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INTRODUCTION

This paper is concerned with an evaluation of the performance of
four pseudo-random number generators in generating numbers from the two
parameter lognormal and gamma distributions. It is anticipated that one
or two of these generators will be used in studies of sampling strategies
for studying the movement of trace substances in food chains. The
lognormal and gamma distributions have been suggested (Eberhardt (1972))
as suitable frequency distributions to represent observations of the
concentration of substances such as radionuclides and DDT in samples of
biota.

The four generators used here are denoted by RANDUT, RND, RN2 and
RN4. Each of these is designed to generate independent uniformly distributed
pseudo-random numbers between 0 and 1. These numbers are transformed fo
lognormal or gamma variates using equations (3) and (4) given below.

It is perhaps impossible to come to a definitive solution to the
problem of choosing between RANDUT, RND, RN2 and RN4, since each can
generate millions of different sequences of pseudo-random numbers. For
a given generator, some of these sequences may have undesirable statistical
properties and others may not. (See Marsaglia (1968) for a discussion of
why certain random number generators may be unsuitable for some Monte
Carlo problems.)

The approach used here to evaluate these generators was to generate
just one sequence of pseudo-random U(0,1) numbers for each generator and

to apply various distributional and randomness tests to the same numbers



along this one sequence. This approach could be characterized as an
intensive investigation of the numbers in one part of one sequence rather
than an extensive evaluation of the generators by investigating many
different sequences or different sections of the same sequence. This
approach would appear to be adequate for our purposes since all that is
required for the study of sampling strategies (and most any other Monte
Carlo study) is a single sequence of pseudo-random U(0,1) numbers that is
known as far as possible to have desirable statistical properties plus
speed and long periodicity. The reader should not assume, however, that
the results obtained here using just a part of one sequence necessarily
apply to other sequences for that generator.

Each generator was evaluated for randomness by (i) computing the
chi-square goodness-of-fit test on generated U(0,1) numbers falling in
100 equal intervals of size .01 between 0 and 1, and (ii) by performing
the lag product test (Naylor, Balintfy, Burdick, and Chu (1968)) for lags
k between 1 and 25 (a test for correlation between numbers in the sequence
which are k units apart). In addition, each generator was used in
conjunction with equations (1) through (4) below to generate Tog-normal
and gamma variates. The goodness of fit of these generated distributions
was evaluated by chi-square goodness-of-fit tests as well as other tests
of significance based on normal theory described in sections 5, 6 and 7.
In addition, some information is obtained on the speed and period of each

generator. A1l computations were performed on the UNIVAC 1108 computer.



On the whole, the above tests point to the conclusion that RN4 and
RN2 are about equal in performance followed by RND and RANDUT in that
order. RANDU1 seems to be particularly susceptible to serial correlation
between members of the generated sequence. This in turn appears to
result in relatively poor performance of RANDU1 in generating gamma
variates which require summing several U(0,1) numbers. RANDU1 also
appears to be the slowest of the 4 generators tested. RND is apparently
only slightly less accurate than RN2 and RN4, and has the advantage that
it is available on the teletype terminal. More detailed conclusions and

discussions are given in section 8.
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RANDOM WUMBER GENERATORS

RANDUT is a slightly modified version of RANDU which is a MATH-PACK
library subprogram on the UNIVAC 1108 computer described in the Computer
Science Corporation (CSC) publication number UP-7542. RANDU1 and RANDU
use the CSC subprogram NRAND (also described in UP-7542) which generates

27)

integers on the interval (0, 2 by a congruence method (Abramowitz and

Stegun (1967)). The CALL statement for RANDU is
CALL RANDU (X,N)

where X is the starting value of the generator and N the number of U(0,1)
pseudo-random numbers to be generated. RANDU was modified and renamed
RANDU1 for two reasons:

(i) it was decided to always use N = 1 so that only one U(0,1)
random number would be generated for each CALL statement.

(i1) It was anticipated that the evaluation of RANDU1 would require
more than one computer execution (run) making it advantageous
to know the arguments of NRAND at the end of each run so the
sequence could be continued in the next computer run with no
possibility of overlap. The CALL statement of RANDU1 is

CALL RANDUT (X,1,d,K)

where X is the generated U(0,1) number and J and K are the
arguments of NRAND which are printed out at the end of each

computer run, The second argument 1 merely indicates that



only one X is generated for each CALL RANDU1 statement. Program
listings of RANDU, RANDU1 and NRAND are given in the appendix.
The values of J and K used here are 4048130 and 2207286,
respectively, which were chosen at random. These values identify
the starting point of the sequence of U(0,1) numbers evaluated
here.

In the CSC publication UP-7542, four sets of 500 uniform numbers were
generated by RANDU (each set using a different starting number X) and the
chi-square goodness-of-fit test applied to the data. MNone of the tests were
significant, but it was concluded that the chi-square statistic obtained
depends heavily on the initial number X supplied to RANDU.

RN4 was originally written by Kronmal (1964) for the IBM 7094; Two
uniform random numbers U] and U2 are generated with one CALL statement,
each by a different mixed congruential generator. Box and Muller (1958) showed
that if Uy and U, are independent random variables from the U(0,1)

distribution then

- L
X] = (-2 In U]) cos (2n Uz) (1)
and
L .
X2 = (-2 1In U])2 sin (2n U2) (2)

are normally distributed with mean equal to zero and variance equal to one.
Kronmal tested several mixed congruential generators for generating

independent U(0,1) numbers. These generators were evaluated by using



equations (1) and (2) to produce a sequence of numbers which were statistically
tested for normality and randomness. The mixed congruential generators
ultimately chosen by Kronmal satisfied these tests on eight samples of
one million numbers each. The tests for randomness were (i) serial
correlations of lag 1 and lag 2, (ii) number of runs above and below
zero, and (iii) the random dispersion of extreme values (> + 3.891).
Normality was tested by computing means and variances of each sample,
comparing empirical and cumulative distributions, and generating the
distribution of the range and the order statistics for small samples.
The results indicated close agreement with normal theory.

RN4 was modified for use on the UNIVAC 1108 and is called by

CALL RN4 (Uu1, uwu2, U1, U2)

where UU1 and UU2 are two 12 digit octal starting values (arguments) for
the congruence generators and Ul and U2 are the generated uniform variates.
The numbers UUT = 233362477003 and UU2 = 212312312323 used by Kronmal were
also used in the present paper.

RN2 is similar to RN4 except that it uses only one mixed congruential

U(0,1) generator. It is called by
CALL RN2 (UU1, U1) ,

where UU1 and Ul are as defined above for RN4. The sequence of numbers
obtained using RN2 was begun with UU1 = 011060471625 which was chosen at

random. The last values of UUT and UU2 for a given run of RN4 and RN2



were printed out and used to continue the sequence on the next occasion.
Program 1istings of RN4 and RN2 are given in the appendix.

The generator RND is the function RND available on the Computer
Sciences Conversational Executive (CSCX) BASIC programming language which
is used when communication with the UNIVAC 1108 is by remote teletype
terminal. No information is readily available on the method of generation
used in RND or on its performance in generating U(0,1) numbers. A total
of 200,000 U(0,1) numbers were generated using RND and stored on file for
evaluation using the UNIVAC 1108 in Fortran V. Unfortunately, it is not
possible to reconstruct this sequence of 200,000 numbers since the
starting values are not supplied by the user and are consequently unknown.
Hence, future Monte Carlo studies using RND will not in all probability use

the sequence statistically evaluated in this paper.



