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Abstract

He have measured the energy shifts of K x-rays produced by 5 MeV/amu He,

C, 0, and Ne ions, and by 10 MeV/amu C ions, on targets of Fe, Co« Zr» and Sn;.

additional data for Ti and Fe have been obtained using 0 ion energies from

0.625 MeV/amu to 2.84 MeV/amu. In the case of the 5 MeV/amu and 10 MeV/amu

data, it was found that for each targse there exists a nearly linear relation- '

ship between the observed energy shift and the stopping power for the bombarding
i

ion. The projectile energy dependence of the shift for Ti and Fe targets

obtained from the 0 data shows a form similar to that predicted for the L-

ionization cross section. The observed K./K ratios show the same type of

simple systematlcs, suggesting that these multiple ionization phenomena can '•

be quantitatively axplainsd within the framework of existing Coulomb excitation
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10 '" Introduction :/';;'.:'[•'iiii'if1;

Weak satellites associated with K-lines were first discovered by Siegbahn -11.''.•,y;y.;
•' . . 1 V'- i • t i ? ' V ,

and Stenstrote, and an explanation involving multiple inner shell ionization i i ̂ '̂

was proposed by Wentzel. More recently the observation of energy shifts in

the K. lines of Cu andjNl induced by 15~MeV oxygen bombardment has been reported
' •%•> 3

by Richard jat, ad. using a Si (Li) detector for measuring the x~Eay energies. ; .i--.,';

They ascribe the shifts to multiple inner shell ionization, am explanation '-'.••!;.•,'.',;'.

which has been verified by Bragg spectrometer experiments in which the measured '

lines were resolved into satellites corresponding to 1, 2, 3, etc. vacancies •:. •'•']';'v-': '

in the L-shell. ' ' Other measurements on K energy shifts have been made *
'• '•'rV

1
'

for a variety of targets at several projectile energies* The available data •'. '

''•'."•}"'.•

suggest that the energy shift in the K-lines is related to the L-ionization i

, cross section as predicted by the Plane Wave Born Approximation (PWBA) or v

the Binary Encounter Model (8EM). Similar measurements have been made by •/..

.; Der e« al. for the L x-rays of Ni, Cu, and Zn induced by bombardment with

8-MeV and 20-HeV oxygen ions. They noted shifts in L-satellite energies which •

;; decreased as the projectile energy increased and they pointed out that this is

consistent with the expected decrease in cxoaa aection for the production of

M-vacancies when the projectile velocity la greater than the electronic orbital* ., .

:•: velocity. ; • . , •!;;,;•. '

';' If the phenomenon of multiple ionization can be described in terms of V

simple Coulomb excitation, it is to be expected that a) the energy shift

• observed at a given ion velocity should be proportional to Z , where Z is the

projectile charge; b) that for a given projectile the shift at sufficiently

j high energies should be Inversely proportional to tha projectile energy, in

:l tht satno way as. the slectronie stopping power; and c) that an energy shift due

•..jii'V'.-•••': ? " " '

i : j l i ' W v ; V ' !'•• • • • • ! • ? ; • : ! ' . ' ' • : • • . ' • ; » ' ' • • • . , : • • ,•• •••'• • : : < i . . \ v • • • • • ; • • ' • - • • : ' . • • • • : - • • " ; • . , '•--.; :



primarily to L-vacnncies would be a maximum in the region of E/AU, % 1,

where £ is the projectile energy, \ is the ratio of projectile mass to the

electron mass* and U- is an average binding energy for l» electrons in the

' target. The*ale of the present experiment was to check thesa predictions.

Experimental

Beams of 5 MeV/amu He, C, G, sad Ne ions from the Oak Ridge Isochronous

Cyclotron were used with targets of Fc, Co, Zr, and Sn to study the projectile ;

dependence of the K x-ray energy shifts. The same targets were also bombarded

with 10 MeV/amu C ions. The dependence of the shifts on the projectile energy

was investigated using 0.625 MeV/amu to 2.84 MeV/amu 0 beams from the Oak Ridge

Tandem Van de Graaff accelerator on targets of Ti and Fe. A similar experimental
! 12

uethod was used on both accelerators and has been described elsewhere, so

that only a brief outline will be given here.

The targets were placed normal to the beam, and the x-rays viewed by a
2

12 am SI(Li) detector with an overall system resolution of 250 eV at 6 keV.

