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THE ROLE OF STATISTICS IN SAFEGUARDS

K. B. Stewart and J. L. Jaech

ABSTRACT

This document, BNWL-1385, discusses certain specific
uses of statistics in connection with safeguards, both current
and projected. The principal theme is that the application
of statistics plays an important role in safeguarding nuclear
materials, and that statistics should become an increasingly
important tool in the safeguards field.
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THE ROLE OF STATISTICS IN SAFEGUARDS
K. B. Stewart and J. L. Jaech

INTRODUCTION

This report is a study of ways and means in which statis-
tics may be used more fully in maintaining accurate inventory
control of nuclear materials. In a nuclear materials con-
trol system (which is a vital part of an entire safeguards
system) data play a dominant role. An extensive portion of
the available information about the system is contained in the
data, and the decisions (of a safeguards nature) that must be
made are heavily dependent upon the data generated. Because
of this important role, it is essential that great care be
used in collecting, storing, and analyzing the data. Any tool
that can be used to assist in these tasks should be used. One
important tool is statistics. The proper application of
statistical principle is essential to ensure that conclusions
drawn from the data are valid, to indicate the kinds of data
that are needed, to specify the quality of the data required,

and to extract maximum information from the available data.

This study gives some specific uses of statistics in con-
nection with safeguards, both current and projected. In
developing this theme, it is hoped that an increased awareness
will be incurred of the importance of statistics to safeguards,
and that concerned individuals will be stimulated to evaluate
more fully the practicability of applying these modern tech-
niques to safeguards problems.

SUMMARY

Because statistical procedures are far from routine, it
is increasingly important that highly trained professional
people be used in any endeavor to apply statistics as a tool

in safeguards.
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A wide range of measurements and more accurate measurements
will accomplish much in obtaining a valid image of what a
materials unaccounted for (MUF) incident may represent.

MUF significance must be weighed along with such other
indications as the internal consistency of isotopic data and
it is the integration of all such aspects that will provide the
most valid answer as to whether a materials diversion has
taken place.

Game theory or the application of strategy and counter-
strategy is a worthwhile approach to identifying the cause
of an apparent.MUF.

CONCLUSIONS

(1) The statistical procedures required to obtain maximum,
valid information from the data are, in many cases, far
from routine. This fact, together with the extreme
importance of safeguards, calls for added emphasis upon
the necessity to utilize professionals trained in this
discipline to the greatest extent possible.

(2) The MUF is a primary indicator of safeguards performance.
There is strong motivation to reduce the variance of
MUF. This can be accomplished in several ways with the
most obvious way being to obtain better measurements, or
perhaps more measurements. However, reduction in vari-
ance can be achieved at no additional cost of collecting
data simply by using more sophisticated methods of data
analysis to exhaust the specific information from the
data. Under certain realistic conditions, the gains in
efficiency achieved in this manner can be very large.

(3) Significant attention is being given the MUF as an indi-
cator of missing material or diversion. However, there

may be other indicators such as the internal consistency
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of isotopic data. The integration of all of these aspects
should lead to better decisions on whether diversion has
taken place, how much has taken place, and where to look
for the source of diversion.

(4) Consideration is being given other applications of sta-
tistics to the problems of safeguards. One good possi-
bility for a significant contribution is the establishment
of clear, quantitative goals for safeguards. Another
broad area is the application of game theory. Since
the control of nuclear materials in a true safeguards
environment is essentially a game of strategy and counter-
strategy, the theory of games provides a statistical
subject-matter field pertinent to evaluating overall

strategies.

DISCUSSION

SPECIFIC APPLICATIONS

Minimum Variance MUF

The MUF is a concept vital to the control of nuclear
materials. The estimation of MUF appears to be very simple
and straightforward, and yet, for certain conditions, more
sophisticated estimation procedures have been developed which
provide estimates having properties which represent signifi-
cant improvements over those of the simple estimation method.
The estimation procedure Will, under these conditions, pro-
vide estimates with much greater precision and, in addition, -
will remove the correlations between successive MUF's that

exist using the simple estimation procedure.