METHODS

For the purposes of investigating sampling strategies using non-
linear models, we wish to generate lognormal and gamma variables with
expectation 1 and standard deviation C. Note that this implies the
coefficient of variation defined to be C.V. = (standard deviation/mean)
is also equal to C. Consider first the 2-parameter lognormal distribution

whose density function is given by

fysu,0) = exp [- —lg-(ln y - u)z]

oyv21

fory >0, ~» <y <=, ¢ >0. We have that
_ , 2
E(y) = exp(u + 5 ¢")

and

Var(y) = [exp(2u + o?)1[exp(c?) - 11

N

(Hahn and Shapiro (1967)). It follows that if u = - &5, then E(y) = 1

2

2
and Var(y) = exp(oz) - 1=2C", Furthermore, if x ~ N(0,1) then

y = exp(u + ox) (3)

is distributed lognormally with parameters u and o (Hahn and Shapiro
(1967), p. 242). Thus, lognormal variates with expectation 1 and

standard deviation C were generated by specifying a value for C, solving

the equation exp(oz) -1-= C2 for o, setting v = - 02/2, generating x



using one of the random number generators investigated here, and using
equation (3) to obtain y. Clearly the distribution of y depends entirely
on x for a given value of C. The lognormal distribution is studied in
some detail in the monograph by Aitchison and Brown (1969).

The density function of the 2-parameter gamma distribution is given
by

n n-1 -Ay

A
flysn,r) = Ty X e

fory >0, A > 0, n > 0, where I'(n) is the well known gamma function (Hahn

and Shapiro (1967)). It follows that

E(y) = n/x and Var(y) = n/>\2

which implies

¢ = 1/

Our conditions that E(y) = 1 and Var(y) = C are hence satisfied if we set

n = A. Furtherfore, if Ui ~ U(0,1), then the transformation

in n(1 - U) ()

yields a gamma variate y with parameters A and n (for integer n) (Hahn
and Shapiro (1967), p. 242). Consequently, gamma variates with expectation
1 and standard deviation C were generated by specifying a value for C,
solving C2 = 1/n for n, setting n = A, generating Ui using RANDUT, RND,

RN2 or RN4 and solving equation (4) for y.



-10-

When using RN4 a question arises concerning which, or in what
proportion the two mixed congruential number generators should be used
to supply n uniform numbers Ui required in equation (4). An examination
of this question is beyond the scope of this paper. OQOur results are
based on using n/2 from each generator if n is even. When n is odd

the extra uniform number required is taken from the first generator.
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TESTS FOR PERIODICITY

By the period of a pseudo-random number generator we mean the length
of the sequence of numbers which can be generated before the generator
begins repeating itself, i.e., generating the same sequence over again.
In general, generators are constructed so that their periods are as large

as possible, usually 227 or 236

,» while still retaining good statistical
properties and speed of generation. The period of the four generators
used here are believed to be at least 227»(approximate1y 134 million).
However, to insure that their periods are at least 2 or 3 million, the
generators were allowed to generate a sequence of pseudo-random U(0,1)
numbers for approximately 250 seconds of 1108 computer time. The starting
values for each generator were as indicated in the previous section, i.e.,
the same sequences were used to evaluate the period of RANDUT, RN2 and

RN4 as were used to test their statistical properties. The period of

RND was examined using the teletype terminal and hence used different
pseudo-random numbers than those stored on tape for statistical testing
purposes using the UNIVAC 1108.

RN2 and RN4 each generated between 6 and 6.5 million U(0,1) pseudo-
random numbers in the allotted time period, while RANDU1 generated between
3 and 3.5 million. RND generated 2,400,000 numbers in 137 seconds
indicating approximately 4,400,000 numbers would be generated in 250

seconds. None of the 4 generators began repeating during this time.
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This was determined for RANDU1, RN4 and RN2 by testing whether the
arguments of each newly generated U(0,1) number in the sequence were
equal to the arguments used for the first number in the sequence. (These
arguments are J and K for RANDUT, UU1 and UU2 for RN4, and UUT for RN2.)
In the case of RND, since the argument starting the generator is not
supplied by the used and is unknown, the periodicity was evaluated by
testing whether each newly generated U(0,1) number was equal to the first
such number generated in the sequence. The results of the above tests
indicate the periods of RANDUT, RND and both generators of RN4 are at
least 3,000,000 and that of RN2 at least 6,000,000.

The above generation times give only a rough guide to the speed of
the generators since the Tength of the computer programs varied slightly
between generators, and RND was used over a remote terminal using the
BASIC language. However, the above results suggest that RN2, RN4 and
RND may be somewhat faster than RANDUT.
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5. TESTS FOR RANDOMNESS

(a) Goodness-of-Fit Tests

Eight samples of pseudo-random U(0,1) numbers from each generator
were constructed and the chi-square test computed on each. Two samples
each of sizes 500,1000,5000 and 10000 were generated. In addition,
the chi-square test was computed on the pooled frequencies of each
of the 100 intervals over the eight samples (a total of 33,000
observations). The sum of the resulting eight chi-square values was
also obtained since under the hypothesis of randomness it is
distributed as a chi-square with (in this instance) 792 degrees of
freedom. These results are given in Table 1. We see that RANDUT
and RN4 had no significant chi-square values while RND and RN2 had
one and two significant results, respectively. Furthermore, the‘
pooled and sum chi-squares for RND were significant. Figure 1 is
a plot of the pooled frequencies obtained using RND. There are no
apparent patterns to the deviations from the expected frequency of
330 in each interval.

The computer time required to generate the eight samples of
pseudo-random numbers and to perform the above indicated chi-square
tests are also given in Table 1 for each generator except RND. The
computer programs yritten to calculate these chi-square tests are
nearly identical except for the specific CALL, READ and WRITE
statements which of necessity must be unique for each generator. Hence
the different times reported in Table 1 are believed to be due primarily

to differences in the speeds of the number generators. RN2 and RN4
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appear to be considerably faster than RANDU1, the same conclusion
reached above in our discussion of periodicity. The time required
for RND is not given since it is a function of opening and closing
files containing the U(0,1) numbers and thus cannot be compared with

the times shown for the other generators.

Lag Product Test

The Tag product test for a given lag k is a test of the
hypothesis of no correlation between numbers k positions apart in

a sequence of numbers of length N. The statistic is defined to be

1 N-k
R = PR (5)

where k is the length of the lag. If there is no correlation between
Ui and Ui+k for i = 1,2,. . ., N-k then Ck is approximately normally

distributed with v = .25 and standard deviation
o = (13N - 19k)/12(N-k) (6)

for large N (Naylor, et.al., (1968)).

The procedure used here to compare the 4 random number generators
was to generate 100 sequences of 200 U(0,1) pseudo-random numbers on
each generator and compute Ck for k = 1,2, . . ., 25 on each sequence.

