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ABSTRACT

The double phase representation is discussed for the
elastic scattering amplitude A(s,t,u) as a function of the
covariant Mandelstam variables s, t, and u. This representa-
tion is written as A(s,t,u) = [P](s,t,u)/Pz(s,t,u)] Q(s,t,u),
where P](s,t,u) and Pz(s,t,u) are both finite polynomials in
s, t, and u, and Q(s,t,u) has no zeros or poles except at in-
finity and is expressed in terms of the phase of A(s,t,u) along
the cuts. Thus, P](s,t,u) and P2(s,t,u) account for all the
zeros and poles of A(s,t,u), respectively, except for a zero
or a pole at infinity. The conditions for the above double
phase representation to exist are, besides the usual Mandelstam
assumption, that a finite polynomial P](s,t,u) accounts for
all the zeros of A(s,t,u) except for the one at infinity and
no others, and that A(s,t,u) has even or odd crossing symmetry
with respect to the interchange of some pair of s, t, and u.
These conditions imply that the phase of A(s,t,u) has no extra
branch points in the momentum-transfer plane other than those
which belong to A(s,t,u)  and remains finite in the physical
regions even in the limit of infinite energy. The asymptotic
forms of this double phase representation when some of s, t,
and u become infinite are derived in the case when the phase
approaches the limit at infinity not too slowly. This is the
case when the elastic scattering amplitude exhibits asymptoti-
cally a power behavior in energy (usually called the Regge
behavior). |In particular, the case when the forward peak of
high-energy elastic scattering does not shrink is examined

closely. The case of no-shrinkage is found to be the case when




the phase in the crossed channel does not diverge logarithmi-
cally at infinity in.its momentum-transfer plane. |f the
forward peak shrinks, the above phase diverges logarithmically
at infinity. In the case of no-shrinkage, the asymptotic shape
of the forward peak is determined solely by the phase in the
crossed channel. Furthermore, the above shape assumes a pure
exponentlal functlion of the covariant momentum-trangfer squared
when momentum-transfer is small, and approaches a power behavior
in the same variable . for large momentum-transfer. |[n the case
of the 1° + 7° = 7° + n° amplitude, high symmetry available in
this amplitude enables one to determine almost uniquely the
polynomials in the double phase representation. |In particular,
the only possibility in the case of no-shrinkage is
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P](s,t,u)/Pz(s,t,u) =<,
are real constants. No-shrinkage also implies that the S-wave

. \ o o o o
scattering length must not be negative for the T + 7T =T 4+ 7
amplitude. Some of the specific predictions of the phase repre-
sentation approach to high-energy elastic scattering are listed

at the end of the last section.



1. INTRODUCTION

The analytic function A(s) has under the conditions given below

the phase represen&atiOnl

P.(s) s
_ 1 s 6(s')ds'
A(S) - Pz(s) exp{ﬂ S (S'-S)}’ (])

cuts

where P](s) and Pz(s) are finite polynomials and §(s) is the (real) phase
of A(s) along the cuts which are assumed to occur on the real axis. Thus

6(s) is given by
A(s + i€) = + ,A(s + ic)' L18(s) , @)

where s is real and € is an infinitesimal positive number. The repre-
sentation (1) is valid independently of the specific normalization of
8§(s). However, it appears most convenient to require that 8§(s) vanishes
on the real axis where no cuts occur and the discontinuities in 8§(s) are
smaller than ™ in magnitude. With this normalization the exponential
factor in (1) has no zeros or poles except at infinity. Therefore, the
polynomials P,(s) and Pz(s) accommodate all the zeros and poles of A(s),
respectively, except for the one at :infinity. The conditions under which
(1) is valid are that (a) A(s) is analytic everywhere in s except for
cuts on the real axis and a finite number of poles, (b) A(s) is real in
the sense that A*(s) = A(s*), (c) A(s) is bounded by a finite polynomial
at infinity, and either (d) 8(s) has .finite limits 6§(+ ®) as s —» + @,

or (d)' A(s) has a finite number of zeros. The dispersion relation exists
for A(s) under the conditions (a), (b), and (c). Therefore, the condi-

tion (d) or (d)' is the extra condition for (1) to exist.



The purpose of the present paper is to generalize the phase repre-
sentation (1) when the analytic function has two independent variables.
We consider in particular the representation of the elastic scattering
amplitude A(s,t,u) as a function of Covariant variables s, t, and u.
in terms of the c.m. momentum q and the c.m. scattering angle 8, these

variables are given by

s = (E]+E2)2, t = -2q2(l-cos 9),

u = -2q2(1+cos 8) + (EI-EZ)Z, 3)

+ 2m 2 = a,

s+t +u-= 2ml 2

where E‘ and E2 are the c.m. energies of two colliding particles with

masses m, and m,, respectively.

The representation to be discussed in this paper is written as

P, (s,t,u)

F;?;TfTag Q(s,t,u), 4)

A(s,t,u) =
where P](s,t,u) and Pz(s,t,u) are finlte polynomials in s, t, and u and
Q(s,t,u) has no zeros or poles except at infinity and is expressed in
terms of the phase of A(s,t,u) along the cuts. The explicit expressions
for Q(s,t,u) are given by (14), (15) .and (16) of Section 3, all of which
are equivalent to each other. We call this representation (4) the double
phase representation.

The conditions for this double phase representation to be valid
are as follows.
(i) A(s,t,u) Is analytic with respect to two independent variables

everywhere except for three cuts given by o >35.25p ®>t 3t and



® > U > ug, and a finite number of poles at s = S1» """ s t = t‘, -
and u = Uy, ===, where all these constants Sgr Sy» TTT7 s etc, are real
and positive.

(ii) A(s,t,u) is real in the sense that A*(s,t,u) = A(s*,t*,u*).

(iii) A(s,t,u) is bounded by finite polynomials in s, t, and u
at infinity.

(iv) The zeros of A(s,t,u) occur in such a way that a finite
polynomial P](s,t,u) accommodates all of them except for the one at
infinity and no others.