It is assumed initially that throughput is relatively
constant, and that measurements in the system can be classified

as input, output, and inventory measurements. Let

X; = amount of input minus amount of output for

month i (a time period other than one month

may be used)
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Yy = ending inventory physical measurement
at the end of month i [or beginning of
month (i + 1)].

u. = true amount of material in inventory at

end of month 1i.

Further assume that

E(y;) = uy (1)
. 2 :

var y, = oy for all i (2)
. 2 :

var ‘x; = o for all 1 (3)

The traditional simple estimate of the MUF at the end of
month n is

' .
Moo= (rpop * X)) - vy (4)

An estimation procedure is suggested which will provide
a different estimate for vy and lead to a different estimate

for MUF. Define a set of z values as follows:

n-2 = Yn-2 T *p-1 t %
21 T Y Y Xyt Xg o *n
Zg =Ygt Xyt Xy 4 s X, (5)
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z, is simply the ending physical inventory for month n and
hence 1is an estimate of T With no losses, Z,.1 is also an
estimate of the inventory at end of month n. The same is true
of all the z's; they all have expected value T This suggests
that some averaging procedure applied to all the z's might pro-
vide a better estimate of . than simply using the physical

inventory at the end of month n.

Intuitively, one would believe that the '"'most recent"
z's would be better estimates of the current inventory than
would the earlier z's. This would suggest the use of some
weighting procedure. Consider the estimate of My consisting

of the linear combination

n
In = Z aj Zi (6)
0
where

n
%ai=l

I is an unbiased estimate of T under the assumptions of
this model. In determining the set of a's to use to provide
the '"best'" estimate of Hps @ reasonable criterion is to select
that set which results in a minimum variance for the estimator.
The derivation of this estimator is somewhat complicated by

the fact that the z's are not mutually independent. The

covariance between zZs and zj is

. 2 - .
cov (Zi’zj) = (n - j) Oxge» 1 <] (7)

Also, the variance of z; is

(8)

2 Ly 2
var z. = oy + (n j) oy
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Denote by V the variance-covariance matrix for the z's. Then,
one can use the generalized least squares estimate(l) for W
denoted by ﬂn, and appeal to the Gauss-Markoff theorem to
assert that this is the minimum variance unbiased estimator.
This becomes

no= (T V—l -1

n )

'V © 2Z (9)

where T is a column vector of ones with (n+l) rows, and Z is

the column vector of z's. The variance of Hp is

-1 1

var ﬁn ='(T' VS T) (10)

As a very simple example, suppose

5 units2

PR ) Al N}

1 unit2

1f

In this example, the variance of a physical inventory is five
times as large as the variance of the total input less the

total output. Consider the estimate of ﬁz. The z's become

Zg =Yg * X * X, (11)

The variance-covariance matrix is

(e Neo N ]
o1 OO
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(T'' V- T) - = 22 = var ﬁz

(0.26042 0.31250 0.42708)2Z

This indicates that the "best'" linear combination to use
in this example is

= 0.26042z, + 0.3125021 + 0.4270822

"2 0
which has variance 205/96 or 2.135 unitsz. Note that the usual
estimate of IPY namely Yoo has a variance of 5 units2 which says

the gain in precision in this example 1is very significant.

It should be pointed out that the particular linear com-
binations of z's which should be used and the improvement in
precision depend only on the ratio of Oi to 03’ and not on
their values. This permits the construction of tables of the
a coefficients as a function of c = ci/ci and n. Table 1
gives these coefficients for ¢ = 0.10(0.10) 1.80 and n =
1(1) 10.

