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ABSTRACT

Three-dimensional finite element (FE) calculations
using ABAQUS version 5.5.9 were compared to neutron
diffraction measurements of a loaded, pre-cracked beryllium
compact tension (CT) specimens. The objective was to
validate the FE results with the experimental “elastic strain”
measurements. Then the FE calculations could be used to
study residual stress and other aspects of these problems in
the unloaded state and the crack tip stress in the loaded state
hard to measure experimentally.

A graded FE mesh was focused on the regions
containing high strain gradients, the smallest elements were
approximately 0.5 mm x 0.5 mm x 0.4 mm. A standard
20-node brick element model was complemented by a
model with 1/4-point elements at the crack tip. Since the
neutron diffraction measurements provided a volume average
of approximately a cube of edge 3.0 mm, various averaging
(or integrating) techniques were used on the FE results.
Several integration schemes showed good agreement with
the experimental results.

INTRODUCTION

The finite element method is an effective way of
approximating a solution to the force and moment
equilibrium equations of a solid body (Oden, 1978),
(Zienkiewicz, 1977), (Cook, 1981). In general, we seek an

approximate solution for the displacements, strains, stresses,
and forces in a solid body which has been subjected to some
loading history. The existence and convergence of these
approximate solutions have also been elegantly
demonstrated (Oden, 1978), (Strang ef al., 1973). Indeed,
convergence studies show that as we increase the level of
descretization of the region, the approximate solution
approaches an exact solution of the governing differential
equations. Similarly, if we use a higher order
approximation, i.e. quadratic displacement versus linear,
then the rate of convergence also increases. These existence
and convergence studies, imply that we can have a degree of
confidence in generating an approximate solution for a solid
body undergoing loading for which an analytic solution is
either not available or practical.

Liebowitz (1989) surveyed numerical methods used in
computational fracture mechanics. Finite difference
methods, finite element methods, and boundary element
methods were the three numerical approaches to the solution
of fracture mechanics problems. Strengths and weaknesses
were itemized for each method, and finite element methods
were found to be better for modeling of three dimensional
fracture problems. Atluri et al. (1994) discussed recent
advances in computational methods in fracture mechanics.
Their survey presented (i) boundary integral methods, (ii)
analytical solutions for elliptical or circular cracks embedded
in isotropic or transversely isotropic solids, (iii) finite-
element or boundary-clement alternating methods, (iv)
domain-integral methods, and (v) methods for generation of
weight-functions in 2 and 3-D linear elastic crack problems.
These two review papers contain extensive references on the
various methods used to study fracture.




In the study of fracture mechanics, finite element solutions
have, in some cases, compared well with experimental results.
Scammarella et al. (1996) used computer-assisted Moiré
method to compare experimental and_finite element stresses on
an aluminum compact tension specimen. Their results agreed
well, Another example included work by Narashiman et al.
(1989). Erbe et al. (1994) who used a grating method to
compute strains from the observed deformations on steel
compact tension specimens. In that case, two-dimensional
plane stress finite element strain contours showed poor
correlation with the experimental results; however, a three
dimensional model using 10-node tetrahedral elements showed
good agreement, Parnas et al. (1996) used quadratic, five-
noded, plane stress elements in their steel and aluminum
compact tension specimens. Their finite elements strains also
compared well with their strain gage measurements.

The model and the selection of appropriate material
properties we used neutron diffraction (Hutchings ez al., 1992)
to measure the elastic strain field in a loaded CT specimen.
Although neutron diffraction has a limited spatial resolution
close to 1 mm, previous examples have effectively measured
strain fields resulting from plastic deformation near cracks
(Smith ef al., 1992). The thrust of this paper concerns the
various methods of smoothing the finite element strains for an
appropriate comparison with the experimental results. In this
case, the finite element results are used to correlate with the
neutron diffraction results in the interior of the loaded
specimens. Specific advantages of the FE calculations over the
experiment are improved resolution in the vicinity of the crack
which is important both during and after loading. Details of
the neutron diffraction experiments are presented in a
companion paper Varma (1997).