For each value of k between 1 and 25, the mean Ek and standard
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deviation Sk of the 100 computed values of Ck were obtained and
compared with their expected values of .25 andvok (equation (6)),
respectively. A frequency distribution of 100 values of the

transformed variables

Z,.=— , 1=1,2, . . ., 100

was constructed for each k from 1 to 25 and compared with the expected
frequencies using a chi-square goodness-of-fit test assuming Zki
is N(0,1). The results are given in Table 2, where each chi-square

value has 7 degrees of freedom. The numbers in columns 1 and 2 under

each generator in Table 2 are deviations defined as

Cog = (T, - -25) x 10

and

Sid = (sk - ok) X 104

respectively (d stands for deviation). de and Skd should be
approximately zero‘if the generators are operating properly, i.e.,
generating U(0,1) numbers.

No significant chi-square values at the o = .05 Tevel were obtained
for RN2 and RN4 for any value of the lag k between 1 and 25. RND gave
one significant chi-square for k = 19, but RANDUT resulted in 9
significant chi-squares. These were for k equal to 5, 11, 13, 16, 19,

22, 23, 24 and 25. The sum of the 25 chi-squares obtained for RANDUI
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was also significant with 175 degrees of freedom. Thus, it appears
that the numbers generated here by RANDU1 are correlated. We also
note from Table 2 that the mean Ek of the computed Ck values for
most values of k between 1 and 25 overestimates slightly the expected
mean .25 (none were statistically significant using the t test with
99 d.f.). This is especially true of RND. Similarly, the standard
deviation S of the 100 values of Ck tends to underestimate the
expected value I particularly for RANDUT and RND although it also
occurs for RN2 and RN4. It is not known whether these deviations
from expectation are a manifestation of the significant chi-squares
in the case of RANDUl. It seems unlikely since these deviations

are for the most part quite small. Another possibility is that the
length of the sequence (200-k for lag k) is not sufficiently large for
the normal approximation of the distribution of Ck to be accurate.
For purposes of comparing the four generators, however, the adequacy
of the approximation is not of crucial importance since it is the

same for each generator.
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EVALUATION OF GENERATED LOGNORMAL VARIATES

The performance of RANDU1, RND, RN2 and RN4 in generating lognormal
variates was evaluated for values of the standard deviation C equal to
.2, .5 and .7. These distributions are plotted in Figure 2. We remind
the reader that since 02 =/1n [C2 + 1], C completely specifies the
parameters u and o of the lognormal distribution under our specification
that u = - 02/2. The restriction that u = - 02/2 insures that E(y) = I
and Var(y) = C2.

These generators were evaluated for each value of C by generating a
total of 50 samples of lognormal variates of size 500 each using equation
(3). The normal variate x required in equation (3) was obtained using
equations (1) and (2) (Box and Muller (1958)). Two chi-square
goodness-of-fit tests to the lognormal distribution were obtained
for each C by splitting the 50 samples into two equal groups of size 25
samples each, which gave a total of 12,500 numbers for each chi-square
test. The number of intervals for these tests were 44, 70 and 90 for
C=.2, .5and .7, respectively. More intervals were used for larger
values of C since the lognormal distribution becomes highly skewed to
the right as C increases (Figure 2). The length of the intervals in the
tails of the distribution is generally greater than in the middle of the
distribution to insure that the expected frequency in each cell in the

tail is at least 5 for sample sizes of 12,500.
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The chi-square results are given in Table 3. The only significant
departures from lognormality were for RANDUT and RN2 for C = .2. The
observed and expected frequencies for these cases are given in Figures
3 and 4, We note that the sum of the two chi-square values is significant
for RANDU1 but not for RN2.

In addition to these chi-square tests, each of the 50 samples of size
n = 500 were investigated for fit to the Tognormal distribution by
transforming each lognormal variate y to a normal variate x using the
transformation x = In y. If y is lognormal with parameters u and o, then
x is normal with these same parameters (Aitchison and Brown (1969)).
Thus, lognormality of the y's is implied if tests of significance on
the transformed variate x indicates no departure from normality.

Four tests of normality on the x's were computed for each of the

50 samples of size n = 500: (i) that the variate
o

is distributed N(0,1), where u and o are determined from C as described
. 2
above, (ii) that 5—2 (n-1) is distributed as a chi-square with n-1 d.f.,

o
where

n
2 1 & —\2
s = ﬁfT.g% (Xi - X) R

(iii) that the coefficient of skewness v; is equal to zero, and (iv) that

the coefficient of kurtosis Yo is equal to 3. (y] and Y, are defined in
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Hahn and Shapiro (1967), p. 45, 46). If the y's are lognormally
distributed with parameters . and ¢ so that Xs N(u, 02) then the
probability is .05 that each of these tests on each sample of size

500 will be statistically significant if the significance level of each

test is ¢ = .05. The estimate of v is computed as

37 = my/(m)) /2 (7)
and that of Yo by
- 2
Yo = my/my . (8)
where
n .
-1 _ Ty
mj == 1.=1(x1. X)

The proportion of statistically significant results (upper and
Tower o = .05 level tests) for tests (i) through (iv) are given in
Tables 4 and 5. Table 4 also gives the proportion of the 50 computed
values of Z and sz(n-l)/c2 (tests (i) and (ii) above) that fall in the
upper 50% of their respective null distributions. Of course, the
expected proportion in each tail is .05 and in the upper half of the
null distribution is .5 if the generators have indeed generated
sequences of independent U(0,1) pseudo-random numbers. The sum of the
two observed proportions (each based on 50 tests) for the two tails in
Tables 4 and 5 were tested for departure from expectation .10 using the

two-tailed binomial test at the exact significance level o = ,05833.
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Considering first the test (i) that x is significantly different from
u, we see from Table 4 that of the 4 generators only RND gave a proportion
of significant résu]ts different from the expected .10. However, each
generator gave at least one significantly different proportion when test
(ii) was applied to each of the 50 samples. RND produced too many signifi-
cant results for C = .5 and .7 as did RN2 for C = .2. Both RANDUT and RN4
produced too few significant results for C = .5. We have also tested
(Table 4) that the proportion in the upper half of the null distributions
of tests (i) and (ii) are significantly different from .5 using the 2-tailed
binomial test at significance level o = .03284. RND and RN4 each gave one
significant proportion (.34); the former for C = .2 and the latter for C = ,7.
In Table 5 the only significant proportions obtained for tests (iii) and
(iv) on Y and Y, were for RANDUT and RN4 each of which gave too few
significant results for the test on Yo when C = .5,

It is difficult indeed to choose among the four generators on the basis
of the information in Tables 3, 4 and 5. RN2 had the Teast number of
significant results in Tables 4 and 5, but one of its chi-square goodness-
of-fit tests in Table 3 was significant for C = .2. RND had the poorest
performance under tests (i) and (ii) (Table 4) but it had no significant
proportions in Table 5 or chi-square tests in Table 3. RANDUT had two
significant goodness-of-fit tests in Table 3, but its performance in
Tables 4 and 5 was good (one significant result in each table). Finally,

RN4 had no significant chi-square tests in Table 3) but had three significant
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results in Tables 4 and 5. Considering Tables 3, 4 and 5 as a whole, more
significant results (a total of six) were obtained for C = .2 than for any
other value of C. Only two were obtained for C = .7. Further interpre-

tations of the data are deferred until we examine the results of the next

section concerning the generation of gamma variates.
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EVALUATION OF GENERATED GAMMA VARIATES