Given this new estimating procedure for W s the next
problem is to see how the result might be used in estimating
the MUF. The reasonable choice is to use the best estimate
of the ending inventory for month (n-1) along with the
(inputs - outputs) and ending physical inventories for month n.
Denote this estimate of MUF by M;.
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1"

Moo= (g *ox ) -y (12)

This is the same as the traditional estimate of MUF except

Yn-1 is replaced by ﬁn-l'

The variance of Mn is

" 2 2 2

var M_ = oy * oyt g (13)
where c% = (T s T)_1 (14)
. 1
This compares with the variance of Mn’ the traditional
estimate.
v 2 2
var Mn = 20y * oy (15)

A measure of the improvement in precision may be expressed as

the ratio

1]
2 var Mn
R® = ——— (16)
var M
n

or, alternatively
| 1
standard deviation M var M
R = n _ n (17)
- W ———
standard deviation Mn var Mn

R is a function of ¢ = ci/ci and n, the number of months.

For simplification, R is shown as a function of c¢ only in
Table 2 with infinite n. For all practical purposes, n becomes
"infinite'" very quickly, and so Table 2 is quite descriptive

for any n. To illustrate, in the example used previously,

14



02 = 5

Yy
02 =1

X

2 _
oz = 205/96

AR S S
R = m—1.163

TABLE 2.

C

.10
.20
.30
. 40
.50
.60
.70
.80
.90
.00
.10
.20
.30
.40
.50
.60
.70
.80

L S S Sy Sy W O = T = T o SR = B o S o S e Y o S S

R Versus c¢ for Infinite n

R

[ T T e e T e e T oy

.238
.188
157
.135
.118
.105
.094
.085
.077
.071
.065
.060
.055
.052
.048
.045
.042
.040

BNWL-1385

This compares with a value of 1.188 at Infinite n.

Note from Table 2 that the gain in precision can be

large as c gets small, i.e., as the physical inventory

15
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uncertainty tends to dominate. This gain in precision can be
equivalent to the information obtained by additional sampling
and analytical effort.

It should be emphasized that although the foregoing dis-

) 2
cussion assumes that Oy

and oi are constant over time, 1.e.,
that the variance of the physical inventory and the variance of
the (inputs - outputs) are constant from month to month, these
assumptions are made for simplicity in presentation and are

not crucial to the argument. Similar results have been found
for the situation in which oi is not constant. Work is pro-

ceeding for the case in which 05 is not constant.

Some further results on MUF, and specifically the '"mini-
mum-variance' MUF, are given in the section of this report
entitled "MUF as Criterion of Diversion.'" Before this discus-
sion, however, another way is discussed briefly in which the

variance of the MUF may be decreased.

Costwise Minimization of the Variance of MUF

In the previous section, a method was shown whereby dif-
ferent estimating procedures applied to a given set of data
will reduce the variances of the estimates of the inventory and
MUF. Any improvements that can be made in the quality of the
data themselves will provide additional benefits. This section
addresses itself to data improvements as opposed to "analysis

of the data" improvements.

The two obvious ways in which data improvements may be
accomplished are by using improved methods of making measure-
ments and by making more measurements. Both steps cost money,
so it is advantageous to know how many measurements to take
at what places with what sampling and measurement devices.

The particular combination of efforts which minimizes total
cost, or alternatively, which maximizes information for a fixed

cost, is the reasonable combination to employ.
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In a simplified structure, assume that MUF is a linear com-
bination of several (m) random variables, where the ith one
is denoted by Gi to show that it is the average of n,

measurements.
m
MUF = ,Z u, (18)
1=1

Assuming the Hi values are uncorrelated,

m
var MUF = 12& var ui/ni (19)

Suppose that a total of C dollars are to be spent to
obtain the measurements, and that it costs =N dollars to obtain
a single u; measurement. Then it can be shown that n, should
be chosen directly proportional to the standard deviation of
the measurement and inversely proportional to the square root
of the cost.

n, = ko;//e; (20)

1

where k is chosen in such a manner that

m
2 n.c.=0C (21)