(v) A(s,t,u) has crossing symmetry, either even or odd. For
example, A(s,t,u) = + A(u,t,s). The conditions (i), (ii) and (iii) are
what one calls the Mandelstam assumption- The condition (i) implies
that there is a finite, real polynomial P2(s,t,u) which accommodates all
the poles of A(s,t,u) except for the one at infinity and no others. The
condition (iv) prescribes similar situation regarding the zeros of A(s,t,u).
The condition (v) can always be satisfied by any elastic scattering am-
plitude. Therefore, the only extra condition for the double phase rep-
resentation to exist Is the condition (iv). The reality of P](s,t,u)
follows from:the:ethericonditions: hiisted above.

We assume this extra condition (iv) for the following reasons.
First, without the condition (iv), the double phase representation be-
comes much more complicated than (4) and is likely to be no longer use-
ful. Secondly, the condition (iv) may very well be satisfied because
the zeros of the amplitude could have some direct physical significance
just as the poles do. |In fact, we see, throughout the analysis of this
paper, no indication that .the double phase representation (4) may be too

restrictive.



Aside from formal interest, the double phase representation (4)
has practical usefulness. The usefulness of the phase representation in
discussing high-energy behavior of elastic scattering was already pointed
outl. In the previous work], however, one could not discuss the question
of whether or not the forward peak of high-energy elastic scattering
shrinksz. This is because only the analyticity in energy can be exploited
when the (single) phase representation (1) is used. |n order to discuss
the question of shrinkage, one must use the double phase representation
(4). In fact, we show in this paper that the double phase representation
(4) provides a straightforward explanation for no-shrinkage.

We start our analysis by discussing in Section 2 the analyticity
and symmetry of the phase of A(s,t,u) when this amplitude satisfies the
conditions listed above. Because of the condition (iv), the phase has
no extra branch points in the momentum-transfer plane other than those
which belong to A(s,t,u). When there is crossing symmetry, A(s,t,u) =
+ A(u,t,s), the phase become the same in the s- and u-physical regions.

We then derive in Section 3 explicit representations (14), (15),
and (16) of Q(s,t,u) in (4) in terms of the phase discussed in Section 2.
The condition (v) is shown to be necessary in order for these represen-
tations of Q(s,t,u) to be bounded by finite polynomials at infinity.

This boundedness of Q(s,t,u) also implies that the phase remains finite

in the physical regions even .in the limit of infinite energy. It is shown
in Appendix that the aboverboundedness of the physical phase and the
condition (v) are in fact sufficient for the boundedness of Q(s,t,u) by
finite polynomials.

We derive in Section 4 the asymptotic forms of the double phase
representation (4) when some of the variables become infinite. We as-
sume here that the amplitude exhibits asymptotically a power behavior

in energy (usually called the Regge behavior).



We then examine in Section 5 the case when the forward peak of
high-energy elastic scattering does not shrinkz. It is shown that this
case actually materializes when the phase in the crossed channel no
longer diverges logarithmically at . infinity in its momentum-transfer
plane.

We summarize our analyses in Section 6. Besides, we discuss
previous theoretical work concerning the question of shrinkage. We also
list some of the specific predictions of our phase representation ap-

proach to high-energy elastic scattering.
2. PHASE OF SCATTERING AMPLITUDE

We discuss in this section the analyticity and symmetry of the
phase of the scattering amplitude A(s,t,u) when A(s,t,u) satisfies the
conditions (i), (i1), (iii), (iv) and (v) listed in the previous section,.
We observe for this purpose that the conditions (i) and (iv) imply that
A(s,t,u) is written in the form of (4) in which Q(s,t,u) has no zeros
or poles except at infinity.

The s-phase §(s,t) or 8(s,u)) of A(s,t,u) is defined in the s-

physical region, where s is energy and t (or u) is momentum-transfer, by

A(s+ie,t) = + ‘A(S+Ie,t)l e 8(s,t) (5)

This definition is the same as (2). We require‘that §(s,t) vanishes at

s = s, and is continuous in 53. This definition of §(s,t) can be stated

0

also as

1 A(s+ie,t)1 _ 1 Q(s+ie,t):
8(s,t) = 77 4n [K%ETTET?%] =71 [geierty?

(6)

= ) [on Q(sHie,t) - 4n Q(s-ie,0)],



because the polynomials in (4) cancel each other in the above ratio and
Q(s,t,u) has no zeros or poles except at infinity.

Analyticity of 8(s,t) in t is now seen directly from (6). Since
Q(s,t,u) has no zeros or poles except at infinity, 8(s,t) is analytic in
t everywhere except for the t- and the u-cut which belong to A(s,t,u).
The assumption that A(s,t,u) has no essentially singular points implies
that 8(s,t) has no poles. The divergence of 8(s,t) at infinity is at
most logarithmic since A(s,t,u) is bounded by finite polynomials at in-
finity. The reality in the sense that 6*(s,t) = 6(s,t*) follows from
the reality of A(s,t,u).

The significance of the condition (iv) is to be mentioned. With~
out the condition (iv) we hardly see how all the zeros of A(s,t,u) could
cancel in the ratio of A(s,t,u)'s in (6). |If there are any zeros which
do not cancel in this ratio, these zeros become the extra branch points
of 8(s,t) in t.

The above analyticity of &(s,t) implies that 8(s,t) satisfies the

once-subtracted dispersion relation

oo o0
_ _ t p(s,t'H)dt' t p(s,u')du’
8(s,t) = 8(s,t=0) +ﬂf e (t-t) +"[ t (ut-u) ™
%o Yo
where t' = a-s-u' in the last integral and the imaginary parts are given

by
o(s,t) = (;—i-) [s(s,t+ie) - 8(s,t-ie)]

1

21)?

[4n Q(s+ie,t+i€) - 4n Q(s+ie,t-ie) (8)

- 4n Q(s-ie,t+ie) + £n Q(s-ie,t-ie)],
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etc. By definition, the p's are real and non-zero only when s > So and
t>t,, etc. In fact, these inequalities give the exact domains in which
the p's are non-zero. We remark that the double spectral functions in
the Mandelstam representation .are non-zero only In regions which are.
smaller than those defined by the above inequalities.

