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Abstract

The effects of fabricating tolerances on r{ joints in muTti-

periodic structures are analyzed by using an equivalent circuit

description. The calculations demonstrate that the currents at the

joints between single sections of a multiperiodic structure are of

the same order of magnitude as in the W/2-mode structure.

I. Introduction

In a previous note an equivalent circuit formalism was introduced, which

allowed to analyze the questions of fabrication tolerances and joint-currents

in rr/2-mode structures. According to the growing interest in multiperiodic,

TT-mode-like structures it seemed desirable to extend this very easy — without

computers — to handle method to the TT mode. It turned out that not only the

results are very encouraging — showing that TT-like structures behave similarly

to n/2-mode structures — but also the shape of the formulas arrived at is of a

surprising beauty. Although the calculations are only applied to deflecting

structures, they are also usable for any kind of multiperiodic structure.

II. Equivalent Circuit Analysis

1. The step from fr/2 mode to TT mode

In Ref. 1 an equivalent circuit was used which is explained in Figs. 1-3.

Figure 1 shows the structure under consideration, the cells being numbered

0, 1, 2 ... have the form of a T, each £& long and consist of one cylinder

plus one disc plus one cylinder:

1. H. Hahn and D.M. Lazarus, BNL Accelerator Dept. Informal Report
AADD-186 (1972).

2. J.R. Aggus, W. Bauer, S. Giordano, H. Hahn, and H.J,. Halama, in Proc- 1973
Particle Accelerator Conference, San Francisco. March 1973 (in
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Fig- 1. ~/2 structure.

"rtf-1

Fig. 2. Equivalent circuit.

Fig. 3. Equivalent circuit redrawn.
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The transfer matrix T(n+l,n), connecting the voltage-current vector at the

center of the (n+l)th cell to the n c h cell

n+1

T(n+i,n)

is in linearized form given by the product

JL

(i)

j(n - a -
(2)

with 0 • (u» - '-0^/2*^n/2 b e i n« the relative frequency deviation of the cavity

from the unperturbed tf/2 node, and (̂  * (o^ - (%/2)/<%/2 b e i n 8 tne frequency

deviation of the n cell from the unperturbed TT/2 node. This product of three

m.itrices represents th? cylinder plus disc plus cylinder connected in series as

shown in Pig. 1. It is in this form suitable to represent a structure operated

in the TT/2 mode, as shown in Ref. 1.

To use the same kind of suit rices for the description of a Tr-Mode structure,

it will be seen that one only has to write 2 K instead of x in Bq- (1). For

convenience we also change to

and get

T(n+l,n) (3)

The product of these three Matrices is the transfer matrix T

the TT-node structure:

c - cn - 1

of one T of

JK

(4)
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For a structure without fabricating tolerances (e. ~ 0), T reduces to

e- 1 0

(4a)

j* ^ " _,

It can be shown that the dispersion relation follows from the trace of the

matrix T

cos tp * \

- e - 1 (5)

For e • 0 follows 9 - TT, demonstrating that the matrix Eq. (3) is adequate

for the description of the n mode.

The numerical value of K is for the ff/2 mode given by the group velocity

Vg * TT/2K, and in the case of the rr mode by the curvature of the experimental

dispersion diagram at the operating point:

Q - v. • A<p 12 (5a)

For the TT/2 mode, we use v --0.0372 from Ref. 4, which gives K - 0.0237.

For the rr node, a measurement of the dispersion diagram-7 yielded H - 0.0126.

For later use WA calculate also a rms value e^ of the individual errors.

In Ref. 1 e^ is assumed to be 0.01, using a cavity diameter tolerance

A2b/2b - 25 utn/128.7 mm - 0.195 x 10*3

and a cell length tolerance

Ah/h * 100 (ira/26.25 mm * 0.141 x 10"3.

The formula given there

- vg Ah/li (5b)

reduces for the TT mode to f^ • - A2b/2b, because v • 0. Therefore

nt • 0.195 y 10"
3 and e. * 0.0165. At X-band, H has the same value, bu

machining tolerance supposedly will not be better than 25 n, e. * 0.05.