BACKGROUND

In this section we will review the key points in the
derivation of the finite element method as applied to this class
of problems. We follow the derivation in ABAQUS (1996)
because of its simplicity. Derivations for more general linear
operators can be found in Oden (1978) and Strang ef al.
(1973). Two key concepts in this derivation are equilibrium
and virtual work. For an exact solution, both force and
moment equilibrium must be maintained over the volume of
body at all times. =~ The approximation in the displacement
finite element method comes from two sources: (1) relaxing the
equilibrium requirement at every point within the volume by
requiring only that equilibrium be maintained in an average
sense over the volume of the body and (2) that the
approximation should represent the displacements over those
finite volumes.

Using a Lagrangian viewpoint, if V is the volume occupied
by a part of the body in the current configuration, and S is the
surface bounding this volume, then we can define the surface
traction, t, as the force per unit of current area at any point
S by

t=n-c @)

where G is the “true” or Cauchy stress matrix at a point on S
and n is the unit normal to S at the point. Let the body force
at any point within the volume of a material under
consideration be f per unit of current volume. Then the force
equilibrium for the volume is
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Using the surface traction’s definition (1) in equation (2)
and then applying the divergence theorem to (2), we establish
the differential equation for translation equilibrium as
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where the divergence ( d/0x) is with respect to the current
configuration and the equations apply pointwise in the body.

Assuming that no point couples act on the volume,
application of the divergence theorem to the moment
equilibrium yields the result that the Cauchy stress matrix
must be symmetric.

The next step is to cast the solution of the equilibrium
equations (3) into a “weak form.” This is done by replacing
the three equilibrium equations in (3) with a single scalar
equation over the entire body. This is achieved by using a
weighted residual or Galerkin method in which the scalar
equation is obtained by multiplying the pointwise differential
equations by an arbitrary, vector-valued “test function”,
defined, with suitable continuity, over the entire volume, and
integrating:
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Since the test functions dv are arbitrary, equilibrium in any
direction can be satisfied by choosing the test function to be
nonzero in that direction. For this case of equilibrium with a
general stress matrix, this equivalent “weak form” is the virtual
work principle. For this case, the test functions are a “virtual”
velocity field, 8v, which must obey any prescribed kinematics
constraints and have sufficient continuity.

By applying the chain rule to the term inside the integral of
(4), then applying the divergence theorem to that result, we get
the virtual work equation
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where 8D , the symmetric part of the velocity gradient in the
current configuration, is defined in terms of dv as:
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The weak formulation not only reduces the order of the
differential operator, but also loosens the restriction of satisfying
the governing differential equations, e.g. equilibrium, by
averaging them over an volume which itself can be broken up
into a finite number of elements.
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Babuska’s ((1971) approximation theorem and Ciarlet and
Raviart (1972) interpolation theorem established the
mathematical fundamentals for the finite element approximations.
The basis is representation of the displacements over the finite
number of volumes. (For the sake of simplicity have we address
only displacements, but other field variables such as temperature,
pressure, or stress can be part of the approximations to give
mixed or hybrid formulations by Oden (1978, 1976),
Zienkiewicz (1977), Strang et al. (1973)) The order of the
displacement approximation is based on the number of nodes in
each element, The element displacement representation can be
expressed as,

u=Nyub @

where Ny are interpolation functlons which depend on some
material coordinate system, u" are nodal variables, and the
summation convention is adopted for the upper case subscripts
and superscript which indicate nodal variables.  Introducing
these into the virtual field v, with the assumption that v be
compatible with the kinematics constraints, we then substitute
into (5) to establish the finite element approximation to our
boundary value problem.