There is always ‘a finite gap between two cuts in (7). The entire
physical region in.t appears on this gap. Therefore, the phase §(s,t)
remains real and finite in the physical region, even if the phase may
diverge logarithmically at infinity. However, as s = o, the u-cut goes
away to -eo in the t-plane and the physical region in t also extends to
~o, |f the phase 6(s,t) remains finite in the physical region even in

the limit of s = o, then §(s=w,t) satisfies the unsubtracted dispersion

relation
e
- = — b 1 p(s=e,t')dt’
8(s=w,t) = 8(s=w,t=e) + [ e (9
%o
where §(s=wo,t=w) is a finite, real numbera, it is shown in Section 3

that the phase must in fact be finite in the physical region in the

limit of infinite energy in order for Q(s,t,u) in (4) to be bounded by

finite polynomials at infinity. |In other words, the boundedness of the
physical phase in the limit of infinite energy is a consequence of all

the conditions listed in Section .I.

We add a few remarks. First, we do not continue 8§(s,t) with
respect to s. Throughout this paper, the first variable in the phase
8§(s,t) is real and s ;;so, though the second variable is allowed to be
complex. . Secondly, &§(s,t=0) .in (7) is the phase of the forward ampli-
‘tude. If there is an optical theorem, the s-dependence of &6(s,t=0) is

fairly simples. Thirdly, if one uses u, instead of t, as the momentum-



transfer variable, the s-phase Is written as §(s,u). Since §(s,t) and
8§(s,u) are the same phase expressed in terms of different variables,
6(s,u) satisfies the dispersion relation of the form of (7) with the same
imaginary parts as those in (7). However, §(s=»,t) and 8§(s=e,u) are
different functions. For example, u is - o in 8§(s=w,t), while u is finite
in 8§(s=w,u)., Also, §(s=w,u) has only the u-cut, while 8(s=w,t) has only
the t-cut.

The t-phase, 8(t,s) or §(t,u), and the u-phase, §(u,s) or §(u,t),
are defined exactly the same way In the t- and u-physical regions, re-
spectively. The corresponding imaginary parts are p(t,s), p(t,u) and
P(u,s), p(u,t), respectively. All the previous analyses and remarks
apply to these &8's and p's. Among six p's thus defined, only three are
independent. This is because the definition (8) implies that

pP(s,t) = p(t,s) , P(t,u) = p(u,t),
(10)
p(u,s) = p(s,u),

where we mean that these pairs of functions are the same functions of
respective variables, but do not mean that they are symmetric under the
interchanges of respective variables. The three 8's are, however, inde-
pendent of each other. For example, 6(s,t) and §(t,s) are entirely dif-
ferent functions6.

We now discuss symmetry which 8's and p's may have when A(s,t,u)

has crossing symmetry. For the sake of definiteness, we assume that
A(s,t,u) = + A(u,t,s), an

where we mean that A(s,t,u) at most changes sign under the interchange

of s and u. One then derives directly from the definition (6) that



§(s,t) §(u,t) for all t, when s = u ;;so = Ugs

(12)
§(t,s)

$(t,u) for all s = u, when t ;;to.

These relatlons imply that, when there is crossing symmetry between the
s- and u-channels, the s-_and u-phases are the same and the t-phase is
symmetric in the momentum-transfer plane. There is, however, no crossing
symmetry in §(s,u) with respect to the Interchange of s and u even when
s ;).so and u.;;uo. One can derive from (6) a relation §(s,u) = §(u=s,s=u)
when s >3 and u > g which is 6=(s.u) = &m(s.u) according to the
notation given in reference 6. This means simply that the s~ and u-phases
are the same and must not be confused with crossing symmetry in 6(s,u)
under the interchange of s and u.

Concerning the p's, one obtains the following relations directly

from the definition (8),

P(s,t) = p(u,t) for all t ;;to, when s = u ;;so = Uy
13)

P(s,u) is symmetric under the s,u-interchange.

3. DOUBLE PHASE REPRESENTATION

- We derive in this section the explicit expression for Q(s,t,u) in
terms of the phase defined in the previous section. The definition (4)
implies that Q(s,t,u) is analytic everywhere except for the three cuts
of A(s,t,u), has no zeros or poles except at infinity, and is bounded by
finite polynomials at infinity. Thus 4n Q(s,t,u) is also analytic every-
where exgept for these three cuts and is bounded by logarithmic functions
at infinity. Therefore, one can write down a double dispersion relation

for 4n Q(s,t,u), in which subtraction is known and spectral functions
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are either 8's .in the single integrals because of (6) or p's in the double
integrals because of (8). This double dispersion relation represents the
explicit expression for Q(s,t,u). in terms of the phase of A(s,t,u). |If

one wr‘Ites,down7 the double dispersion relation for £4n Q(s,t,u)/su, one

obtains

Q(S’t,u) = exp %[ J‘ 6(5.,U=Q)d‘| +J\ (5(t';U=0)dt' ]
%o

st(s'-s) a-t')(t'-t)
50

u 8(u',s=0)du’ §(t',5=0)dt' -
+'f_'l:[‘-r +‘r ]
u ty-

u' (u'-u) @@=t (t' -ty ;
0
(14)
su. | p(s',t')ds'dt’ p(u',t!)du'dt’
+’ﬂ2 [ jj stul(s'-s)(t'-t) + 'II stu' (u'-u) (t'-t)
Soto Yoto

. p(s',u')ds'du’
+ If stul(st-s)(u'-u) ]
oY

which Is normalized as Q(s=u=0) = 1. The factor su is necessary to make

-the contribution from infinity vanish. |[f one uses st or tu instead of

su, one obtains the same as (14) except for the interchange of corresponding

variables. All these expressions are equivalent.