3. H. Hahn, BNL Accelerator Dept. Informal Report AADD-139 (1968).

4. W. Bauer, G. Danaertz, H.C. Eschelbacher, H. Hahn, W. Jungst, g. Rathgeber,
and J. Votruba, Proc. 1970 High Energy Instrumentation Conference, Oubna
(in press).

5. S. Giordano, private communication.
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2. Transfer matrices for more than one T

(2)
In order to get the transfer matrix T for two T's, one simply has to multiply

two single T's, using the proper indices of the e.:

n(2) _
-1

_l_
- 1 £ - 1n

(6)

In multiplying the elements of the matrices one omits all products z , ee. and

e.g. and retains only products which are linear in the s's- This is possible, be-

cause we are dealing with small deviations from the TT-mode frequency, for which

0. n<2) therefore becomes

' 2 )

(7)

By again multiplying Eq. (7) with another T one gets T ; and so forth.

Tables I to IV show the shape of the elements T«. ,

demonstrate the rules of finding them:

a n d x<22 a n d

TABLE I . T11

m

1

2

3

4

5

6
*

14

28

TiT
P. - <r.

- ( 4G - 2 e ,

-( 16S - 2 ^

-( 36c - 2et

-<196e - 2 , t

-(784R - 2er

tfl " l

t f l " 4pn+2 "

ri-1 ' 4 en+2 "

t ^ "* • • • "*•

. • ™ * • • ™

1)

6eirt-3

- 1

" 8en+4 "

r14w
t" 2 8 pnf28 "

1)

1)

1)
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TABLE I I . T
(m)
12

1T)

1

2

3

4

5

(

U

28

*P a

-( 2e -

4e -

-( 6e -

8e -

-(lOe -

12«-

28e -

56e -

1 / I H }

en n+-l

en " eiri-l €n+2
en " 2 < W l • 2 e nf2 *

It IW*X IHrjt

fi " 2 f i ™ 2 £ ™*
xi rt^X Til 2

F ™ 2 P • • • ™i

n n+1

G ~ 2 G « - - ~
ii iH*l

Wir3 tt4*4- ttt"5
2 ^ ^ ~ 2 P * 2p1 ~ P

2 e i r iH3 " eiH-14

Giri-27 " GiH-28

TABLE I I I . T
(ni)
21

m

1

2

3

4

5
6

28

1

2e - 2*-^

-( 8€ - 4 6 n f .

2Oe - Be^j

-( 40G - 8e[l+]

70s - lOe^j

9lOe - ^eni.]

73O8e - 5 4 c . ,

L ' 2

L " 4 en+2

L " 8ctri-2

L ' 1 2 € nf2

I " 1 6 e «f2

L " * 8 S * 2

- 3)

- l Z f i ^

" W e i * 3

Hi* J

-

- 4

- 8enf4 - 5̂)

" 16enf4 " 1Oe»f 5 ' 6

. . . - 14

- 28
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(m)

m

1

2

3

4

5

6

14

28

T22

e - e -

-( 4 e - 2en -
ye - 3e -

-( 16e - 4e -

25c - 5en -

-( 36e - 6e -

-(196e - 14e -n

-(784e - 28*n -

1

2 etH-l
4en+l
6en+l
8 e n+l

(11 X

- 1 )
- 26^2

• 4en+2
• 6en+2

" 8 e n f 3

-

-

- 1

" 2enf3

• 6en+3

• • m

• • •

- 1)

- 4 e n + 4

- 1

• 2 en+27"

1)

1)

1)

Inspecting Tables I-IV one can easily continue them for any value of m. The

factor connected with e in T21 is given by the sum of the underlined numbers

in the preceding T , as shown by the following example:

To find the number 70, take 5 + 4 0 + 2 5 from the matrix T* .

There are two convenient tests available, which allow to look for calc-

ulating errors:

a) Compute T..T-- - T_-T»-,. i"he determinant of the transfer matrix ctist

have the value 1.

b) If one- assumes all the e± equal, one oust arrive at a structure with no

fabrication tolerances that behaves like an undisturbed cavity with e x e^-

All matrix elements in Tables I-IV must therefore reduce to the unperturbed

TT-mode case, for instance:

T{ 4 ) = -<16e - (2 +4 +6 + 4) et - 1) - 1 - (8)
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3. Multiperiodic structures to be analyzed

The design of a multiperiodic structure is determined by the length of

the hot zone of the UHV furnace to be used for heat treating the sections

i»f the .structure. Therefore we assume throughout this paper deflecting cavities

nyaembleil from sections of Jipproximately 60-cm length. AH a comparison wilii

an existing design of a TT/2-mode deflector we analyze a multiperiodic S-band

structure which is shown in Fig. 4.