To illustrate, suppose there are five measurement points

with the following values for 9is C4 and C.
g, = 2 c; = 4
o, = 3 c, = 4
oz = 5 Cz = 9
oy = 10 Cy = 1
og = 20 C5 =1

C = 330

17



Then,

s B8 B
N A N
]

=

n5 =

2k/2 = k
3k/2

5k/3

10k/1 = 10k
20k/1 = 20k

From Equation 21:

k[4 + 6+ 15 + 10 + 20] =

k =

Therefore,

=}
[

[ o T S ¥ B S R

=T = A~
n 1] ] 1]

=

6

6 measurements on

c

9 measurements on

c

10 measurements on

c

60 measurements on
120

c

measurements on

c
(S N

The variance of MUF in this case

var MUF =
Suppose we had

n
n,

n, =

Ng

which gives the same total cost.

would be

var MUF =

4 9 25 100 . 400
s 910" 60 * 120
chosen
20
20
5
50
75

4 9 25 100 4

_—+ = + + +

2 2 -5 50

18

330

is,

(9al
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(by Equation 19)

9.17

Then, the variance of MUF

= 12.98
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This example is intended to illustrate the approach and
is admittedly an oversimplification. However, the simplifica-
tion is only one of computational ease and does not imply that
such a cost minimization approach is not feasible in practice.
It may be that, in a given situation, simple closed-form solu-
tions would not be found. However, even in very complex
situations, computer simulation may be used effectively to
~ provide adequate answers.

This discussion on cost-minimization is very closely
related to a statistical technique referred to as estimating
components of variance. This refers to estimating the con-
tribution to an overall variance that comes from different
sources. An identification of the major contributing sources
provides an indication of where the effort should be placed

in reducing the overall variance.

Components of variance estimation plays a basic role in

statistics. This is stated very well in a book by Anderson

(2)

actually the basis of all statistical concepts, because it

and Bancroft. "However, this (components of variance) is

deals with that particular aspect of data which requires

statistical treatment - variability."

MUF as Criterion of Diversion

The preceding two sections were concerned with techniques
for reducing the variance of MUF. The importance of this in

safeguards is emphasized in this section.

To begin the discussion; some remarks are made on the
statistical testing of hypotheses, since this is central to
the discussion on the use of MUF as a criterion of diversion.
It may be that in some situations MUF is not used formally as
a statistic in hypothesis testing, yet inherent in the very

motivation behind calculating MUF is the intent to use it as
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a measure of diversion whether or not there is loss of material
by some other route. Thus, there is benefit in formalizing

the process.

The general theory will be explained in terms appropriate
to this discussion. A null hypothesis is set up which, on
the basis of the data, will either be rejected in favor of an
alternative hypothesis, or else it will not be rejected.

Specifically, let the null hypothesis be

Hy : D=0 (22)
that is, there is no diversion (or loss). Let the alternative
hypothesis be that there 1s D1 units of diversion over the
period of time in question.

Hj : D=Dy, Dy >0 (23)

Data will be collected, D will be estimated from the data,
and on the basis of this estimate, the null hypothesis will be
tested. Denote the estimate by ﬁ, which will be the MUF esti-
mated by some procedure. Clearly, if D is "large,'" one would be
inclined to reject the null hypothesis and conclude that a
loss of materials has occurred. But how large is '"'large?"

This depends upon the risks of making incorrect decisions which

one is willing to take, and upon the variance of D.

The figure sketched below is helpful in understanding the

situation.

o

}s

PROBABILITY OF
DETECTING DIVERSION

o
- R
o

—~

: D=0 H D=D

1 1
AMOUNT OF DIVERSION, D
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This is called a power curve. Its placement and shape
depend on:
o = probability of asserting that there is diversion
when indeed there is none (called a Type I error).

o is called the significance level of the test.