The expression (14) can be .expressed in terms of 5(s;t) and §(u,t) as

Q(s,t,u) = exp

(15)

(t-a) §(u',t)dut . (t-a) §(t',s=0)dt' (t-a) §(u',s=0)du'
eXP J WUt Ht-a) T oW ) (t'-a)(t'-ty mw ) u'(u'+t-a)

Yo to Yo
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This expression corresponds to the single phase representation (1) in
which t is regarded as a parameter. |n order to derive (15) from (l14),
one writes down the dispersion relations for 8(s,t)/u and 8(u,t)/s of
the type of (7) and then expresses the double integrals in (14) In terms
of the single Integrals Involving 8(s,t) and &(u,t). One also needs the
crossing relations (12) to obtain (15).

The .expression (l4) can also be expressed In terms of §(s,u) and

5(t’u) as
©
] ' '
Q(S’t’u) = exp 5 —Ls_l_li.l-m_ gt z';‘?dt X
W (s'-s) tT(t'-t)
*0 to

(16)

(u-a) ‘I 6(t',u)dt' u f 6(u',s=0)du _u I §(t',s=0)dt’
]
0

exp th(t! +u-a) ul(ul-u) (t*-a) (t'-a+u)

to Yo

This expression Is the single phase representation .in which u is regarded
as a parameter. One derives (16) from (14) using only the dispersion
relations for 8(s,u)/u and §(t,u)/su. No crossing relations are neces-
sary.

The single phase representation in which s Is regarded as a para-
meter is the same as (16) with s and u interchanged. The expression (16)
is different from (15) with t and u interchanged, only by a constant factor.
This difference Is merely due to the fact that the expression (15) assumes
a normalization Q(s=u=0) = | which Is not invariant under the interchange
of t and u.

The expressions (14), (15), and (16) all satisfy the requirement
that Q(s,t,u) is analytic except for the three cuts of A(s,t,u) and has

no zeros or poles except at iInfinity. Besides, these expressions are
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% Kk %
real in the sense that-Q*(s,t,u) = Q(s ,t ,u ) and also symmetric under
the Interchange of s and u because of (12) and (13) when there is crossing

symmetry (11). Therefore, the polynomial P](s,t,u).in (4) must be real

.in the same sense and crossing symmetry (11) of A(s,t,u) must be taken

over by Pl(s,t,u)/Pz(s,t,u),ln ).

However, it is not immedlately clear If these expressions (l4),
(15), and (16) are bounded by finite polynomials at infinity. One can
show that this is actually the case when there is crossing symmetry (11)
and the phases &§(s,t), etc. remain finite in the physical regions even
In the limit of iInfinite energy. The last condition Implies essentially
that

§(s=w,t), 6($=°’u)’ §(t=e,s5), §(t=e,u),
Qa7

8 (u=w,s), and §(u=w,t) are all finite.

In order to see that the condition (17) is necessary, one examines
(15) in the limit when s = » and t remains finite. The s-dependent inte-
grals in (15) are split as

-4 -]

° j 8(s!,t)-8(s==, t) dS', (]8)
0

s 8(s',t)ds!' §(s=m,t) 0
T f = £n + s (s7-5)

S
s'(s'~s) i 555
' S

°0
etc., where the second terms diverge as s —+ w only less strongly than
logarlthmlcallys, Therefore, it Is necessary for §(s=®,t) and 8§(u=w,t)
to be finlte in order for (15) to be bounded In the above senseg. One
obtains other conditlons in (17) similarly from (16) and its s,u-inter-

changed.
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To see that crossing symmetry (11) is necessary, one recalls that
Q‘; (15) does not follow from (14) wlthout the crossing relations (12).
Without (12), one must replace the exponent of the second exponentlal

factor in (15) by

5
2
0

S

8(s',t)ds’ . s G(Ei;d=6jéEi _ s r 8(s',u=0)ds"
Hastn t 7 | eharo -7 J daeh s 09
t S
0

0
+ s,u-Interchanged.

Evidently these terms diverge linearly in s when s = ®.and t remalns fin-
ite. This means that, without crossing symmetry (11), the expression
(14) is no longer bounded by finite polynomials when s = ® and t remalins
finite.

it is shown in Appendix that crossing symmetry (l1) and the con-
dition (17) are in fact sufficient for the expression (14) to be bounded
by finite polynomials.at Infinity.: |

When crossing symmetry is, for example, A(s,t,u5 = + A(t,s,u) in-
stead of (11), one writes down the double dispersion relation for
Zn Q(s,t,u)/st instead of 4n Q(s,t,u)/su, to obtain the double phase
representation. Then all the preceding arguments hold without any change.
In particular, the expressions (15) and (16) are correct regardless of
which channels crossing symmetry of A(s,t,u) applies to.

As a summary, the conditions (i), (il), (iil), and (iv) listed in
Section 1 become consistent with each other and one expects the double
phase representations (14), (15), (l6), etc., as long as there is crossing
symmetry of the type of (11) with respect to the interchange of some

‘i} pair of variables and also the phase remains finite in the physical regions
even In the limit of infinite energy. The last condition can also be

stated as (41) in Appendix.
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The polynomials P](s,t,u) and Pz(s,t,u) in (4) can be made explicit
when information is available concerning the zeros and poles of A(s,t,u).
As the simplest, yet very important example, we discuss here the poly=-
nomials of the m° + m° = n° 4+ n° amplitude. According to the Mandelstam
.assumption, this amplitude has no poles and is symmetric.with respect to
the interchange of all pairs of variables. Thus, Pz(s,t,u) can be chosen
as unity and P](s,t,u) becomes fully symmetric and real in the sense of
(ii) in Section 1. |t was,found‘fhat this .amplitude has, in the s-plane
+ 2a, <0,

with t = 0, either two zeros lf-aO + 2a 2;0 or no zero if a

2 2

0 and a, are the S-wave scattering lengths in the channels with

the total .isospin 0 and 2, respectively. First, the above full symmetry

0

where .a

requires that P](s,t,u) is a linear combination of s" + t" + u" with

n=20,2,3,4,..... Then the above numbers of zeros in the s-plane with
t = 0 imply that n can at most be 0, 2, and 3. One thus finds that
_ _ 2 2 2
P](s,t,u) = ¢4 if ag + 2a2 < 0 and P](s,t,u) =cqo t cz(s + t° +.u”) +
3 3 3 '
c3(s +t7 +u) if a + 2a2;; 0, where the constants Co» Co> and cy are

all real because of the reality of P](s,t,u).