SECTION NUMBER

I H M INPUT n JOINTS-^ I

IIJT0I IJBI r i T T i ner wn \ n I T W I/JII m n \P\ 101 I
I II I I" II I I I I I I M' I It N I I I I I ' I I I I I I I 1.1 i '

44 ? 5 4 3 2 1 0
CELL NUMBER

Fig. 4. Multiperiodic TT-mode, S-band structure. The 5 sections are represented
by the transfer matrices T 1 - T v. Joints are situated between cells
5 and 6, (16,17), (27,28),(38,39).

The TT-mode structure is determined by the operating frequency 2855.1 MHz

and the condition <u/k = fA. * c. Therefore the cell length has to be 52.5 mm.

To form an approximately 60-cm-long section we choge 11 cells/section. (The

number of cells has to be odd, in order to provide for a center cell for

input coupling.)

The multipericdic structure is generated by omitting one disc at the loca-

tion of the joint. Figure 4 anticipates one result of the calculations

reported below: Due to the multiperiodicity there appears a gap in the dis-

persion diagram,, which must be closed in order to get a finite group velocity

at the TT mode ~ necessary for overcoming the problems of finite fabrication

tolerances. It turns out that this gap can only be closed when the end section

contains exactly half the number of cells of the middle section. This means

that the overall length of the deflector is only 232 cm. By adding two middle

sections one can arrive at 347 cm, if necessary.

'In addition to the structure of Fig. 4 we analyze an X-band deflector

which might be usable with the 200-GeV accelerator at NAL. Again the sections

6. W. Bauer, 6. Dammertz, H.C. Eschelbacher, H. Hahn, W. Jungst, E. Rathgeber,
J. Votruba, and H. Diepers, IEEE Trans. Nucl. Sci. MS-18, No. 3, 181 (1971).

7; G. Dammertz, thesis Karlsruhe (1973).
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should not be longer than 60 cm, but according to the higher frequency the

cell length is now 17.3 mm, resulting in middle sections of 33 and end sections

of 16% cells.

4. Transfer matrix of the cells next to the joint

We proceed now by analyzing the part of the cavity shown in Fig. 5.

T(jr)

4-

Fig. 5. Cells next to the joint.

At the TT mode (e = 0) and without fabricating tolerances (e- ~ 0) we demand

that, at the location of the omitted disc, the current must be zero* This

condition cannot be met by adjusting the cells named a, because these cells

are not excited and therefore have very little effect. So one has to adjust

the cells named g. As we see later on, we need the a cells for closing the

gap. So we now write the transfer matrix T ^ (right-to-joint) in the same

way as Eq. (3) introducing frequency adjuscments a and g. The factor 2 ap-

pearing in T 1 2 of the a and & cells in front of jn takes into account that

their cylinders have twice the length of a regular cylinder:

1 2JH(-O-2)

0 1

cylinder
.frequency
changed by a

1 0

disc

1 2JR(-8-2)

cylinder
frequency
changed by 3

1 0

disc

1 -2jM

0 1

regular
cylinder

(9)
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4a

t <"2^ " 2>
jx(-4ag - 2* - 60 - 2)

2P+ 1

(10)

i. . = 0 means chat = 2& + 1 » 0, because the boundary condition at the

end plates of the cavity, Fig. 5, requires u « 0. P is therefore determined

to be

T reduces therefore to

2(*+ 1)

(U)

5. Closing; the gap

In the biperiodic structure, one closes the gap by exchanging excited and
8

unexcited cells and equalizing the resonant frequencies. It can be shown

Chat in the multiperiodic structure shown in Fig. 4, the only possible equivalent

to this procedure is to equalize the frequencies of the two cavities shown in

Fig. 6.

Fig. 6. Two cavities, A and B, whose frequencies must be equal
in order to close the gap.