B(Dl) = probability of asserting there is no diversion
when in fact D1 units have been diverted (called
a Type Il error; B is function of Dl).
DC = "critical value" for D, i.e., the assertion is
made that there is diversion when D > Dc'
o% = variance of D.
a 1s normally chosen quite small. g is, of course, a

function of D, and is chosen small for that value of D which
one would like to detect '"most' of the time. DC is a function
of a, and o%. This latter quantity is of crucial importance

to the whole discussion

To illustrate, suppose
o = 0.05 (5% chance of asserting that there is
diversion when in fact there is none.)

2 2

g~

D = 4 units (Oﬁ = 2 units)+

To find Dc’ the critical value for ﬁ, assume that ﬁ is
normally distributed with average value (mean) zero (under
the null hypothesis of no diversion) and standard deviation 2.
Then the pertinent statistic to use is the ratio

ﬁ/oﬁ = 5/2

Under the null hypothesis, this is normally distributed
with mean zero and standard deviation one. (If Oﬁ is not
known, but is estimated, Student's "t" distribution is used
with the appropriate number of degrees of freedom.) Then,

from a table of the normal distribution,

Prob [(ﬁ/z) > 1.64] = 0.05 = o

+ It 1s assumed in this example that this is either known or
estimated with some degree of precision.
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from which Prob (ﬁ > 3,28) = 0.05. Thus, Dc’ the critical
value, is 3.28 in this example. The '"power curve'" is then
easily constructed. For example, find the point on the curve
at Dy = 5 units. The above process is reversed:

Prob (diversion is asserted)

Prob (D > 3.28)

D-5 | 3.28&5)
7 >

Prob (

This last step is made to achieve a variable which has
mean zero and standard deviation one, and hence will permit use
of standard normal tables. Denoting this transformed variable

by D*, the above expression becomes
Prob (D* > -0.86)

which is 0.81 from the normal table. Thus,
g(5) =1 - 0.81 = 0.19,.or there is a

19% chance that a diversion of 5 units will not be detected.

This gives one point on the power curve.

This example and discussion raises a few questions. What
should be chosen as a value for a¢? (What percentage of the
time should be spent trying to track down some material when
in fact the evaluator is just observing a random fluctuation?)
What about an observed large negative value of D? What B
values are reasonable for given D's? These questions involve
extensive thought, and there are no easy answers. However, the
point is that when formalizing- the hypothesis testing approach,
one is forced to face up to questions such as those, to recog-
nize the risks involved, and to predetermine what action will
be taken when, in fact, a significantly large MUF does occur.
Furthermore, the power curve is extremely important in mea-
suring the impact of a reduced variance in MUF. It tells
precisely how important it is to reduce this variance, say, by
a factor of two.
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To illustrate this last point, suppose that in the pre-
vious example op were 4 instead of 2. Then, the critical
value DC is changed.

Prob [(5/4) > 1.64] = 0.05

implies D. is now 6.56 rather than 3.28. Arguing intuitively,
in the presence of a greater random error, more "evidence'" of
diversion is needed before it can be concluded that diversion
has truly occurred. This will obviously reduce the power of

the test. Specifically, again at D1 = 5,

Pfob [ﬁ<> 6.56]

D-5 6.56—5]
>

Prob [ i 1

Prob [D* > 0.39] = 0.35

Thus, by doubling the standard deviation in this example,
the power (1-B) is reduced from 0.81 to 0.35, or, equivalently,
the B error changes from 0.19 to 0.65. There is a 65% chance
that a diversion of 5 units will not be detected. The power
curve demonstrates the practical significance of decreasing the

uncertainty in MUF by a given amount.