For the cyclotron (Tandem) experiment the detector was placed at an angle of

150* (43") to the beam direction, 50 cms (12 cms) from the target. X-rays from

the target were viewed directly through the 0.0125 mm Be window of the detector • ;i

for the cyclotron runs, while at the Tandem an additional 0.0125 cm Mylar

window was employed. The beam currents were such that the eount rate was always V

less than 1000 cps, and generally leas than 100 cps. ;
• ' • • . ' : ' . ' • • " • • . • ''ill

Except for Ti, the targets were self-supporting foils, whose thicknesses

wera measured by the Rutherford scattering of 5 MeV/aau projectiles at an

angle cf 11.25*. The Ti terget was avaporated onto a 40 ug/csn carbon backing,

the thickness being matured with • deposition gaug*. Table I shows the targets

and their m a s u n d thlckiMs*. Tha «iitlaat«d uncertainty in ths masurataente is



R?.;./•*• \ vv :' Table I . .':,"'•.••/';•>•'::• >f-- % '

";,; » Measured Target Thicknesses

Target

Thickness (yg/cm >

Ti

100

Fe

, 428

Co

936

It

580

Sn

689

The energy calibration of the system was measured using a pulser in

' 55 57 241 '̂"';

conjunction with standard x-ray sources of Fe, Co, and Am. In regions
/{. remote from the calibration energies the absolute accuracy was estimated to .

'":. be ± 10 eV; near Co these energies this improved to ± 2 eV. The detector >

efficiency calibration was made using the same standard sources. Interpolation'

••;
:: to other energies was nade using a theoretical curve calculated from the ' Br

•;.. detector characteristicn supplied by the manufacturer and the x-ray cross : '
:ff'v- f ' 1 3 . •''/•'•'.-'

•' section compilation of MvJtester et al*» «nd adjusted it absolute magnitude j

li to fit the data points. , '7

7 Except for the Kfl lines froa Zs and Sn, peak positions and areas vere

;•: extracted from the spectra by a computer code which assumed the peaks to be

:-v Gaussian in form and the background to be either linear or quadratic in channel

; , xiuicber. Although these assumptions, particularly the firstt are not necessarily

.(..-, justified, such a self-consistent analysis does provide reliable estimates of

j- relative areas and positions! In the case of the Kg lines of Zr and Sn, the

,;' peak areas were extracted by hand and no attempt was made to estiwate the average!

, peak positions due to the relatively poor statistics coupled with the fact that ,

i the Kg and Kg components were partially resolved. |

Kfi/X ratios for Fe and Sn were eiitiaatad from the peak areati and corrections

applied for the energy dependence of the detector efficiency* for absorption in i

the Kjflar window where appropriate* and foe aelf-absorption in the. target, taking

i
Jll' ,^M*JLM*K***



into account the fact that the large energy shifts were generally sufficient

to raise tha K. energy above the K absorption edge.

Results and Discussion

The measured energy shifts induced by 5 MeV/amu He, Co, 0, and He ions

and 10 MeV/amu C ions'are shown in Fig. 1, plotted against the stopping power

of the target material for the appropriate projectile. Aa almost linear

. relationship is evident for each of the x-ray lines considered. In this
2energy region the electron stopping power is roughly proportioned to MZ /E,

where M, Z, and E are the projectile mass, charge, and energy respectively.
* t .

If we accept the explanation that the shifts are mainly due to L-vacancles

.' produced at the same time as a K-vacancy, then the linear behavior for the
• 2

, S KeV/amu data points merely reflects the Z scaling law for L-ionization cross

' s^ctionc, while the fit of the 10 MeV/amu C point implies that the L-ionization

cross section varies as 1/R. Th« 1/E dependence holds for projectile velocities

larger than tha electron orbital velocity/a condition which saay be expressed

In the notation of Garcia ass >;
t < '• - '

* i r . • • V

> 1.

where X is the ratio of tha projectile mass to the electron mass, and U^ is

the average binding energy of the L-shell* The valua of E/XU, for 5 MeV/amu

particles on Fa, Co, Zr, and Sn is shown in Table II* Condition (1) is saan

to be satisfied for all targets except Sn, and indeed for this case tha •'

10 H*V/a*u data point dots not fclUow the trtnd defined by tha 5 MtV/amu

f " '
• * i

f •••••
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Target

E/XUL

E/X

Fe

3.7

Table
U. for E •

Co

3.3

II
• 5MeV/amu

Sr

1.2

. v . ^ .. ^ • " • ' , . - ' • ;

S n :: :••'•• ' ' : •":'•

0.66

The K and Ko shifts for Ti and Fe which were measured as a £ismee!@ri &£a P

the energy of the bombarding 0 Ion are shown in Fig. 2, ploESed against E/XU-.