8. W. Bauer, thesis Karlsruhe (1971).
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It is this fact that makes it necessary to give the end sections only half the

length of the middle sections. We now write the matrices T and T of both

cavities shown in Fig. 6; we set again ej = 0, but we retain e. With ?•. = - h

we write

I 2jK(e-a-2) 1 0

4- 1

1 0

-L i

1 JM(e-2)

-8e - 2a + 2
(12)

Of course, T J , the matrix "from joint to left" is simply the inverse of

T " , so we get inmediately

(13)

•fa (2 e -

With these equations (12) and (13), and using Tables I-IV, we can compute

(A) (jr)

18e - -jn 18e

~ (44e + 160oe - 4a + 2) 18e - 36cre -
(14)

and

T(B)

18e -

18e

jn(-394e + 72ae + 72a2
e + 4« - 10)

18e -
(15)
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The condition for a closed gap is now the following: The dispersion diagram,

as computed by the trace of the matrices Eqs. (14) and (15) cos tp = M T J

must show no discontinuity; that means, cos ?p must remain real in the vicinity

of the TT mode (cos <j> = - 1) or %(T,., + "J^) mast: n<>t depend on e-

So we got the equation for determining a:

18c - 36ae = 0
(16)

Apparently, T and T lead to the sane a, showing that both cavities have

the same resonance frequency at the mr mode, which was requested above. If one

tries to close the gap with structures T and T different from those shown

in Fig. 6, one would arrive at a different value of a, and the insertion of

additional sections would change this value. Only by making the end sections

half as long as the middle sections one «y applies for any amount of additional

middle sections. Without this property a pretuning of single sections as

demonstrated below would be impossible.

6. Transfer matrices of the single sections T* * - T* *

Having determined a and 8, we are now ready to compute the transfer

matrices of the sections with fabricating errors tz-. At first we need again

T ^ and T but now with the

according to Fig. 7.

added; for convenience we number the

Fig. 7. Numbering the errors e. in T
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2 V 2 • 8 V l • 3 eS f l - i.o • i)

- i) 2V l

(17)

Again we get T**^' by writing the inverse mcrix of T'^ .

8 V | • 2*^ • 3)

T , che transfer matrix of the fint section it now computed using che number*

of G A shown in Fig. 4:

T ?ir> . T(3)

T , the transfer matrix of the second section is

<lfJ

Tables V-VIII show the cleasnts of che emtriccs obtained by this procedure.

TABLE V.

Section

I

II

III

17

V

T l l

62e -

9 £ -

2c, -
8c1 5 +

8e26 +

8e3 ? +
2 e 4 0 "

32e4

6 e14
0*25
6e36
2 e41

- 1 8 c 3

+ 4C13
+ ^ ^
+ 4e 3 5

' 2*42

- 8 e 2 -
+ 2c l 2 -
+ 2c23 -
+ 2 c 3 4 -
- 2e43 "

2% ' UH
2 c21 " 4 c20
2€32 * 4 c31

€44

- 6 ^ - 8e
- 6cl9 - 8€

" ^30 * 8 e

7 " l

18 " l

. . - 1



TA1LE VI. T|7 - TJ2

Stceion

I

II
1X1
IV

V

- 20a; • 6s

ia« - 2{
IBs - 2<
l*£ - 2(

- 20$ • 2?

4 * '
Kit *

tu *
r%7 *

41 * i

*r,j *

».. *

. . . •

• • • *

*<2 *

*,,)

1

1

TAfU VIII. TjJJ -
Stction

I

XI
f ff

IV

V

T22

62c

- 2 % - a « ,

" 8 c 15 * 6 * I<

" 8 s37 " *S3(

* 2<43 ' 8c43

, - 4 r O * 2- I2 + 2c10 +

, • 4 ? 3 5 - 2«34* 2*32 +

, - \*%l - 32c4Q - 2c3f

• •#:-

4 Sc,

- I
_ 1

•

9 * l
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7. Joint-currants of an tmpretuned cavity

According to Eq. (1) the current i, , acroas the joint between cells 5

and 6 (Fig. 4) is given by

S.. "ff •.•*$?
btcause u " 0 by boundary conditions and £ is set to equal 1. The currents

tt Che remitting joints are computed to

l2?f28
 T22

T22
m -<

T22

product (T T ) and so on. These mtrix aultiplications have

been carried out, yielding the results:

