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CALCULATION OF MAGNETIC FIELDS WITH GIVEN,

NEARLY CYLINDRICAL, CONDUCTING WALLS

by

Guthrle Miller

ABSTRACT

It is shown how the magnetic field inside a nearly cylin-
drical hollow conductor can be calculated using a perturbation
method. Numerical results are given for the Scyllac compression
coil and a possible larger bore Scyllac coil.

I. INTRODUCTION

The problem of calculating the magnetic field

trapped inside a hollow conductor of arbitrary shape

is a difficult one, involving solution of Laplace's

equation in three dimensions or something of equiva-

lent complexity. However, for nearly cylindrical

shapes it is well known that useful results can be

obtained analytically by a perturbation expansion.

Here this method is taken over for machine calcula-

tion and it is shown possible to obtain results to

high order in the deviation from a cylindrical

shape with relatively little effort. This work was

aided by the use of existing programs to calculate

flux surfaces, allowing a nice check that a flux

surface is indeed produced at the conducting wall.

II. METHOD

We use a standard theoretical approach in

sharp boundary MHD problems, analytic perturbation

theory. We Imagine an initially cylindrical hol-

low conducting tube containing a uniform axial field

B to be slightly distorted in shape, perturbing

the trapped magnetic field. The change in magnetic

field is assumed to be of the form

C I (nhr) sin(mij>-nhz)

m,n
n>0

m>0
Cm0 C h r ) a>

as a function of z.

The functions appearing in Eq.(1) are not a

complete set in the distorted volume and the series

representation given by Eq.(1) is asymptotically

correct for small surface perturbations rather than

convergent.

The coefficients C are determined partly by

the requirement that 3*n • 0 on the conducting wall,

where B is the magnetic field, and n the normal to

the surface. Substituting B - B e + Vx and n •

v(r-b-i|j((J>,z)) in the equation B-n - 0 we obtain

(2)

•JJ is the radial distortion of the surface and is

assumed small. The equation of the conducting wall

is r - b + $.

Equation (2) is rewritten so the left-hand side

involves x evaluated at a fixed radius.

iXl . B
3r|r-b o r|r-b 3r|r-i(i

(3)

If the terms proportional to X appearing on the

right-hand side of this equation are neglected there

remains a simple equation for X- T n e other

terms are taken into account by iteration, starting

with X
( 0 ) ' 0.

-1)

where 2ir/h is the period of the surface distortion 3r b



The coefficients C ^ are determined by multiplying

the expression on the right-hand side above by

sin(Ex|>-nhz) and integrating.

fi3 r l b
2ir*F

where F » nl'(nhb) for n
m

n - 0.

(5)

0 and F » m(hb)111"1 for

At every iteration the average B field must be
z

corrected to insure that the flux \ji remains constant.

This is done by evaluating the flux

(6)

2.2
n h r

A - 0 .

* " n2h2 3 z 3 r

For mj'o, a vector potential is

Ar m2 34>az

AA - 0

Az " " m2 3*3r

(9)

(10)

for several fixed z circuits around the conducting

wall cross section, taking the average over z posi-

tions, and comparing with the zero-order flux. The

average B field at the i' iteration is given by

TTb2B
o (7)

The average z component of the field is otherwise not

changed by the iteration scheme, and the flux would

in general differ from the zero-order flux.

To evaluate the flux using Eq.(6), a vector po-

tential is needed. This is easily constructed for a

scalar potential of the form given by Eq.(l). Each

term in the sum Eq.(1) satisfies the following

equations.

3z

*2..

v2x - (8)

A vector potential corresponding to the m,n term Is

as follows If n i* 0.

The zero-order field has a vector potential A,

V / 2 .
B e
z zThe complete solution is of the form B

+ Vx- T h e correction to x i s o f order i + 1 in

ty, hence X ^s correct to order i in U>.

For the calculations described here, the sur-

face perturbation was of the form

cos(hz) (ID

appropriate for a toroidal theta pinch with £.=0 and

£-1 fields such as Scyllac. Toroidal curvature was

neglected. However, as will be discussed later, for

a large radius of curvature such as that of Scyllac

(400 cm) this produces only a ama1! change in the

flux surfaces.

The numerical integrations were done in a

straightforward way, using an efficient one-dimen-

sional integration subroutine, nested for the double

integration. Program running time was a function

mainly of the number of iterations. For a calcula-

tion with three Iterations, 4 minutes of CDC 7600

tine were required. A fifth-order calculation re-

quired 40 minute*,. An increase in the integration

accuracy greatly increased the time with little

change in the results.

III. RESULTS

Two cases were investigated, one a bumpy heli-

cal conducting surface of average bore 14 cm, very

similar to the Scyllac compression coil, and the



second a possible larger bore Scyllac-type coil.

The solutions were checked by following a field line

successive periods in the z direction to generate a

flux surface. In almost all cases, the flux line

after one revolution closed on its initial trajec-

tory with an imperceptible displacement error.