The methods used to evaluate the effectiveness of RANDU1, RND, RN2
and RN4 in generating gamma variates were similar to those used for the
generation of lognormal variates. Equation (4) was used for values of
A=n =2, 4 and 25, i.e., for values of C = (1/71)]/2 = ,7071, .5 and .2,
respectively. These distributions are plotted in Figure 5. Fifty
samples of size 500 were generated using RANDU1, RN2 and RN4. Only 100,000
RND U(0,1) numbers were stored on file for purposes of generating gamma
variates. Thus, it was necessary in the case of RND to reduce the
number and size of the samples. Consequently, for C = .2, .5 and .7071
we generated 20 samples of size 100, 25 samples of size 250, and 25 samples
of size 500, respectively, which in 1light of equation (4) makes use‘of all
100,000 RND numbers stored on file. |

For each generator, the statistics x, s, ?1 and 92 were computed on
each sample and tests of significance obtained as described below. As
was done with the Tognormal distribution the first 25 samples of size
500 were pooled to provide a chi-square goodness-of-fit test based on
12,500 gamma variates for RANDUT, RN2 and RN4. A second goodness-of-fit
test was similarly obtained by pooling the second 25 samples of size
500. For RND, one goodness-of-fit test was computed using sample sizes
of 20 x 100 = 2000, 25 x 250 = 6250 and 25 x 500 = 12,000 for C = .2, .5
and .7071, respectively. Thus, the tests of significance using the
statistics x, s, ?1 and §2 are based on the same generated numbers as

the goodness-of-fit tests.
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From Table 6 we see that none of the goodness-of-fit tests were
significant for RND, RN2 and RN4. For RANDU1, however, the chi-square
tests were highly significant for C = .2 and .5. The deviations from
expectation and the contribution to total chi-square are given for each
interval of the two samples in Tables 7 and 8 for C = .2 and .5,
respectively. In Figures 6 and 7 the observed and expected frequencies
of sample 1 from Tables 7 and 8 are plotted.

From Table 7 we see that for both samples 1 and 2, the greatest
contribution to chi-square occurs in the upper tail (large values of y)
where there are more observations than expected, whereas the lower tail
is characterized by too few observations. Figure 6 illustrates, however,
that the deviations are also large in the central portion of the
distribution. Similar results were observed for RANDU1 when C = .5
(Table 8, Figure 7) except that the major contribution to chi-square
occurred in the lower tail (small values of y)}, where the expected
frequency substantially exceeded the observed. There were no large
deviations from expectation in the upper tail.

The cause of these large chi-square values obtained using RANDU1 is
unknown, but it might be explained by the large number of significant
results obtained for RANDU1 using the lag-product test for lags 1
through 25 (Table 2). We recall from equation (4) that a gamma variate
is obtained by finding the sum of a function of n independently

distributed uniform variates with mean 0 and variance 1, where n equals
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2, 4 and 25 for C = ,7071, .5 and .2, respectively. If the sequence of
uniform numbers generated by RANDU1 are not independent (as suggested by
the lag-product tests (Table 2)) then it seems reasonable to suppose that
as n becomes large, the pseudo-gamma variates generated may tend to
deviate from that expected. Our results suggest this hypothesis since
the chi-square values obtained for RANDUT (Table 6) increase rapidly as

n increases from 2 to 25. Whether or not the correlations detected by
the lag-product tests are related to the significant chi-squares in

Table 6 is unknown, but clearly this question should be investigated
further before the particular sequence of pseudo-random numbers generated
here by RANDUT is used in monte carlo studies where such correlations
could seriously bias the results.

As indicated above, tests using X, s, ?1 and ?2 were also made on the
individual samples of pseudo-gamma variates. Unlike the lognormal
distribution, there is apparently no transformation available which when
applied to a sample of gamma variates will allow the use of normal theory
to obtain tests of significance on the transformed sample. Linhart (1965)
gives a procedure for finding approximate confidence 1imits for the co-
efficient of variation of gamma distributions. Unfortunately, the data
obtained here were not in a form suitable for the use of his method. We
have, however, obtained tests of significance by appealing to the central
1imit theorem. Considering first the statistic x, i.e., the mean of a
sample of size n of pseudo-gamma variates. Applying the central 1imit

p and Var(x) = oz/n, then

theorem we have that if E(x)
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is approximately normally distributed with mean zero and variance 1 for
large n. Z could be used to test the composite hypothesis that u = 1

and ¢ = C, so that Z could be significantly large if either u or o were
substantially different from 1 or C, respectively. To avoid this ambiguity

of interpretation we have instead used the statistic

-5l g (9)

to test the hypothesis that E(x) = 1, its significance being determined
by reference to the t distribution with n-1 d.f. at the o = .10 Tevel.
Table 9 gives the proportion of such significant results for the four
generators when C = .2, .5 and .7071. Each proportion is based on

n'= 50 samples of size n = 500 each, i.e., each mean X is based on 500
observations, except for RND (see footnote to Table 9). Table 9 also
gives the pfoportion of positive Z' values, the expected proportion being

B if 2! s distribdted as a t Each proportion was tested for

n-1°
significant deviation from expectation using the binomial test described
above for the lognormal distribution. Significantly low proportions
were obtained for RN2 when C = .2 and RN4 for C = ,5 and .7071. We note
in particular that in contrast to the significant goodness-of-fit tests
in Table 6, no significant results were obtained for RANDU1 in Table 9.
Table 10 contains the results of tests made on X, s, §1 and §2 by
computing each of these statistics on each of the n' samples of size n,
finding the mean and standard deviation of each over the n' samples and
using the central 1imit theorem. If the generators are in fact generating
independent gamma variates then we expect that the means of X, S, ?1 and §2
should be approximately equal to 1, C, Y1 and Yos respectively, where for
the gamma distribution it is easily shown that Yy = 2C and Yy = 6C2 when
E(y) = 1 and Var(y) = C2 (Hahn and Shapiro, p. 124). Then illustrating

with X, we have that



-26-

is approximately distributed as a t with n' - 1 d.f. if n' is large,

where

Sx TAT T (i} - %)°

and — n'
= —
X—Fig]xi

Similarly the statistic used for testing that E(§]) = 1 is

We see from Table 10 that there were no significant results obtained
for RN2 or RN4, but that the differences 5} - 2C and 5? - 6C2 were highly
significant under RANDUT for C = .2 and .5. The difference sé - 6C2 was
also statistically significant under RND for C = .2, |

The results for RANDU1 in Table 10 are not completely unexpected in
light of the significant chi-square results in Table 6. The deviation
5} - 2C in Table 10 for C = .2 and .5 is positive which agrees with the
observed shift in distribution of the generated gamma values from the
expected distribution as illustrated in Figures 6 and 7. The interpretation
of the significance of sé - 602 is more difficult (for a discussion on the
interpretation of ?2, see Darlington (1970))>but its significance here
indicates in general that the shape of the distributions of the generated

observations is not that expected.
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CONCLUSIONS AND DISCUSSION

While making no claims that the present study is definitive, or that
no more tests need to be considered in order to be exhaustive in our
effort, our results do suggest certain conclusions concerning the choice
of a random number generatbr for generating lognormal and gamma variates.