I

4 15

1 7
4 15 26

%'2IH'ZIH-2IH
1 7 1$
4 15 27 37

*o+2I*i + 2Xei + 2Z c i+ 2X e i
1 7 IS 29

Th* boundary condition uo • u ^ * 0 at both endplates of the whole cavity

demands that T,, of the overall transfer matrix

t - TV T W I 1 " T 1 1 T 1

must be zero. T,, happens to equal

(24)
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K (72e - «o - 2 J c4 - s44) (25)
1- 4
7-15

18-26
2*-37
40-43

The effect of the fabrication errors et is therefore a change of the resonant fre-

quency which is given by Eq. (25):

( 2 6 )

1- 4
7-15

18-26
29-37
40-43

Incroducing Eq. (26) into Eqs. (23) yields the final expressions for the untuned

jo int-currents:

S.6 - * i ( e o + 2 1 h ) * U z I H+%

£16,17 '

£27,28 "

| fa

3 /
" 8 \ eo

1-4

1- 4
7-15

1- 4
7-15

18-26

+ 2 l h)
1- 4
7-15

18-26
29-37

7-15
18-26
29-37
40-43

"H21 c i + ^ )
18-26
29-37
40-43

29-32
40-43

40-43

(27)
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To compute the mean square value of the joint-currents according to Eq*. (27)

using one mean value of the t,» e. one has to add the squares of the factors

appearing in Eqs. (27), for instance

(28)

Table IX ehows the results obtained so far.

8. Pretuninii the sections

Pretunlng a tr/2-mode section is accomplished by attaching only one error-

free T at each joint and changing the overall frequency by, say, electropolishing

the section until the desired frequency is reached within a certain range.

Unfortunately, for the multiperiodic structure we need two "error free" parts

of the size of section I and section V. These sections may be made from copper-

plated invar and must be tuned by very careful measurements. Using these two

sections one can again tune tlit niobium sections by electropolishing. The re-

sults are computed in the following.

He assume a section T* ' in which all c, • 0, and forw a cavity

T - T<V> T«> (29)

Again, £-» xust equal zero as before and we get

4

2^i-eo)-0 (30)

1

4

c 1- e- ( 2 j e i + co) / 18 . (31)
1

e • 0 would nean that the first section was perfectly tuned. In practice,

e Is the tuning error of the first section.



TABLE IX. Comparison of Various Deflecting Structures.

Mode

Frequency (GHz)

Overall Length (cm)

Number of cells,' end sections

Number of cells, middle sections

Cell length (mm)

Iris thickness (mm)

Iris hole diameter (mm)

Magnetic field ratio Hp/Eo (G/MV/w)

Electric field ratio Ep/Eo

Hp (G)

Eo (MV/m)

Transverse momentum per deflector (HeV/c)

<R/«>theory <n/m>

theory <Cu« 3 0° K>
Improvement factor

Power per deflector (W)

Currents at joints (not pretuned):

ij

t2
i3

Currents at joints (pretuned):

ij

i2
l3

TT/2

2.855

273

2 X 19

3 X 22

26.25

10

40

158

5.6

400

2.53

7.0

847.5

10 300

5 X 10*

25

5.5 ^

7.0 lt

18.4 E "

24.5 i a

Multiperiodic*

2.855

232 (347)

2 x 5)5

3 x 11 (5 v 11)

52.5

20

40

118

3.3

400

3.40

6.4 (9.6)
1150

15 600

5 x 10*

15 (22)

3.9 €4 (4.0 c4)

5.7 lt («.4 ct)

(7.1 e4)

17.7 i* (17.9 T)
35.5 T (35.5 T)

(41.5 T)

Multiperiodic*

8.6

229 (343)

2 x lt\

3 X 33 (5 X 33)

17.3

6.7

13.3

118
j.3

400

3.4

7.3 (U)

3480

9000

105

7.9 (12)

7.2 ct (7.5 \)

13.7 et (11-7 \)

(13.4 \)

61.0 e" (77.0 7)

111.4 e" (109.5 fi">

(111.0 "m)

1

i»

•

In parenthesis: version with 7 sections.