The solid lines have been drawn to guide the eye. The form of the energy

dependence is similar to that of the L-.lonization cross sections predicted
v

by the PWBA or the BEM, except that the maximum occurs at E/XU. % 1.3t rather

higher than expected. This probably reflects the fact that the projectiles

have, on the average* impact parameters smaller than the Bohr radius of £h»

L-shell as they trust also have produced a K-vacancy. One effect of such small

impact parameters is to increase the effective nuclear charge seen by L-
14electrons, resulting in an effective increase in U..

The influence of M-vacancies on the energy shifts, at least for the Fe

6,15
VMKidkAV

15
K lines, has been shown to be small,ct Relativistic Haxtree-Fock«*Slater

calculations by T. A. Carlson**' indicate that the average shift per L-vacancy '

is approximately 25 eV» 55 eV, and 65 eV for the Fa K^, Fe K~, and Sn K a lines

respectively. Thus the X x-ray shifts induced by the 5 MeV/aau Na ions correspond
* !

to an average of two or threa L-vacaeicias for Fa, dropping to approximately ona -'

L-vacancy in the case of Sn.

Bureh and Richard hav« publish*d calculations showing th« lufluence ef L- <

and K-vacanci«s en tha K./K ratio for Fs. They show that the presance of '

vacancies in tha L-sTn\sll und 3p subshall, has a sarkad affact on tha ratio, as



be expected from the simple assumption that the K./K ratio is proportional
p a !

i

to the 3p subshell population and Inversely proportional to the number of i
i

electrons in the L-shell. Our measurements of the Fe K./K ratio* shown in |
t* o |

Fig. 3, show very similar systematics to the energy-shift data, at least for !

E/AU. K 1* ^hi» indicates that the dominating influence is again the production

of L-vacancies* and suggests a rather small probability for the production of \

vacancies in the 3p eubshell. From the calculations in Ref« 6, we estiaate the

K-/K ratio for 32.5-MeV 0 bombardment of Fe (E/XU. " 1*4) fe® correspond to an

average of £ 1 3p vacancyt it the energy-shift data is interpreted to correspond

t ••

toj two to three L-vacancies. For E/X1L > 1* the influence of 3p vacancies is

expected to regain small* as both L and M ionization cross sections will scale
2roughly as HZ /E Cor dE/dx)* However* for EAtL < 1, the relative importance

of K-vacancles is expected to increase* as the M ionization cross section

increases, while the L ionization cross section decreases rapidly. This effect '•!'-

i'1'

would reach a maximum in the region of E/XIL. £ 1 (E/AU- « 0.07)* where U M is .j

the ionization energy of the 3p subshell, and might result in a K./K ratio |

rather lower than the valuo obtained from an unperturbed atora. A hint of such •

behavior is evident in the Fe data for low 0 bombarding energies. 4

Tin K./Kfl ratios were obtained only with the 5 MeV/amu and 10 MeV/amu ''-' "1,,

projectiles* and these results showed no MZ /E dependence* The average of !

the five data points is 0.240 ± 0.015 close,to the normal value of 0.2226 \ |
l f i ' ••'"•• "' ' ' •' ''' I 1 - ' - '

estimated by Hansan ejt aj,. This probably, indicates that the effeet due so J ̂

the production of L-vacancies Is approximately canceled by that due to M- ! ;

vacancies in thie energy range.Xtt extmmvf, both

work show

*• energy shifts and the Kg/KQ ratios reported in the

systematic bshavlor with respect to fch« snergy and

•• I'.rv.1.'
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8

charge of the incident projectile. These systernatics can be qualitatively

understood within the framework of existing theories• If such theories are

formulated to extract

'sections f as has been

the impact parameter dependence of the lonlzatlon cross

done in the case of Au L x-rays by Hans teen c£ JLL. , it

Vy'seems likely that a qtantitetive description of multiple-ionization phenomena

•ilmay be achieved. •;:;':|;V
; • . I
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Figure Captions

X* $»• % x-ray energy shifts measured with 5 MeV/amu He, C, 0, and

Kft projectiles( and 10 KeV/amu C projectiles. The data are shown

" • • •

I as a function of tha stopping power of the projectile in the
i

target material•

ftf»tm 2. The K x»ray energy shifts as a function of the 0 bombarding energy«.

The errors indicated at E/ML « 0 reflect the uncertainty in the

absolute energy calibration.

figure 3* The Fe Kfi/K intensity ratios. The lower curve dhows the 5 MeV/aau

v:~:/ ;:':: and 10 MeV/i-uni data as a function of the stopping power of the

:--••{-; incident ioa in the target material. The upper curve shows the

R ^ i ratio as a function of bombarding energy for oxygen projectiles.

' v The value as dB/dx • 0 and B/XO. - 0 is taken from Ref. 14* •: :

,;,.'•' t
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