4., ASYMPTOTIC BEHAVIOR

It was shown] that the phase representation (1) has a simple asymp-
totic behavior when s = o, |n particular, if the phase §(s,t) satisfies

the condition that
! oo

f 8(s,t) ’Sé(s-=°’t) ds converges, (20)

the second term in (18) no longer diverges as s = ». Therefore, if the
u-phase §(u,t) also satisfies the condition (20), the expression (15) of

Q(s,t,u) has the asymptotic form



<

8 (s=w, t $u=w, t)
h ™
50 Yo
Qs t0) —>eep() | 2 e @)
S = oo

One can show that B(t) In (21) is real and analytic In t every-
where except for the t-cut. For this, one simply recalls that Q(s,t,u)
is analytic in t everywhere except for the t-cut in the limit of s = =

and 8(s=»,t) and 8§(u==,t) are also analytic in t everywhere except for

the t-cut. |In fact, one can derive from (15) the following expression
t 6 s(tHdt!
where
o
- - ] e(s',t)-p(s=w,t)
8(t) = 6(t,s=0) - = [ = ds'
%0
(23)
1 P(u',t)-P(u=>,t) Vgl _!_ | i i
- = I = du' + = I [ v ] p(ut,t)du’.
Yo Yo
To derive (22) and (23), one splits the integral in (18) further as
® s
s J' s(slst)dsl = 6(S=w,£l n 0
n st(s'-s) o 5075
0 ..
(24)
(-] - -}
1 ' - =
f 8(s',t)- 6(5-«» t) 4ot - L f 5(s ,t)'a(s ©,t) 4o ,
sl-s s s
%0 >0



where the second term approaches zero as s = ® when the condition (20)

is satisfiedl. One thus replaces the integrals in the first exponential
factor in (15) by the corresponding third term in (24). One then rewrites
‘all the integrals in the exponent of the resulting expression of (15),
using the dispersion relations for 8(s,t) and 8(u,t) of the type of (7).
One needs no crossing relations.

For the sake of completeness, we give a complete expression of

Q(S’t,u)’

§(s=w,t §(u==, t

] [ -2 7 , (25)

50
SO'S

Q(s,t,u) = QB(t)y(s,t) [

which is exact as. long as the s- and u-phases satisfy the condition (20).

In (25), B(t) is given by (22) and (23), and y(s,t) by

! - =00 ! - =
v(s,t) = exp % [ 6(s ,t)s§f: 28D 4o +‘% [ 6 (u ’t)u?fﬁ 8 gy

S0 UO

(26)

This ¥(s,t) is due to the second term in (24) and, therefore, approaches
unity as s = = when the s- and u-phases satisfy the condition (20). A
real, positive constant Q in (25) is due to the normalization B(0) = 1

and given by

-4 w

) = - = = ' = - = =
exp - Tll’ Jr 6(5 »t—ogls(s w,t Ol dS' - TlT ‘J‘ 6&!;41 O)u?(u mtt gl du'

to Yo

=)
It}

(27)

Ao

+——
t'(t'-a) e s'tlu! s'tiu’

[} =} (- -]
§(t',s=0)dt'  a pu’,t')du'dt' a p(s',u')ds'du’
JULaON o [ st e g stelu]
tO uoto sou0

One obtains (27) when one derives (22) and (23).
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One can identify &6(t) of (23) by rewriting the dispersion relation

for 8(t,s)/s as

_ s - u
B(t,s) = 5(t,s=0) + BLEmml) 4y O, pQummE) O

0% oY

(28)

s p(s',t)-p(s==,t) _, . U PQut,t)-pu==,t) .
o I s'(s'-s) ds’ + j u'(u'-u) du
S0 u

0

<]

] 1 1

+E I[F R I pqu',t) du' ,
Yo

where the dispersion integrals are split into two terms exactly the same
way as in (18). By comparing (23) with (28), one sees that &(t) is the
finite part of the t-phase 6(t,s) at infinity in its momentum-transfer
plane. In fact, if one assumes that the individual integrals in (23)
are convergent, 6(t) can be identified as
0 p(u==,t) on !

0
1 (@9
O-S m uO"u Y

s¢t) = tim [ 6(t,s) - P(Szf,t)‘zn -

s = ®

So far one has rewritten only the expression (15). However, since
no crossing relations are needed in all the preceding derivations, the

expression (16) can also be written as

8 (s=o,u ¢ §(t==,u)
] " =21 ", @

' s

Qs,t,0) = Q'BIY(s,u) [ —=
0

where B(u) and vy(s,u) are the same as (22), (23) and (26), respectively,

except for the interchange of t and u. A real, positive constant Q' in
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(30) is not quite the t,u-interchanged of (27), simply because (16) is
not quite the t,u-interchanged of (15) due to the normalization
Q(s=u=0) = 1. assumed in (15). Similarly one obtains the s,u-
interchanged of (30).
We summarize the asymptotic forms of the amplitude A(s,t,u). In
the forward direction where t is finite, one obtains from (21) that

()5 rom
Als,tu) —IexB() &) e 0T,

S = 0
31
a(t) = n - [8(s=w,t)+5(u=m, t)1/m ,

where an integer n is the difference between the total numbers of zeros
and poles of A(s,t,u) in the s-plane when t is fixed. In the backward

direction where u is finite, one obtains from (30) that

o(u) . _
AGs,t,u) —DexB) &) el T,
0

S = o
(32)
a(u) =m - [§(s=w,u)+6(t=w,u)]/m ,

where an integer m is the difference between the total numbers of zeros

and poles of A(s,t,u) in the s-plane when u is fixed. The results (31)

and (32) are correct as long as the phase satisfy the condition (20).