A rather crude indication of the relative performance of RANDUT, RND,
RN2 and RN4 can be obtained by simply adding up the number of significant
tests obtained for each in Tables 1 through 10. These results are
tabulated in Table 11. We find that 20.9% of the tests performed on
RANDUT generated numbers (24 out of 115) were statistically significant.
These data for RND are 8.1% (9 out of 111), and for both RN2 and RN4 are
4.3% (5 out of 115). (These numbers are used here only as a general
guide since the tests are not in all cases independent. For example,
the sum and pooled chi-square tests in Table 1 are not independent
of the eight individual chi-square tests.) RANDU1 did poorest on the
lag-product tests for lack of serial correlation (Table 2), This may
be related to its poor performance in generating gamma distributions
(Tables 6, 7, 8, 10; Figures 6 and 7) for C = .2 and .5 since equation
(4), which is used to obtain gamma variates, involves summing uniform
numbers from 1 to 1 = 1/C2. It seems reasonable to suppose that as
X increases (C decreases) the variates produced using equation (4)

would tend to deviate from the expected gamma distribution. We note from
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Table 1, however, that RANDU1 evidently generates numbers which are
uniformly distributed over the interval (0,1) at least for sample sizes of
500 or greater. From Table 1 it also appears that RANDUT is the slowest
of the generators considered.

RND had 9 significant results, most of which (7) occurred in Tables 1
and 4. From Table 1 we see that RND had the largest pooled and "sum" chi-
squares of the four generators considered although the plot of the 33,000
pooled frequencies of RND in Figure 1 show no discernable pattern in the
deviations of the frequencies from expectation. From Table 4 we see that
the distribution of the 50 values of x from the generated lognormal variates
tends to have too few values in the tails for C = .2, For C = .5 and .7,

2

however, the tails of the distribution of s~ tend to be too large. We note

also that the number of significant values of ;1 and ;2 obtained for RND'
(Table 5) do not deviate from expectation. It should also be recalled that
the same generated numbers used to compute the statistics in Tables 4 and 5
were pooled to provide the goodness of fit tests to the lognormal distri-
bution in Table 3 for which no significant results were obtained for RND.

Of course the tests in Tables 4 and 5 are evaluating the generated lognormal
variates in relatively small batches of size 500, whereas the chi-square tests
péo1 these data into much larger sample sizes. Thus the local tests may be

picking out deviations from expectation which are masked by the chi-square

test.
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0Of the total of 5 significant tests obtained for RN2, three were
goodness -of-fit tests (2 from Table 1 and 1 from Table 3). None of the
Tag-product tests (Table 2) or the goodness of fit tests on the pseudo-
gamma variates were statistically significant. While RN4 had the same total
number of significant results as RN2, all are found in Table 4, 5 and 9,
i.e. no goodness-of-fit tesfs were significant.

On the basis of the above results the sequences generated using RND,
RN2 and RN4 appear to have somewhat better statistical properties than
that generated by RANDU1. Of these remaining three, RN4 is our first choice
since Kronmal (1964) has shown the particular sequence generated here to
have good statistical properties. However, our test results indicate that
the RN2 sequence has properties about equal to that of RN4, and RND has the
feature that it is available on the time-share terminal to the UNIVAC 1108
which could be an asset in some Monte Carlo work. We also remind the
reader that we have not investigated the most appropriate way of using or
combining the two sequences of uniform numbers generated by RN4 (using 2
mixed congruence generators) to obtain gamma variates.

As indicated previously, the present study should not be considered
definitive since (i) only a few of the many statistical tests available
were applied to the data, and (ii) only a relatively small segment of a
single sequence of pseudo-random numbers was examined for each generator.

At the very least, however, our results suggest some hypotheses concerning
the relative performance of the generators which should, perhaps, be investi-

gated more thoroughly.
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Table 1. Chi-Square Goodness-of-Fit TestsJr

For Randomness

SAMPLE
SIZE RANDU1 RND RN2 RN4
500 95.60 116.80 90.40 88.00
500 88.00 118.40 123.60* 74.40
1000 114.80 123.20 94.60 110.00
1000 94.20 95.60 113.40 90.80
5000 117.04 92.08 89.48 85.84
5000 85.80 100.44 126,00* 73.04
10000 110.52 155. 24 ** 98.92 114.78
10000 91.20 97.68 102.38 112.96
55666- 86.15 132,78* 86.98 89.23
SUM 797.16 899.44** 838.78 749.82
(792 d.f.)
Time 7.09 sec.,. —— 4.94 sec. 5.22 sec.

+ Each test has 99 degrees of freedom (d.f.)

* Significant at o .05

**  Significant at a = .0]



Table 2. Summary of Lag Product Test Results

RANDU1 RND RN2 RN4

LAc Ckd  Skd x* Chd  Skd x? Chd  Skd x* Chd  Skd :

1 3 -20 9.37 7 -16 2.67 1 10 3.76 5 -7  9.87
2 -2 15 12,72 5 18 4.09 14 5 6.28 12 210 4.59
3. -9 -3 13.27 16 -13 3.95 10 2 3.64 0 -18  9.89
4 -2 -9 6.53 13 -5 6.99 216 <16 2.57 229 -1 7.61
5 <11 -1 27.70%* 1 - 2.33 12 -1 7.35 1 -9  8mn
6 0 -4 5.53 23 -1 4.60 -7 412 2.4 14 -6 2.8
7 1 12 5.73 18 -19 8.33 3 -3 7.93 . 14 1 5.51
g8 -1 6 0.68 no - 1.96 33 -5  3.59 35 30 12.59
9 -2 -3 15.24 6 -6 6.95 5 -7  1.77 9 6  8.90
10 3 6 7.05 2 =22 7.34 7 27 8.33 g8 -9  11.00
1 5 3] 18.16% g -20  13.78 12 -1  3.39 6 -1 7.64
12 6 -4 3.42 13 -8 9.46 0  -15  9.34 -3 24 6.30
13 1 -40 16.52* 3 -8 7.82 8  -18  4.19 3 3 5.85
4 -1 -6 3.09 13 -12 8.78 8  -12 6.1 3 11 8.50
15 4 12 8.62 10 -19  10.53 9 -7 375 3 -2 10.37
16 2 -36 14.16% 9 +1 5.72 1 3 6.0 1 10 7.84
17 g -14 5.42 8 -8 7.89 12 -8 2.2 2 210 9.26
18 1 15 7.49 4 -6 7.22 -2 -25  6.80 6  -12  4.18
19 -4 -28 15.86* 18 -23  14.13* 9 -2  3.48 1M -1  4.38
20 8 6 4.11 13 214 10.93 4 -7 4.23 -4 3 2.54

_Ss-
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Table 3. Chi-Square Goodness-of-Fit Tests of

Pseudo-ngnorma] Numbers

RANDUT RND RN2 RN4

C=.2
Sample 1 (43 d.f.) 63.66* 57.46 31.33 32.85
Sample 2 (43 d.f.) ‘45.74 42.94 67.78%* 43.55
SUM (86 d.f.) 109.40%* 100.40 99.11 76.40

C=.5
Sample 1 (69 d.f.) 45.44 61.77T 59.72 53.14
Sample 2 (69 d.f.) 57.15 69.58 81.98 64.36
SUM (138 d.f.) 102.59 131.35 141.70 117.50

C=.7
Sample 1 (89 d.f.) 111.51 71.85 88.89 95.64
Sample 2 (89 d.f.) 92.98 96.44 81.47 85.48
SUM (178 d.f.) 204.49 168.29 170.36 181.12