1 cell - \ wavelength in TT/2, h wavelength in TT mode.
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In the sane way one gets

c IV «

V
e m

36

(»I
18

37

29

43

40

0

e i )

/ 36

/ 36

eJ / 18

(32)

Introducing these section tuning errors into Eqs. (27) yields the joint-

currents for a pretuned cavity:

i 5 6 . | ( . 7 e i + 2 e « + 2 e m + 2eiv + ^

9 . - I ,11 , III . ,. IV . , VN
 (33)

r27 28 * 4 "̂ e e e e '

^ ^ " f * e1 + 2e" + 2c
111

 + 2e
IV - 7eV)

The numerical results given in Table DC again are the mean square values as

shown above.

An rms value for the e is obtained by the assumption that one possibly

can tune an S-band section to 30 kHz. Using K * 0.0126 (Eq. 5a) yields g m«10~ .

At X-band again a factor of 3 gives c"1 « 3 x 10" .

9. Corrections to Reference 1

In order to compare the above results with those given in Ref. 1 for the

n/2 mode, a correction of an error is necessary as pointed out by Jungst.

9. W. Jungst, External Report 3/72-4, Kernforschungszentrum Karlsruhe (1972),
to be published.



- 20 - AADD 73-3

Using the same procedure as shown above, one finds that Eqs. (12a) in Ref. 1

must read

16

S ' (2 I £i + £o) ' 2°
2*

•" - (« I. 0'»
20e

IV
e •

V
e •

Using these

(»

('

42
84

64

102

86

0 / *>

i 104

expressions, Eqs.

) / 20

(14) bee

If
10. Analysis of a Tt-mode X-band deflector

We turn now to an X-band deflector with cell length 17.3 no, middle

sections of 33 cells and end cells of 16% cells. Table X gives the necessary

information on numbers and indices:
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Section

T(D

T(ID

T ( U I )

T(iv)

TABLE X

Cell Number

0 -

17 -

50 -

83 -

116 -

16

49

82

115

132 *

Joint-Current

t

X49,50

*82, 83

HlS, 116

To analyze this structure, it is not necessary to repeat all the steps shown

above: Although it is clear that et [Eq. (9)] will be changed, because T
( B'iand T , Eqs. <14) and (15) are different, it is easy to show that the value

of a has no influence on the currents. If one traces back the origin of the

number 72 in Eq* (25) one states that it comes from the 9 in T 5 , • 9e - ...

and from the 9 in T,, * 9s - ... . Furthermore, these two 9 are the sum of

the 3 in TjjjJ ' = -3e and the 6 in TJ£ = - 6e + ... . All these numbers are

not influenced by a- So one can immediately substitute instead of 9 • 6 + 3, and

9 + 18 + 18 + 18 + 9 = 72 for the X-band structure 31 * 28 + 3, and

31 + 62 + 62 + 62 + 31 - 248. Therefore, Eq. (26) reads now

e = ( e o + 2 I e i + e 1 3 2 ) / 2 4 8 • <34>
1- 15

18- 48
51- 81
84-114
116-131

In the same way one finds the currents by analogue guessing and finally gets,

that Eqs. (27) remain unchanged except for the summation indices and some signs:
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'16.17 " l ( £ o + 2 I e i ) " i ( 2 I e i + G132)
1-15 18- 48

51- 41
84-114
116-131

^9,50 i) + I (2 I Si
1-15 51- 81
18-48 84-1.14

116-131

and so on. The expressions for the pretuning errors now become

1-15

II
e

IV
p.

- ( '

-0

-I-
18-48

! / €

51-81

'I-
84-114
131

,) , m

^ / 124

i) ' l24

( M )

117

and finally the joint-currents for the pretuned X-band cavity are

, 31 t 7 I , 1 1 .III , W V.X16,17 ~ < 7 e - 2 e - 2e - 2e - e )

^9,50 ' f <- ** - 1OeU + 6eI" + 6 ^ + 3^>

and similar ig2 go> ̂ 115 115- Table IX includes the numerical results.

11. Analysis of cavities with 7 sections at S-band and X-band

Looking in Table IX at the overall deflections obtained by the cavities

analyzed so far, one might prefer to have a somewhat longer cavity. Unfortunately,
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Fig- 8. Hultiperiodic S-band structure with 7 sections
represented by the transfer matrices x ^ ^ 1

Joints are located between cells 5,6, 16,17,
27,28, 38,39, 49,50, 60,61-
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Tfvii) T(vi) T(v) T(w> T(III) T(II) T<I)

6 5 0

because of symmetry considerations, one can only add two middle sections.