The o's in (31) and (32) are both real and analytic except for a single
cut which corresponds to the respective variable. The B's in (31) and
(32) are the same as the B's in (25) and (30), respectively, except for
real, finite polynomials in t and u, respectively. These polynomials are
the polynomials which remain in the asymptotic forms of P](s,t,u)/Pz(s,t,u)
in (4) when s = = with t and u fixed, respectively. Thus the B's in (31)
and (32) are both real and analytic except for a finite number of poles

and a single cut which corresponds to the respective variable. In the
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case of the 1° 4+ m° o7 + n° amplitude discussed at the end of the pre-
vious section, the B's in (31) and (32) are exactly the same as those
in (25) and (30), respectively. The asymptotic forms (31) and (32) are

usually called the Regge behavior.
5. CASE OF NO-SHRINKAGE

If a(t) in (31) does not vary with t in some region near t = 0,
the shape of the forward peak of high-energy elastic scattering depends
only on t, and vice versa. One usually describes this situation by
stating that the forward peak does not shrinkz. Because of the analy-
ticity of o(t), no-shrinkage in this sense means that «(t) is constant
not only in the above region of t but everywhere in the t-plane. We
discuss in this section some of the consequences of the requirement that
o(t) is constant.

| According to (31), o(t) consists of two phases. However, it is
extremely unlikely for these phases to cancel exactly for all t =ty
because these phases become the same if there is crossing symmetry (11)
and are otherwise independent of each other. Thus, no-shrinkage means
that the two phases in (31) are individually constant in t. The disper-

sion relation (9) then Implies that
p(s=°°,t) = p(um’t) =0 (33)

for all t >t Conversely, there is no-shrinkage if (33) is the case.

- 0’
One can show that the condition (33) implies that the t-phase does
not diverge logarithmically at infinity in its momentum-transfer plane,
and vice versa., [If (33) is the case, the expression (28) of the dispersion

relation for 6(t,s) indicates that the t-phase no longer diverges logarith-

mically at infinity. Conversely, if the t-phase is required to have no
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logarithmic divergence at infinity, the expression (28) implies either
QI; (33) or P(s=2,t) = - P(u=m,t) for all t ;;to. The latter possibility
is, however, extremely unlikely because these P's are the same if there
Is crossing symmetry (11) and are otherwise independent of each other.
One thus sees that the case of no-shrinkage corresponds to the case when
the phase of the crossed channel becomes the least divergent at infinity
in its momentum-transfer plane.
The remaining divergence in the t-phase at infinity is due to
the fourth and fifth terms in (28). These do not diverge if the integrals
in (23) converge individually. This last condition is not only suffi=
ciently weak in itself, but is very similar to the condition (20) which
is assumed already in the power behavior (31). Therefore, it is likely
that the t-phase is bounded everywhere in its momentum-transfer plane in
the case of no-shrinkage. For the sake of simplicity, we assume for the
rest of this section that the integrals in (23) converge individually
and therefore the t-phase is bounded everywhere in its momentum-transfer

plane.

It then follows from (29) that
§(t) = 6(t,5=°°)» (34)

meaning that §(t) is the real, finite limit of the t-phase at infinity
in its momentum-transfer plane. The asymptotic form (31) can be written

in this special case as

A(s,t,u) 54_‘—>mo<ias B(t) , (35)

where B(t) is given aside from real, finite polynomials by

-



v

2

B(t) = expd £ [ Slpmmdt. o (36)

t

0

In (35), one has required that the total cross section approaches as
s = o a finite, non-zero limit and that the forward amplitude becomes
pure imaginary in the limit of s = .

According to (35), the shape of the forward peak of high-energy
elastic scattering is determined by B(t). The expression (36) implies
that this shape is of a pure exponential form of t in a region near t = 0,
but approaches a power from of t as momentum-transfer increases. One
sees this most clearly if one applies the separation of the type of (18)

to the integral in (36), to rewrite (36) as

§(t=w, 5=
t m © .
JORNE 3 expdy [ AErprplimemalger b (37)
t
0

The exponential factor in (37) approaches a finite limit as t - o if
the t-phase also satisfies the condition (20). Moreover, §(t=w,s=x) in
(37) is equal to the forward phase §(t=w,s=0) if the t-phase in the limit
of infinite energy is also indepenaent of the momentum-transfer variable.
iIf one considers the np + ﬂP - ﬂp + ﬂP amplitude, one can obtain
more consequences of no-shrinkage because of high symmetry available in
this amplitude. The optical theorem also applies to this amplitude, which

implies] that §(s=e,t=0) = /2 if a, + 2a 3;0, and §(s=w,t=0) = - w/2

2
if a + 2a2 < 0.

0 + 2a2 < 0 is excluded.

For this, one notices that §(t=w,s=®) in (37) is equal to §(s=ew,t=0) =

One can then argue that the case of a

+ /2 because of symmetry. One also recalls that the asymptotic form
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(35) with B(t) glven by (36) is exact for this amplitude. Then
§(s=e,t=0) = - /2 implies that the asymptotic form (35) behaves as s

for small ,t' and as 'tll/z

s for large lt',. This behavior Is, however,

not permissible physically. Quite similarly, one can argue also that

the cubic term in Pl(s,t,u) in the case of a, + 2a2 >0 must be excluded.
Thus, the ™+ an® +n° amplitude must be written, in the

case of no-shrinkage, as
AGs,tu) = [eg + ey (s2+tPn)] QGs, 1), (38)

where cofand c, are real constants and Q(s,t,u) Is.glven by (14), (15)