TTwo additional chi-square tests were obtained for the RND generator
when C = .5; the chi-square values were 64.87 and 70.32 with 69 d.f.,
both non-significant at the a = .05 Tlevel.
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Table 4. Proportion of Significant Tests™ for X and s2

on Pseudo-Lognormal Varijates

RANDU1 ~ RND RN2 RN4

C=.2 X 52 X s2 X 52 X 52

uT .02 .04 .02 .06 14 .06 .06 .04

LT .08 .02 .00 .06 .00 .12 .04 .04
UT + LT .10 .06 .02 12 A4 .18 10 .08

P_5 .50 .38 .34*% .52 .62 .36 .60 .50
C=.5

ut .02 .02 .04 .08 .10 .08 .08 .02

LT .08 .00 .02 12 .06 .08 .00 .00
Ut + LT .10 .02* .06 . 20% .16 .16 .08 .02*

P.5 .52 .38 .40 .38 ' 40 .56 .40 .36
c=.7

uT .08 .06 .06 .08 .06 .04 .10 .04

LT .04 .06 .08 .10 .08 .06 .04 .02
UT + LT g2 .12 .14 .18* .14 .10 .14 .06

P.5 .56 .38 .52 .56 .54 .58 .34 .58
fur = upper tail; LT = Tower tail; based on o« = .05 in each tail
P.5 = proportion of the 50 sample values of x and 52 that were greater

than p and (499)-]02X2499 o« = .50° respectively, where x ~ N(u,oz)

if y is lognormal with parameters v and o~ .

*Indicates the proportion so marked is significantly different from
that expected using the binomial test; see text for explanation.
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Table 5. Proportion of Significant TestsJr for
Skewness (y])‘and Kurtosis (yz) on
Pseudo-Lognormal Variates
RANDUI RND RN2 RN4.
C=.2 1. "2 T2 .o oM o2
ut .04 .04 .02 .04 .04 .08 .00 .04
LT .02 .06 .02 .00 .04 .00 - .06 .00
UT + LT .06 .10 .04 .04 .08 .08 .06 .04
C=.5
ur .04 .02 .06 .06 .04 .06 .00 .00
LT .06 .00 .04 .04 .00 .06 .04 .02
T + LT .10 .02* 0 .10 .04 12 .04 .02*
c=.7
uT .02 .06 .06 .06 .06 .08 .06 .06
LT .08 .00 .04 .02 .02 .02 10 .04
UT + LT .10 .06 .10 .08 .08 .10 Jd6 .10
ot = upper tail; LT = lower tail; o = .05 in each tail

* Indicates the proportion of significant test results at the
a = .10 (two-tailed) level is significantly different
(¢ = .05833) from that expected from binomial theory.
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Table 6. Chi-Square Goodness-of-Fit Tests
of Pseudo-Gamma VariatesJr

RANDUT RND R2 RV
C=.2
Sample 1 (54 d.f.) 650.24** 59.18 66.85 54.14
Sample 2 (54 d.f.) 587.34** —_— 55.10 35.86
SUM (108 d.f.) 1237.58** —_— 121.95 90.00
C=.5
Sample 1 (49 d.f.) 348.19** 57.47 54.08 31.18
Sample 2 (49 d.f.) 344 . 42%* e 36.02 53.51
SUM (98 d.f.) 692.61%** —_— 90.10 84.69
C = .7071
Sample 1 (48 d.f.) 29.14 34.53 42.46 42.20
Sample 2 (48 d.f.) 48.68 — 49.62 50.13
SUM (96 d.f.) 77.82 —_— 92.08 92.33

T Each chi-square computed on n = 12,500 generated gamma variates
except for RND under C = .2 and .5 when n = 2000 and 6250,
respectively.



Table 7. Contributions of Each Interval to the Chi-Square Goodness-of-Fit
Tests to the Gamma Distribution Obtained Using RANDU1 for C = .2

0-E+ Contribution 0-E Contribution
Interval - To Chi-Square Interval To Chi-Square
Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2 Sample |1 Sample 2
0- .54 -39.2 -37.2 38.22 34.42 1.10 - 5.3 -53.3 0.07 6.86
.56 -14.5 -12.5 9.34 6.94 1.12 -66.8 -54.8 11.48 7.72
.58 -23.2 -15.2 16.72 7.18 1.14 3.0 -29.0 0.02 2.32
.60 -21.6 -19.6 10.46 8.61 1.16 -48.6 -26.6 7.06 2.1
.62 -18.2 -27.2 5.50 12.29 1.18 -66.0 -42.0 14.19 5.75
.64 -15.2 -19.2 2.92 4.65 1.20 -52.7 -63.7 9.93 14.51
.66 -44.6 -45.6 19.58 20.47 1.22 -47.1 -41.1 8.76 6.67
.68 -65.5 -43.5 33.65 14.84 1.24 -36.5 -60.5 5.86 16.09
.70 -23.6 -26.6 3.56 4,52 1.26 -47.2 -55.2 10.96 15.00
.72 -18.5 -37.5 1.82 7.46 1.28 -36.4 -34.4 7.34 6.56
.74 -30.7 - 3.7 4.23 0.06 1.30 -40.3 -46.3 10.20 13.46
.76 - 0.4 -16.4 0.001 1.04 1.32 -38.7 -44 .7 10.72 14.30
.78 46.3 29.3 7.27 2.91 1.34 -29.9 -16.9 7.33 2.34
.80 75.3 3.3 17.15 0.03 1.36 -16.8 -22.8 2.67 4.91
.82 45.6 48.6 5.69 6.46 1.38 -20.4 -26.4 4.55 7.63
.84 63.0 64.0 9.97 10.29 1.40 -16.5 - 7.5 3.47 0.72
.86 55.6 89.6 7.23 18.78 1.42 3.9 -11.1 .23 1.84
.88 105.0 64.0 24.33 9.04 1.44 - 2.0 -18.0 .07 5.68
.90 114.9 79.6 27.85 13.47 1.46 - 4.3 - 0.3 .38 0.002
.92 28.8 68.8 1.69 9.66 1.48 5.3 11.3 .69 3.14
.94 71.1 58.1 10.09 6.74 1.50 - 1.1 13.9 .04 5.67
.96 75.7 77.7 11.32 11.92 1.52 6.5 12.5 1.48 5.48
.98 47.7 58.7 4.49 6.81 1.54 15.3 4.3 9.88 0.78
1.00 23.8 69.8 1.13 9.72 1.58 11.1 4.1 3.43 0.47
1.02 6.7 37.7 0.09 2.89 1.62 10.8 18.8 4.82 14.60
1.04 3.9 9.9 0.03 0.21 1.68 25.0 29.0 28.4 38.23
1.06 - 6.1 36.9 0.08 2.97 >1.68 69.9 58.9 211.52 150.18
1.08 -16.0 10.0 0.58 0.23 Total x§4 650. 2 587.3

T 0-E = Observed-Expected frequencies based on 12,500 generated gamma variates in each sample.

