 )  u n t i l  no fu r the r  change i n  Vc i s  obtained. 

All of the  integrat ions and t h e  solut ions of equation (7 )  a re  
obtained numerically. 

It can be shown t h a t  equation (24) i s  a f i rs t  i n t e g r a l  of t he  Euler equa- 
t i o n  f o r  t he  problem with p eliminated. This conventional Euler equation 
for y has a markedly non-linear character  and o f fe r s  d i f f i c u l t y  a t  the  
point x = x where a boundary condition must be applied.  

P 
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APPENDIX 

. 

L i m i t s  on Enrichment Obtainable i n  a Matched R Cascade 

It i s  possible  to obtain any product p u r i t y  l e s s  than 100 percent with a 
matched R cascade when t h e  reservoi r  contains a binary mixture. I f  t h e  
contaminant i s  l i g h t e r  than t h e  desired isotope then there  i s  a l i m i t  to 
t h e  obtainable product p u r i t y ,  This l i m i t  i s  due to t h e  peaking of t h e  
desired middle isotope.  This enrichment would be l imi ted  f o r  t h e  same 
reason no matter what the  flow d i s t r i b u t i o n  w a s  i n  t h e  cascade. 

Under some conditions there  i s  a l i m i t  to t h e  obtainable enrichment i n  a 
matched R cascade when t h e  contaminant i s  a middle isotope.  This limita- 
t i o n  i s  c h a r a c t e r i s t i c  of t h e  matched R cascade, i . e . ,  t h e  matched x cas- 
cade does not have t h i s  l i m i t a t i o n .  

To examine t h i s ,  l e t  x and x be f ixed and determine t h e  maximum value 

of yo f o r  which t h e  matched R enrichment equations have a solut ion.  
0 P 

With 

s =A; s = U 

0 1 - x  - Yo’ P - yP 0 
p 1 - x  

and 

as shown i n  Ref. (l), t h e  enrichment equations a r e :  

R - Ro 
s =  P ( S o )  (2k-1) f o r  2k-1 f. 0 - R2k-1) 

R2k 0 P 

R - Ro So 
- for 2k = l.* 

‘p=-j P O  R 0 

(ii) 

Using t h e  f a c t  t h a t  i n  a matched R cascade 

* Note t h a t  these  are t h e  enrichment equations for a cascade operating over 
an i n f i n i t e  reservoi r  with a production r a t e  of one and t h a t  t h e  enrich- 
ment l i m i t s  obtained a r e  s p e c i f i c a l l y  f o r  t h i s  type of operation. 

. 
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one can f i n d  t h a t  

Ro/R = e -M where M = - +1 N 
P 2 (iii) 

and N i s  t h e  t o t a l  number of stages i n  t h e  cascade. 
be subs t i tu ted  i n  (i) and (ii) t o  get  

Equation (iii) may 

-M 

-M 2k-1 for 2k f 1 
1 - e  ( 2k- 1) 0 

S S 

R R  
P = -  

0 1 - ( e  ) P 

and 

s s  -M 
- P = o l - e  f o r  2k=1. R R  M 

0 P 

The case when 2k - 1 < 0 may be considered by f i x i n g  S /R 

l e t t i n g  M 3 0 0 .  I n  t h i s  case, l i m  

case x can be brought a r b i t r a r i l y  close t o  100 percent and thus  no mt- 

t e r  what t h e  reservoi r  concentrations a re ,  t h e  product concentration i s  
not l imi ted  below 100 percent .  

= y /X and 
0 0  0 0  

= 0. This means t h a t  i n  t h i s  
SP/RP M -+a 

P 

On physical  grounds, one would expect t h i s  t o  be t r u e  for 0 
it i s  t h e  l i g h t  isotope desired i n  t h i s  case.  However, for 
cascade, t h i s  conclusion i s  f a l s e .  Consider ( i v )  f o r  1/2 < 
t h a t  

or that  

For any f ixed  x and any cascade we must have 
P 

Equation ( i v )  may be w r i t t e n  as  

-M 
yp yo 1 - e  - - -  

-M 2k-1 - (2k-1) 
1 - ( e  ) 

X X P 0 

k < 1, since 
t h e  matched R 
k 1 and note 
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and examination of t h i s  equation shows that  f o r  