In the following we briefly check, how the expressions derived above change,

when the S-band structure shown in Fig. 8 is used. All we have to do now is to

add two more middle section transfer matrices to Tables V-VIII and give the e.
VII 1

of the last section, T , the proper indices. By multiplying these single
matrices as in Eq. (22) one gets

1 0 8

1- 4
7-15

18-26
29-37
40-48
51-59
62-65

and the untuned joint-currents become

-ff U_+2 12 (2
1-4 7-15

18-26
29-37
40-48
51-59
62-65

16,17" ! G - I (2
1- 4
7-15

18-26
29-37
40-48
51-59
62-65

(38)

(39)

27,28

1- 4
7-15

18-26

29-37
40-48
51-59
62-65
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and similar i3 andi3839, l^

Table XI shows the coefficients entering into the untuned joint-currents

for the several configurations considered so far, leading obviously to the

assumption for 7 sections — X-band Which is also shown in the table.

TABLE XI. Coefficients entering the expressions for the untuned joint-currents.

Joint
Number

1

2

3

4

5

6

4 joints
S-band

Eq.

-7/8

5/8

-3/8

1/8

(27)

1/8

-3/8

5/8

-7/8

6 joints
S-band

Eq. (39)

-11/12

9/12

-7/12

5/12

-3/12

1/12

1/12

-3/12

5/12

-7/12

9/12

-11/12

4 joints
X-band

Eq. |

7/8

-5/8

3/8

1/8

[35)

-1/8

3/8

-5/8

7/8

6 joints
X-band

Deduced

11/12

9/12

7/12

5/12

3/12

-1/12

-1/12

3/12

-5/12

7/12

-9/12

11/12

Finally one arrives at the pretuned Joint-currents, for S-band:

I L" VII ]L5,6

46,17

47,28 '

again the remaining currents resulting in the sane numerical values, and

for X-band:

31 r, i , , , ii
TL 1 1 8 " 2 ( e vix V I I

e > ' € J
31 r o i 1B II . , , in . vi. . , VII

+ 6(e + . . . e ) + 3e

33
31 f , I II . III.+ e )

IV . VI. _ vi i 1
+ ••• e ) - 5c J

<40>

(41)

The e ... c appearing in Eqs. (40) and (41) are the same as in Eqs. (32)

and (36) respectively.
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III. Conclusions

In Table IX the calculations described above are applied to compare several

deflecting structures. The values of shunt inpedance. Q, II /Eo and E_/R(, «re

i.ikun from Vault Jn*° .ind, of course, scaled to the required frt>i|tit>iu*y whi'tv

necessary.

In the first two rows the Tf/2-aode, S-band deflector presently under con-

struction at Karlsruhe6 is compared with Che nultiperiodic structure shown in

Fig. 4. The somewhat surprising result of the calculations is that the joint-

currents are of the sane order of nagnitude in the nwlciperiodic structure.

Considering the other quantities entering Table EC one concludes that a multi-

periodic structure of 2.32 m length gives only slightly less deflection than a

rr/2-mode structure of 2.73 oi, but needs a saaller cryostat and wilt surely be

cheaper, because it needs only half the mmber of cells and electron-beam welds.

In addition, the possibility of wultipactoring is considerably reduced by the

larger distance of the discs and the lower Ep/£o ratio of the rt mode.

In the case of an X-band separator the discs of a rr/2-nwde deflector would

become very thin and narrow. So not only the 1 igher shunt inpedance and the

lower peak field ratios, but also simple geometrical considerations would favor

the TT mode. Since joints are unavoidable, the problem of joint-currents as

function of fabrication tolerances had to be solved. Although the computed

joint-currents shown in Table IX for the X-band deflector are higher than those

in the S-band deflector, we are quite sure that an X-band deflector for use at

high particle momenta is possible in principle. In addition, as shown in

Ref. 11, at X-band one probably would choose a larger iris aperture, thus re-

ducing the joint-currents by an increased H.
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