Note that the finite element approximation is for the
displacements based on the nodal values. However, in most
problems it is the strains and stresses that are of interest, and
these quantities involve a differentiation of our approximation.
Moan (1974) and Wheeler (1974) showed that for
approximations of this kind, the “reduced” integration of the
element contributions to (7) are the best points to compute the
first derivatives of the displacement approximation and that the
boundary are the worst. Hinton (1974) showed numerically that
an extrapolation of these Gauss point derivatives to the boundary
and averaging with adjacent elements produce good agreement
with a least square fit of the Gauss point data onto the nodal
points, Guerra (1974, 1977) also made numerical observations

that this type of extrapolations and averaging gave very
comparable results to Oden’s (1972) more rigorous dual space
computation of stresses.

FINITE ELEMENT MODEL

Figure 1 shows the dimensions of CT specimens modeled.
The neutron diffraction experiments in Varma (1997) “measure”
the elastic strains over a cube of edge length approximately 3.0
mm in the interior of the test specimen as shown in the shaded
areas of the Figure 1. The beryllium CT specimens were edge
approximately 3 mm thick and were machined with 2.0 mm
wide notches that terminated in the multiple 45° chevrons. For
measurements under a 2135.0 N load, fixture was designed that
allowed the bolt holes to be tensioned apart while
simultaneously recording the load on a small load cell. The test
CT specimen had a fatigue crack of approximately 6.35 mm.

Figure 2 shows the finite element mesh used with
ABAQUS 5.5.9 (ABAQUS, 1996). One quarter of the specimen
was modeled with 7178 quadratic 20-node brick elements with
reduced integration. In the vicinity of crack tip (EF), the
minimum element sizes was 0.5 by 0.5 by 0.42 mm because of
the expected high strain gradients, where as at the outer edge
(BD) they were 1.97 by 0.5 by 0.42. In addition, mid-side
nodes on element edges adjacent to the crack tip (EF) were
moved to the quarter point. Henshell et al. (1975) and Koers
(1989) showed in numerical experiments that midside nodes at
the quarter-point for quadratic (8-node quadrilaterals in 2-
dimensions and 20-node bricks in 3-dimensions) elements gave
favorable results in crack tip studies and were more economical
to use than the more accurate hybrid crack elements. Symmetry
conditions were imposed on the 2-plane=0 (ACGH) and on the
3-plane=0 (EFCD), and the crack surface (AEFB) was left fiee.
Since the bolt holes were not of interest and distant from the
crack region, the hole geometry was not modeled and half the
tensile load, 1067.5 N, was equally distributed along the eleven
nodes through the model thickness at point K. One of these
nodes was also constrained in the 1-direction.

Table I shows the beryllium material properties from Brush
Wellman (1983) used. A simple bi-linear elastic-plastic model
for ABAQUS. (A more sophisticated piece-wise linear elastic-
plastic stress-strain definition could have been used ABAQUS if
such material properties for this particular beryllium sample were
available.)

Table 1. Material properties used for beryllium in the finite
element calculations.

[ Elastic modulus 303690 MPa
Poisson ratio 0.1

2% yield stress 230 MPa
Ultimate stress 450 MPa

% eloggation 0.2




RESULTS

Figure 3 is an enlarged view of the region where the strain
measurements were compared. This enlargement of the mesh
shows the paths (rows) of elements and nodal points over which
the finite element and experimental comparisons were made in
the subsequent figures. Since ABAQUS strains were being
computed at the best possible points for 20-node brick elements
used, i.e. 2 by 2 by 2 Gauss points, our study of the results
concentrated on a suitable averaging scheme for comparison with
the experiment. Notably the quarter point elements yielded at
maximum strain 35% higher than the standard elements, only
the quarter point results are presented.. ABAQUS Post was
used to extract the elastic strain component in the tensile
direction (EE33, perpendicular to the crack plane ABDC) from
the total strains. We also limited our focus to the comparison of
nodal averages and element averages with the experimental
results,