2
and (16). In this case, one must have a; + 2a, > 0 and 6(s=»,t=0) = 7/2,

This sign of ag + 2a, is consistent with the prevailing evidences. We

2
remark that §(s=w,t=0) = /2 implies that the forward peak of high-energy
elastic scattering (proportional to Bz(t)) approaches a simple inverse

power behavior of t for large momentum-transfer. -This could easily be

checked experimentally.
6. SUMMARY AND DISCUSSION

We have shown in the previous sections how one finds and uses .the
double phase representation (4) for the elastic amplitude A(s,t,u). This
representation (4) is a generalization of the (single) phase representation
(1). Similarity Is obvious not only between the expressions (4) and (1)
but also the assumptions underlying these representations which are listed
in Section 1. [In both representations, the phase defined by (2) and (5)
must be finite in the physical regions even in the limit of infinite energy.
The double phase representation (4) requires, in addition, crossing sym-
metry and an extra assumption concerning the zeros of A(s,t,u). Therefore,
the double phase representation (4) is considerably more restrictive than

the single representation (1).
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This extra assumption concerning the zeros makes the phase of
A(s,t,u) analytic everywhere in the momentum-transfer plane except for
the branch cuts which belong to A(s,t,u). Without this assumption, not
only does the double phase representation become much more complicated
than (4), but most of the analysis done in this paper becomes Impossible
to carry out. This is because the analysis consists of using the dlis-
persion relation for the phase which otherwise involves unknown integrals
corresponding to the extra branch points. |[f there is no crossing sym-
metry in A(s,t,u), the double phase representation (4) with Q(s,t,u)
.given by (14) diverges exponentially at infinity In the s- or u-plane
with t fixed. Therefore, crossing symmetry is assumed throughout the
analysis of this paper. The analysis is valid as long as A(s,t,u) has
either even or odd crossing symmetry with respect to the interchange of
some pair of s, t, and u.

We add an additional remark in connection with the last statement.
The double phase representation (4).1s more restrictive than the Mandelstam
representation in the sense that the former requires the extra assumption
.concerning the zeros. However, as was Just stated, the double phase repre-
sentation (4) does not necessarily require the boundedness of A(s,t,u) by
finite polynomials at infinity. On the other hand, the Mandelstam repre-
sentation breaks down as soon as A{s,t,u) is no longer bounded by finite
polynomials at infinity. Therefore, the double phase representation (4)
is more general in this sense than the latter.

It was shown previously] that the phase representation is very
useful In discussing high-energy behavior of elastic scattering. In
fact, we have derived in this paper the asymptotic forms of the amplitude
which are simple power forms of energy, assuming the double phase repre-
sentation (4) and also that the phase approaches the limit at infinite

energy not too slowly. This last condition is expressed by (20). In
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the forward direction where t is finite, the amplitude .approaches the
expression (31). The expression (32) is the asymptotic form in the back-
ward direction where u is finite. In these asymptotic forms, the a's

and B's are both real and analytic everywhere except for a single cut
(elther the t- or the u-cut) and a finite number of poles which the B8's
may have. These a's and B's are all written in terms.of the phase .and
the zeros and poles of the amplitude. The significance of this deriva-
tion of high-energy behavior is thaf the power behavior in energy is
merely a consequence of the usual analyticity assumption.

We have discussed in particular the case when a(t) In (31) is
constant. This Is the case when the forward peak of high~energy elastic
scattering does not shrlnkz. We found that the case of no-shrinkage Is
the case when the phase in the crossed channel no longer diverges loga-
rithmically at infinity in the momentum-transfer plane. The very simple
analyticity of the phase in the momentum-transfer plane is already im-
plied by assuming the double phase representation (4) (see the second
paragraph of this section). Therefore, no-shrinkage.is actually the
simplest situation one can expect from the point of view of the behavior
of the phase of the amplitude in the momentum-transfer plane.

According to some of the previous works, however, no-shrinkage
Is not consistent with analyticity and unitarity. Gribov]0 pointed out
that .the asymptotic form (35) cannot ‘be consistent with the analyticity
of A(s,t,u) and the unitarity condition valid in the purely elastic region.
He assumes that there Is a purely elastic region in the t-physical region.
This is correct in the case of pion-pion scattering. He then continues
analytically this elastic unitarity condition with respect to the angular
variables involved in the unitarity condition. He obtains this way the

continued unitarity condition which depends essentially on the amplitude
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at infinite energy. He then shows that this continued unitarity condi-
tion contradicts with the asymptotic form (35). The major difficulty in
this proof lies in justifying the above continued unitarity condition.
This continuation consists necessarily of using the Cauchy contour theorem
with respect to the variable to be continued analytically. This means
that the validity of this continued unitarity condition depends upon the
divergence of the amplitude at Infinity. Assuming that the amplitude is
sufficiently well-behaved at infinity, one obtains the above continued
unitarity condition. However, in the case when the amplitude behaves
like (35), i.e. has a linear divergence in s at infinity, one cannot |
justify the above continued unitarity condition. Therefore, his proof
breaks down in the case of actual interest, though it is valid, for
example, in the case of usual potential scattering.

The conventional approach to high-energy scattering is to make use
of analyticity in the angular-momentum plane of the partial-wave amplitude
defined in the t-physical region. According to this approach, the asymp-
totic form (35) can most easily be realized by assuming a fixed pole in
the angular-momentum plane, assuming also that the Sommerfeld-Watson
transformation is valid. Recently, Oehmell has shown that the unitarity
condition in the purely elastic region is Incompatible with the existence
of such fixed poles in the analytically continuable partial-wave ampli-
tude. Because of the fact that Oehme works directly with the partial-
wave .amplitude, the continuation of the elastic unitarity condition is
exact in his case. Therefore, one may regard the above Oehme's proof as
a revision of the proof by Gribovloo However, it is assumed in this
Oehme's proof that the asymptotic form (35) of the full amplitude A(s,t,u)

actually implies a fixed pole of the partial-wave amplitude in the

angular-momentum plane. [n fact, one cannot find any complete argument
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which justifies the above assumption. Therefore, Oehme's proof does not
exclude the asymptotic form (35) either.

It is Interesting to consider In this connection what kind of
analyticity In the angular-momentum plane could possibly be the simplest
consistent with the asymptotic form (35) and the elastic unitarity con-
dition in the t-physical region. According to our preliminary work,
cessential singularity in the angular-momentum plane, for example, may be
the case, though this question needs further study.