Scvllac

The conducting surface had the parameter values

b = 7 cm, A » -.035, A. = .085. After three itera-

tions the potential x was the following,

- .8235 Ij(hr) sin^-hz) (III-l)

-.4067 lQ(hr) sin(-hz)

-.0291 I2(2hr) sin(2<fi-2hz)

+.0161 I1(2hr)

+.0082 hrsinij)

-.0042 I2(hr)

-.00424 IQ(2hr) sin(-2hz)

-.00106 I2(3hr) ain(2<i>-3b.z)

+.00182 I3(3hr) sin(3*-3hz)

•"* BThis neglects other terms smaller than 10

was 1.0048 for Bo - 1.

Flux surfaces corresponding to this potential

along with the conducting tube cross section at

various z values are shown in Fig. 1. The field

given by Eq.(III-l) is evidently an entirely satis-

factory solution.

The only case of a noticeable lack of closure

of a flux line occurred for the small-diameter flux

surface shown in Fig. 1, The rotation per period

in this case was very small, and whether the effect

resulted merely from numerical inaccuracy in follow-

ing the field line a longer distance waB not inves-

tigated.

Toroidal curvature was introduced in the usual

way by letting B ->• B (1-r/R cos <f>) and flux sur-

faces were recalculated. They differed very little

from those shown in Fig. 1 for the Scyllac radius

of curvature R » 400 cm. Thus the field fciven by

Eq.(III-l) is a valid solution for a large radius

toroidal conducting wall as well.

The coordinate system used is not centered on

the magnetic axis, the point in Fig. 1 where small Fig. 1.

radius flux surfaces appear to enter as a group.

The following transformation can be used to obtain

the coefficients in a displaced coordinate system.

Flux surfaces for the third-order solution
Riven bv E<,. (III-l) showing agreement
with the conductor cross section.
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g . c
mn mn c

m-ln
c
m+ln

(IH-2)

where C Is the displacement in the x direction (<(i-0)

and the formula is valid for small £. Thus dis-

placement of the coordinate system to the magnetic

axis will develop C ., and %2i terms from the large

C Q 1 and C1;l coefficients.

Of main interest for a toroidal theta pinch lilce

Scyllac are the field components B../B and

These are defined as

hC11/(2Bz) - .061

-061 (III-3)

where the values on the right-hand side are those

obtained from the third-order solution given in

Eq.(III-l).

These field components are calculated quite

accurately by the first-order formulas obtained

after one iteration of Eq. (4).

- .062

.059 (III-4)

Larger Bore "Scyllac"

For the parameter values b«12 cm, A " -.09 and

Aĵ  » .1, somewhat less satisfactory results were

obtained. Figure 2 shows flux surfaces calculated

using the fifth-order solution. The "improvement"

of the solution with iteration is slow and indeed

may be nonexistent at fifth order. This is prob-

ably a demonstration of the asymtotic nature of the

series.

In Fig. 3 are shown the outer flux surfaces

corresponding to the first-through fifth-order solu-

tions. The flux surfaces have a tendency to oscil-

late about the conducting wall with iteration.

la-O

Fig. 2. Flux surfaces corresponding to the fifth-
order solution for a larger diameter
conducting wall cross section.
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In Table I we show how the largest components

of the potential vary with each Iteration. The

C Q 1 and Cj^ coefficients (or equivalently
 Bjj_0/

B
o

and Bo . /B ) vary little from iteration to itera-
* A O

tion and are very close to the first-order values.

In the larger bore case the effect of toroidal

curvature is more pronounced. The effect for R ~

400 cm was such that the fourth-order flux surface

in Fig. 3 was made almost coincident with the con-

ducting wall. The smaller diameter flux surfaces

showed a similar bulge to the right with the addi-

tion of toroidal curvature.

IV. CONCLUSIONS

It is possible to approximately calculate the

magnetic field trapped by conducting walls that are

nearly cylindrical. The simple first-order expres-

sions for the field components are found to be

quite accurate, and thus the task of designing a

shaped cylindrical conducting tube to produce de-

sired field components is simplified. In particular,

the desired Bp . and Bp . fields for a toroidal

11=0,1 theta pinch can easily be obtained using a

cylinder with bumpiness A and helical distortion

Ax given by Eq.(III-A).

TK>

-20

Fig. 3. Outer flux surfaces for first-through
fifth-order solutions. The flux line
that develops the surface is started off
in each case on the left side of the con-
ducting wall.

m n

(1) (2)
C

mn

-.794

-.016

.032

.926

.035

.016

-.027

TABLE I

(3)
C

mn

-.822

-.014

.030

.961

.031

.015

- .023

W
c

inn
- .816

-.017

.032

.952

.036

-.005

- .029

(5)

mn

-.822

- .015

.031

.960

.033

- .015

- .026

0 1

0 2

1 0

1 1

1 2

2 1

2 2

-.820

.954

1.034 1.030 1.032 1.031 1.032

REFERENCES

1. A. A. Blank, H. Grad, and H. Weitzner, "Plasma
Physics and Controlled Huclear Fusion Research,"
Novosibirsk Conference Proceedings, 1968, Vol. 71,

p. 607, IAEA, Vienna (1969).

2. H. Weitzner, private communication.

10:288(60)