Figure 4 compares the averaged nodal values along path A
(EE33PA) and C (EE33PC) with the experimental values
(4PKA) at full load. In this and subsequent comparisons, the
“absolute distance” is measured from point B ,on surface
(ABGH) at the back of the specimen, to point A, at the tip of the
chevron, in Figure 2. In Figure 3, nodal path A is shown from
the tip of the chevron to the back, and nodal path C is the row of
nodes above it. The elements adjacent to these row of nodes
were also part of the numerical studies. The maximum
experimental elastic strain from 4PKA was 5.20E-04. Figure 5
compares the ABAQUS nodal point running averages of
EE33PA for one element (3 nodal points, PAAV3P) and three
elements (7 nodal points, PAAV7P) on path A with the
experimental results at full load. The choice of three elements
was made to correspond with 3 mm cube in the test sample
region, The running averages seem to show reasonable
agreement with the experimental results and were very practical
to use.

A simple FORTRAN program was written to average the
eight integration point values for a given element. Figure 6
compares the experimental results with the element averaged
values along three rows of elements on the midsurface: (1)
PA_AV_EL, the elements along path A, (2) PC_AV_EL, the
elements along path C, and (3) PD_AV_EL, the row of elements
above (2). These results were also at full load. (The element
values are plotted at respective element’s mid-side node, starting
from point C to A in Figure 2.) The values for the elements two
elements in the 2-direction were similar to PD_AV_EL.
Averaging PA_AV_EL, PC_AV_EL, and PD_AV_EL. Figure
7 compares the running average of three elements (3 points) of
P_A_AVE with the experimental results. Figures 6 and 7 show
that the running averages show the good agreement with the
experimental results. Because most of the higher gradients occur
near the crack tip, the data smoothing seemed to primarily affect
the magnitude of the elastic strains there. Table II summarizes
the maximum elastic strains (EE33) from the various data

smoothing for analyses standard and quarter-point elements in
the vicinity of the crack tip.

Finally, Figure 8 plots the nodal point elastic strains
(EE33PAA) and the running average over seven nodal points
along path A for the unloaded CT specimen.

Table I. Maximum values of elastic strain for the various types
of data smoothing.

Experiment 4PKA 5.20E-04

Case Standard Element 1/4 Pt. Element
EE33PA 8.89E-04 13.7E-04
EE33PC 5.90E-04 6.44E-04
PAAV3P 6.92E-04 9.61E-04
PAAV7P 5.06E-04 6.23E-04
PA_AV_EL 4.30E-04 8.92E-04
PC_AV_EL 5.51E-04 5.54E-04
PD_AV_EL 4.28E-04 4.34E-04

SUMMARY AND CONCLUSIONS

The finite element method has been shown in the literature
to provide a valid approximation for a well posed boundary
value problem. For the simple geometry of the CT specimen
considered here, our “coarse” finite element mesh calculations
compare reasonably with yet another experimental method,
neutron diffraction. For beryllium, this is a unique approach
since comparable x-ray diffraction measurements have be very
hard to obtain. Because the neutron diffraction measurements are
taken over finite volumes, various methods for smoothing the
finite element results were shown to compare well with the
experimental results. A simple running average of nodal values
over several elements yielded a comparable results with little
effort.

Studies of the crack tip region in more detail using meshes
with finer densities at the region are possible. Another more
sophisticated local mesh refinement at the crack tip can be
achieved with element necklacing. With the availability of
various types of contact between surfaces, regions with differing
mesh densities can be easily coupled. Another practical method
for limited computer resources, is the interpolation of a solution
over a selected region from a coarse mesh, such as the one
considered here, onto a much finer descretization of that region.

Experimental results have shown that beryllium is not an
isotropic or very ductile material. In our analysis we simplified
the problem by assuming an isotropic material. In addition, we
assumed a von Mises yield surface and a ductile metal plasticity
formulation for our problem. Material data such as Young’s




modulus, Poisson’s ratio, and true plastic stress-strain data
generated from tests on the actual material have been shown to
greatly improve the finite element results. And more
sophisticated material models are available in ABAQUS and the
literature which could also improve the finite element
simulations,
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to the material powder pressing direction.
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