We have not discussed in this paper the possible limitations due
to the unitarity condition valid in the purely elastic region which may
exist in some of the physical regions involved. This is primarily be-
cause we do not know how to use rigorously the unitarity condition for
the purpose of discussing high-energy behavior of elastic scattering.
Even if we do not foresee any serious limitation, we may be overlooking
some interesting consequences of the unitarity condition. The use of
the unitarity condition in general is likely to be more complicated in
the case of the phase representation than in the case of the usual dis-
persion relation. This may be one of the main disadvantages of the phase
representations (1) and (4).

In view of the fact that the case of no-shrinkage is of great
current interestz, we finally list below.a few of the predictions of our
phase representation .approach to high-energy elastic scattering. For the
sake of simplicity, we assume in the following predictions that all the
phases become constant with respect to momentum-transfer in the limit of
- infinite energy. This means that all the peaks in high-energy elastic

scattering do not shrink.
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(a) We expect both forward and backward peaks in any elastic

scattering, either purely elastic or some sort of exchange. This is

.because any amplitude which has analyticity and crossing symmetry of some

sort approaches the asymptotic form (31) in the forward direction and the
asymptotic form (32) in the backward direction. The heights of these
peaks depend upon the individual types of scattering. These peaks are
the peaks in the differential cross sections plotted against momentum-
transfer with energy fixed. The total scattering cross sections, either
forward or backward, may very well approach zero in the limit of infinite
energy. In fact, we expect only the forward cross section of purely
elastic scattering to remain .non-zero in the limit of infinite energy.

(b) The shape of these peaks is described by pure exponential
functions of t, In the forward direction, and of u, in the backward
direction, for small 't' and 'u', respectively. As ,t' and ,u ,become
large, the functions describing these peaks approach simple power forms
of t and u, respectively.

(c) |[f the spins and isospins of colliding particles become
irrelevant in the high-energy region, purely elastic scattering among
strongly interacting particles become similar to LI SR L
scattering in the limit of infinite energy. Then the forward peak of
purely elastic scattering is expected to behave as an inverse power of t
for large momentum-transfer.

We conclude our discussion by comparing our phase representation

-approach with the conventional approach to high~energy elastic scattering.

The convential approach consists of assuming that all these peaks In high-
energy elastic scattering are dominated by moving poles In the angular-
momentum plane, which are in turn associated with the known particles and

resonances observed in the lower energy region. From the point of view
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of our approach, these peaks In high-energy elastic scattering are merely
direct manifestations of analyticity. Especially no-shrinkage in some of
the peaks means simply that some of the phases assume the gentlest be-
havior in the momentum-transfer plane. Therefore, no-shrinkage is no
surprise but what one expects naturally from our phase representation

approach.

APPEND! X

We prove in this appendix that Q{s,t,u) given by (14) is bounded
at Infinity by finite polynomials if the condition (17) and the crossing
relations (12) and (13) are satisfied. For this, we prove that the
integrals in the exponent of (14) diverge at most logarithmically at

Infinity.

Because of (12), the single integrals in (14) can be combined as

[- <) [ <] o
S 8§(s',u=0)ds' u §(u',s=0)du'  t §(t',s=0)dt'
i I s'(s'-s) o j ut (ul-u) o I tf(t'-t)
S0 Yo to

39)

_a I §(t',s=0)dt’
™ t'(t'-a)

%

The integrals in (39) are of the type of the integral in (18). Therefore,
.according to the argument below (18), all the integrals in (39) diverge
-at most logarithmically when the condition (17) is satisfied.

The double integrals in (14) can be written with the help of (13)

in a symmetrical form
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st p(s',thds'dt' ~__ _ _ _ _
72 J\»r stt!(s'-s)(t'-t) +
Soto
o0
s_ 1 .1 +p(s', t')ds'dt’ .
t 2 [[ U s o 185005 (40)
Soto
a o(s',t')ds'dt!
+_2 H sTt'u! s
m t
00

where the dots stand for the terms which are the same as the preceding
one except for the interchanges of appropriate variables,.

Now, one observes that the condition (17) is equivalent to that

=] [}

J p(s=e,t)dt/t , [ p(s=e,u)du/u, 41)

etc. are all convergent,
which then imply that
p(s=@,u=m) = P(s=»,t=0) = P(u=»,t=x) = 0, 42)

One can then show that all the integrals in (40) diverge individually at
mot logarithmically. By applying the separation of the type of (18)

twice, the first integral in (40) is split as
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st p(s',t')ds'dtt p(s=x,t')dt'
fn? -U stt'(s'-s)(t'-t) ~ (4n ‘r t'(t'-t)
Soto
+ ‘ P(s', t=x)ds'
(In < ] S 43)

50

st p(s;it') p(s-m t')-p(s',t=x) ‘
+ ] IT stt!(st=-s)(tt-t) ds'dt

°0 %o

where one has used (42). Because of (41), all the integrals in (43)
diverge at most logarithmically. The same separation makes the second

integral .in (40) split as

s l_” 1 qp(s',t')ds'dt’
T‘T'E‘ ‘”‘ e ,] SI(SI_S)

oto

1 N
-5 [ o U Grr g et ]
o
SO to
(44)

= (ln — f p(s—m t')de!

to

s s',t! dt y p(s',t')-P(s=m, t*) .
o2 [ ol fﬂi——L—w A2t g
S
0

H

a-s'-t!

to

where one has used (41). Because of (41), the integrals in the last ex-

pression in (44) also diverge at most logarithmically.
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pm(s,t) and pI(s,u) = pI(u,s).

The derivation is similar to that given in the first paper cited in

reference 4.
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The argument is given in the first paper quoted in reference 1,

It may appear offhand that only 8(s=w,t) + §(u=m,t) need be finite.
However, if §(s==,t) is infinite, the separation in (18) is no longer
correct and we do not know how to prove the boundedness of (15).

This is why we assume that both 8§(s=x,t) and §(u=w,t) are finite.

V. N. Gribov, Nuclear Physics, 22, 249 (1961). |

R. Oehme, Phys. Rev. Letters, 9, 358 (1962).