_68_



Table 8. Contributions of Each Interval to the Chi-Square Goodness-of-Fit
Tests to the Gamma Distribution Obtained Using RANDU1 for C = .5

0-gt Contribution
Interval To Chi-Square
Sample 1 Sample 2 Sample T SampTe 2
0-.15 - 42.0 - 42.0 42.00 42.00
.2 - 57.5 - 57.5 46.24 46.24
.25 - 77.9 - 83.9 48.98 56.81
.3 - 84.8 - 96.8 38.91 50.70
.35 - 3.5 30.5 0.05 3.73
4 73.4 94.4 17.18 28.42
.45 112.3 125.3 33.75 42.01
.5 127.9 85.9 38.30 17.28
.55 91.9 32.9 17.89 2.29
.6 56.1 67.1 6.20 8.86
.65 39.0 12.0 2.85 0.27
.7 29.2 - 7.8 1.55 0.1
.75 16.2 37.2 0.47 2.48
.8 - 16.9 - 8.9 0.51 0.14
.85 - 48.0 - 7.0 4.17 0.09
.9 - 23.3 - 35.3 1.01 2.31
.95 - 25.6 - 13.6 1.26 0.35
1.0 - 39.2 - 34.2 3.07 2.34
1.05 - 53.8 10.2 6.08 0.22
1.1 - 40.4 - 24.4 3.63 1.32
1.15 - 41.8 - 38.8 4.14 3.57
1.2 - 26.5 - 51.5 1.78 6.74
1.25 - 34,0 - 4.0 3.17 0.04
1.3 19.0 14.0 1.07 0.58
1.35 2.3 - 6.7 0.02 0.14

\"

WM = et
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Interval

o oo o1 o1 o1 ;1011 g1 g1 G

0-E Contribution

To Chi-Square
Sample 1 Sample 2 Sample T Sample 2

-19.4 - 3.4 1.33 0.04
- 5.2 11.8 0.10 0.54
10.5 -12.5 0.47 0.67
-14.2 -16.2 0.95 1.24
- 4.4 15.6 0.10 1.27
24.9 0.9 3.60 0.00
1.7 -13.3 0.02 1.15
8.0 - 7.0 0.46 0.36
2.9 - 4. 0.07 0.14
1.4 8.4 0.02 0.64
13.7 - 7.3 1.93 0.55
13.8 - 1.2 2.21 0.02
2.8 4.8 0.10 0.30
- 4.3 - 6.3 0.27 0.59
- 0.2 - 4.2 0.00 0.30
9.9 1.9 1.88 0.07
- 2.7 - 4.7 0.16 0.48
6.9 0.9 1.19 0.02
- 0.1 17.9 0.00 9.13
- 9.7 4.3 3.06 0.60
1.2 - 1.8 0.05 0.12
- 0.3 0.7 0.00 0.02
8.7 7.7 3.73 2.92
8.4 16.4 0.70 2.67
- 6.6 - 6.6 1.52 1.52

Total xjg 348.2 344 .4

T 0-E = Observed-Expected

frequencies based on 12,500 generated

gamma variates in each sample.

_OV-
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Proportion of Statistically Significant Means

x of Generated Gamma

Variates, and Proportion of Means x Greater Than Zero (see text)

RANDUT  RND' RN2  RNA
C=.2
a=.10 - .06 0.00 02¢ 12
P = .50 42 .50 58 .42
C=.5
o= .10 .06 12 04 18
P = .50 46 .60 52 .50
C = .7071
o= .10 16 .04 a6 .02
P = .50 .48 44 .54 .54

+  Proportions based on 20 samples of size 100,

25 samples of size 250 and 25 samples of size
500 for C = .2, .5 and .7071, respectively.
A11 other proportions are based on 50 samples
each of size 500.

The proportion so marked is significantly
different from expected using the binomial
test at o = .05833.



Table 10. Significance Tests on the Mean Values of X, s, ;]
and ;2 Computed on Pseudo-Gamma Variates't

RANDUT RND? RNZ RN4

= .2 -7 s.e Tt 0-E'T s Tt - s.E TPt 0-eft st

X -8.65 11.0 - 0.79 8.8 28.0 0.31 3.35  10.1 0.33  -13.4  14.9 -0.90

. .26 1.4 1.1 12.0 28.0 0.43 7.35  18.0 0.4 2.5  17.2 o.

{1 5329.5  220.0 24.2%% - 681.2 483.6 -1.41 305.2  248.3 1.23 95.85 175.2 0.

Y, 12776.4  883.6 14.5%% -2393.0 910.5 -2.63**  1882.7  980.7 1.92  103.85 517.7 O.
C=.5

X 9.5  29.1 -.33 31.8  60.5 0,53 12.45  26.3 0.47 8.1 35.6 0.

s 3.45  31.1 1 42.95 54.1 0.79 9.91  27.4 0.36 4.76  28.6 0.

7 458.45 179.6  2.55%  175.9 447.8  0.39 423.3  306.1 1.38 18.9  347.1 0.

1 _2068.2  903.4  2.29%** -201.4 2360.4 -0.09 2994.2 1791.7 1.67  1042.0 2269.1 0.

= .707

X -10.15  46.8 - 0.22 6.1 58.4 0.28 1.3 50.8 -0.22  -26.35  33.1 -0.

s 71.04  52.1  1.36 9.1  75.0 0.12 0.478 42.6 0.0 -15.34  46.2 -0.

v 568.25 431.6  1.32 82.8 496.5 0.17 - 283.0  329.0 -0.8 - 201.9  338.2 -0.

7 3335.25 3348.1  1.00 762.7 3853.8 0.20  -2084.8 2272.4 -0.92 -1031.25 2462.4 -O0.

Results for RND are based on 20 samples of size 100, 25 samples of size 250, and 25 samples of size 500 for
C=.2, .5and .7, respectively. A1l results for RANDU1, RN2 and RN4 are based on 50 samples of size 500.

4

The tabled values for O-E and S.E, must be multiplied by 10" to obtain the actual values.

0-E equals X - 1, s - C, §] - 2C and §2 - 6C% for Xs S» ?1 and §2, respectively.

—ZV-
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Table 11. Number of Significant Tests In Tables
1 Through 10 For Each U(0,1) Generator

No. of Tests For

Table RANDU1 RND RN2 RN4 Each Generator
1 0 3 2 0 10
2 10 ] 0 0 51
3 2 0 1 0 9 (171 for RND)
4 1 4 1 2 12
5 1 0 0 1 6
6 6 0 0 0 9 (3 for RND)
9 0 0 1 2 6
10 4 1 0 0 12
Sum: 24 9 5 5 —;Tg—.(111 for RND)
Percent
Significant : 20.9% 8.1% 4.3% 4,3%

Tests
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Figure 7. Observed and Expected Frequencies of Generated Gamma Variates
for C = .5 Using RANDU1 (Sample 1 from Table 8)
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APPENDIX

LISTING OF COMPUTER DECKS OF PSEUDO-RANDOM NUMBER

GENERATORS RANDU, RANDU1, NRAND, RN2 AND RN4



aNaNoToNaXaNaYaNaXakaNaNaXaYeXakaNalaNaXaNaNa e

RANNDU U(Ds1) PSFUDO-RANDOM NUMBER GENERATOR

IT FRS5 RANDUsRANDU

SURROUTINE RANDUI(XsN) RANDU
——————————— RANDU
GENERATION OF UNIFORMLY DISTRIBUTED PSEUDO-RANDOM NUMBERS, RANDU
———————————— RANDU
MFTHOD RANDU
CONGRUENCF SCHEME WITH PFRIOD 2%%27 RANDU
———————————— RANDU
ARGUMENT DEFINITION RANDU