1 - x  
P 

X 
yo (2k-1) 4 
X 

0 P 

there  e x i s t s  a f i n i t e  M and a y 4 1 - x 

solut ion.  This, i n  turn,  implies t h a t  f o r  f ixed x 

such tha t  equation ( v i )  has a 
P P 

P' 

( v i i )  

I n  t h e  l i g h t  isotope problem studied i n  t h i s  paper, i . e . ,  x = l%, xp = 60% 
and k = 2 / 3 ,  formula ( v i i )  gives the  r e s u l t  

0 

= 2% lim 
M + c o  '0 

as i s  shown on t h e  p lo t s .  The points  on t h e  asymptote were calculated 
using the  same numerical techniques as were used i n  the  minimum power 
ca lcu la t ion  and provide some indicat ion of t h e  degree of accuracy ob- 
ta ined  throughout t h e  calculat ion.  

The case k + 1 provides two d i s t i n c t  l i m i t s  t o  t he  obtainable enrichment. 
These a re  

(1) 

(2) 

The l i m i t  defined by equation ( v i i ) ,  

The l i m i t  obtained i n  a matched R cascade for which dx + 0 f o r  

a l l  n. This l i m i t  i s  lower than t h a t  specif ied i n  (1). 
dn 

To obtain l i m i t  (2), note t h a t  equation (1) i n  t h e  body of t he  report  i s  

dx P P - = i1X(l-X) - q,xy - - (x  -x) = g - - (x  -x) 
dn L P  L P  

dx The no peaking condition requires  tha t  x 

- - 

olzly possible point of equal i ty  a t  t h e  point x = x , y = 

it follows t h a t  - 4 - and from t he  de f in i t i on  of S we have 

+ x and thus tha t  0 4 - 4 g P -  - dn - 
X - (1 - kL) . Thus we must have (1-k&) 0 0 for a l l  n w i t h  t h e  $1 1-x 1-x 

yP' From this P 
1 

1-x - k 

Y 
1-x S and = - y = s = -  

1-x-y l-y 1-x 1+S' 
1-x 

n 

. 
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s 1  4 - f o r  a l l  n, which i s  a necessary condi- From t h i s  it follows t h a t  - 
dx t i o n  on S i f  t h e  condition - + 0 i s  t o  be met throughout the  cascade. dn - 

1+S - k 

Equation ( i v )  may be wr i t ten  i n  the  form 

-M 2k-1 p 1 1 - ( e  ) S 
s = R - -  R 2k-1 - e -M 

P 

from which it follows t h a t  

-M 2k-1 p 1 d ( l - ( e  ) 

P 

S 

R 2k-1 dM - e 
ds S dR = ? i t R - - -  -M ) E. 

By de f in i t i on  f o r  a matched R cascade 

R = R  dR dRdn 2 d R  2 ' 1  
dM dn dM - $l dn q1 2 
- - - - - _ _ - - _ -  - - 

and t h e  subs t i tu t ion  of ( i x )  i n to  ( v i i i )  y i e lds  

S dS S 
-M 

P 

( v i i i )  

Examination of equation (x )  shows t h a t  f o r  2k - 1 + 1 

dS - + 0. dR 

This, i n  tu rn ,  implies t h a t  a necessary condition on the  problem i s  

1 S 
p 4 -  l+SD - k' - 

The following analysis  will es t ab l i sh  f o r  f ixed  x and x the  maximum 

value of y f o r  which no peaking of t h e  x gradient w i l l  occur i n  a matched 

R cascade. Once t h e  re la t ionship  between y and x i s  establ ished,  it may 

be used i n  reverse to determine t h e  l i m i t  on x under t h e  specif ied condi- 

t i o n s  . 
Expression ( x i )  shows t h a t  t he  appropriate l i m i t  for S i s  S = - and 

with x f ixed we have 

P 0 

0 

0 P 

P 

P p k-1' 

P 
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or 

R = -  (A). P k-1 1-x 
P 

Thi 

or 

S 

1-x 1 - x  2k-1 S 
Yo (y) 12 = 1 (2) (e) = P 1: - 

x k - M - a  
0 

M +a R k-1 x k 
P P P 

I n  t h e  middle isotope case studied, i . e . ,  x 
t h i s  r e s u l t  i s  

= 40%, x = l%, and k = 3 / 2 ,  P 0 

as shown on t h e  p l o t s .  
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