X 1S THE ARRAY OF RANDOM NUMBERS (OUTPUT) RANDU

N IS THE NUMBER OF RANDOM NUMBERS DESIRED (INPUT) RANDU

ALSOs UPON ENTRY, X(1) IS THE INITIAL NUMBER FROM WHICH RANDU

ALL OTHERS ARF GENERATED. THIS VALUE IS REPLACED BY THE SECONDRANDU

RANDOM NUMBER, IN GENERALsy X(I) IS THE I+1-TH RANDOM NUMBER RANDU
GFNFRATED BY RANDU. RANDU
——————————— RANDU
OTHFR SURPROGRAMS RFFFRENCFD RANDU
NRAND SLEUTH FUNCTION SUBPROGRAM—--GENERATION OF RANDOM NUMBERS RANDU

ON THE INTFRVAL (Qe2%%27) RANDU

——————————— RANDU
RFFERENCF RANDU

M. ARRAMOWITZ AND T« STEGUNs HANDBOOK OF MATHEMATICAL FUNCTIONSRANDU

WITH FORMULASs GRAPHSs AND MATHEMATICAL TARLES., RANDU

UeSe DEPT. OF COMMFRCF, NATIONAL BUREAU OF STANDARDS, RANDU

APPLIED MATHEMATICS SERIES NOe. 555 1965, RANDU
———————————— RANDU
DIMENSION X (N) RANDU

DATA T1472/819249163844/ RANDU
J=X(1) RANDU

K=J RANDU
I=NRAND (JsK) RANDU

PO 1 I=1sN , RANDU

1 X(I)=NRAND(J4K)Y/T1/T72 RANDU
RETURN , RANDU

FND RANDU

—29_



11T F

tTT A

¢ CALL

NRAND #

NOCARY

RANDU1

RS RANNU1,RANDU1

SURROUT INE

RANDUL (X sNsJsK)

DIMENSION X(N)

DATA T14T72/819249163844/

X{1)=NRAND(JsK)/T1/T2

RETURN

END

SR NRANNsNRAND
« RANDOM NUMRFR GFNFRATOR

ING SEQUFNCF NR
NBPR o
L Als*0sB11
L A2+%14B11
A AlsA2
A 42,5(0576167244)
L A3 A2
TOP A25s(01000+0)
J NOCARY
AsM Als1
XOR A2+s(01000+0)
L A2,A1
TEP A1+(0100Cs0)
XOR Als(0100040)
NS¢ Al,s36
nsSc A24+36
L AOysA1l
s Als*0sB11
S A2s%15B11
J 3.B11
END .

PSEUDO-RANDOM NUMBER GENERATOR

NRAND (Js 1)

REGISTER NAMES AND J FACTORS
LLOAD FIRST ARGUMENT J

LOAD SECOND ARGUMENT I

ADD ARGUMENTS J+I

AND CONSTANT R

LOAD A3 WITH I+B

TFEST IF CARRY IN BIT 27 OF A2

NO CARRY

CARRY IN A2 - ADD ONE TO Al
ELIMINATE CARRY OF A2 IN A3

LOAD A2 WITH J+I1

TEST IF CARRY IN BIT 27 OF Al
YFES - ELIMINATE CARRY OF Al IN A2
Al=J+1 WITH ZEROES IN BITS 27-35
A2=1+B WITH ZEROES IN BITS 27-35
LOAD FUNCTION ANSWER

STORE A1 INTO ARGUMENT J

STORE A2 INTO ARGUMENT 1

RETURN

NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND
NRAND

_Sg-



‘1T
R11
A0
Al
A2
XM

.
RN?*

TWO

ASM

FQU
FQu
FQuU
EQU
FQU

LUF
SsC
JpP
AND
LA
AA
JP
AND
LA
A s XM
JP
AND
LA
SA
AND
AA
FA
SA
J

+
FND

RN2 U(0Osl)

RN2sRN2

11
1?2
13
14
15

ADs%0NsRB11

Al927

Ale$+13
Als(O377777777777)
AlsA2

Als*0,4B11

Ale$+13
Als(O3T7T7T777777777)
AlsA2

Alsl

Ales34+3
Als(0377777777777)
AlsA2

Als%0sB11

Al (OT777777777)
A2sTWO

A2sTWO

A2s%14R11

34811
0200000000000

PSEUDO-RANDOM NUMBER GENFERATOR

SURRQUTINE RN2 (UsFU)
U IS A RANDOM 35 DIGIT INTEGER
FU FLOATING POINT NUMBER RANDOM ON (0s1)
INITTALLY U MUST BE FURNISHED AFTER
THAT IT IS KEPT CURRENT BY RN2
SUGGESTED INITIAL VALUE 1S
U=011060471625 (OCTAL)
LOAD U
MULTIPLY RY 2%#%9
TFST FOR OVERFLOW AND RETAIN A1(MOD(2%%35))

ADD U
TEST FOR OVERFLOW AND RETAIN A1 (MOD(2%%35))

ADD 1
TEST FOR OVERFLOW AND RETAIN A1(MOD(2%%35))

SAVE NEW U
FLOAT U

RETURN FU

END-

_VS..



vIT

L
R11
AQ
A1
A>
XM

L]
RN 4 *

ASM
o REFERENCE

Fau
FQu
=Qu
Fotd
Fou

LA
LSSL
JP
AND
LA
AA
Jp
AND
LA

A ¢ XM
JP
ANT
I_A
SA
JP
AND
LA
AND
AA
FA
A
LA
LSSL
Jp
AND
LA
AA

RN4  U(Ns]

RN4 4RN4

)

RICHARD KRONMAL,
GFNFRATOR JACM VOL 114NO 3 (JULY 1964) PP 357-363

11
12
12
14
15

Als*04B11

Alel12

Alsd+73
Ale(Q377777777777)
AlsA?2

Ale%0eB11

ATe%+2

AY s (OT77T777T777777)
AlsA?2

Als1

Ales54+3

A1 (N3R77T77T7T777777)
AlsA2

Als%¥NHR11T

Als5+7

Al (0O377777777777)
AlsA2
AYs(OQ777777777)

A29¢TWO

A2sTWO

A2e%24R11
ATe¥*]4R11

Ale7

Als5+13

A1 (03777777777 77)
AlsA2

Als*1,811

PSFUNO-RANDOM NUMRER GENERATOR

EVALUATION OF A PSEUDORANDOM NORMAL NUMBER

SURROUTINE RN&4(U1,U2sFUlsFU2)
U=-S ARF RANDOM 35 DIGIT INTEGERS
FU-S FLOATING POINT NUMRERS RANDOM ON (0s1)
INITIALLY 1)=& MUST RF FURNISHED AFTER
THAT THFY ARE KFPT CURRENT RY RN4
SUGGFSTED INITIAL VALUES IF NONE ARFE AVAILABLF
U1=233362477003 AND U2=212312312323 (OCTAL)
LOAD U1
MULTIPLY RY 2%%#12
TFST FOR OVFERFLOW AND RETAIN A1(MOD(2%¥35)})

ADD U1
TFST FOR OVFRFLOW AND RETAIN A1 (MOD(2%¥%35))

ADD 1
TEST FOR OVERFLOW AND RETAIN A1(MOD(2%%35))

SAVE NEW U1l
TEST- FOR OVERFLOW AND RETAIN A1(MOD(2%#%35))

FLOAT U1

RETURN FU1

LOAD U2

MULTIPLY RY 2%#x7

TEST FOR OVERFLOW AND RETAIN A1(MOD(2#%#%¥35))

ADD U2

_99_
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