This is illustrated for the example in section (1) of
this report where the variance of the usual estimate of MUF
was compared with the variance of the minimum-variance esti-
mator (see Equations 13 and .15). In the example treated there,
for infinite n, and c = oi/oé = 0.2, the standard deviation of
the usual estimator Mg was 18.8% larger than that of M;, the
minimum variance estimator. The power curve data for this
example are reproduced in Table 3. The power curve is a

function of the sizes of o; and ci in addition to their ratio,
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and so the first column of Table 3 is given as a multiple of

o the physical inventory standard deviation.

y-’

TABLE 3. Example of Power Curve

- 2, 2
c = X/0y = 0.2
n= o
a = 0.05

Power for
[] 1"t

Dl/o Mn Mn
0.6 0.11 0.12
1.2 0.20 0.24
1.8 0.33 0.41
2.4 0.48 0.60
3.0 0.64 0.77
3.6 0.77 0.89
4.2 0.88 0.95
4.8 0.94 0.98
5.3 0.97 1.00
5.9 0.99 1.00

Clearly, for '"small'" or '"large' diversions, the reduction
in standard deviation of 18.8% has little practical importance.
It is in the '"borderline' area where, in fact, it is most impoTr-
tant that the data be as precise as possible, that the benefits

become of practical importance.

Thus far, the MUF has only been considered as an indicator
of when there might be diversion during a given month (or unit

time period). There is significant additional information
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embedded in the data which can be extracted when one considers

sequences of MUF's in addition to each individual one.

The two techniques to be discussed both depend on statis-
tical independence between the successive MUF's. Such inde-
pendence does not exist with the traditional estimate, Mé,
since the beginning inventory for one month is the same as
the ending inventory for the preceding month. This points
out another advantage of the minimum-variance MUF. Somewhat
surprisingly, perhaps, successive MUF's calculated by this
procedure are statistically independent of one another. This

is an important property.

This property has been proved rigorously, but will be
demonstrated here with a simple example. Suppose n = 2 so

that, from Equation 12
My = (uyp + X -y,

;l comes from Equation 9 and specifically from Table 1. Say
=02/o2 = 0.5 Then
</ 9y .5.

~

0.4 z, + 0.6 z

M1 0 1
where Zp = Yo * X3

11N
Therefore

up = 0.4y, + 0.4 x) + 0.6 z;
the previous MUF, M” is

1"

Mp =g v % -7

25



BNWL-1385

where uo = Yo
"t
So M1 = yO + X; -y
1"
M —_

) = 0.4 Yo * 0.4 x; + 0.6 Y1

At first glance, these would appear to be strongly corre-
lated, since both are functions of yg, Xy, and Yq- However, in
1" "

calculating the covariance between M1 and MZ’ remembering that

Yo» X1> and y, are themselves uncorrelated, this becomes

Cov (M, My) = 0.4 62 + 0.4 62 - 0.6 o2
ov , . + 0. - 0.
1, M2) yo °x1 y1

= 0.4 02 + 0.4 02 - 0.6 02
y X Yy
from (1) and (3)

-0.2 05 + 0.4 ol

But, in this example, c = ci/oi = 0.5, or Gi = 0.5 65’ and
the covariance becomes zero. This is a demonstration of the
fact that the particular coefficients which define the linear
combination of x's and y's to result in a MUF estimate are so

chosen that statistical independence results.

This is a very important fact from a practical standpoint.
It permits the use of some standard statistical procedures
which would not be applicable in the presence of correlated
MUF's. One such procedure is the mean square successive dif-
ference (MSSD) method of looking for trends in the data.

Consider the quantity

oM, - MT)Z
2 _ +1
Q% - 121 lz(n_l)l (24)
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In the absence of trends in the data, Q2 has an expected
value equal to the variance of M;. (The first few terms in
the sum will have unequal variances, but these will quickly
approach a limiting value. One can perhaps remove the first
few from the analysis.) Thus, Q may be compared with the

usual variance estimator.

(25)

If the ratio of Q2 to Var is significantly different from
one, significant nonrandomness exists in the data. Tables to
test for the statistical significance of this ratio are con-

tained in Reference 3.

In the absence of nonrandomness, Q2 and Var are both what
may be called '"external" estimates of the variance of MUF,
i.e., they are based on the amount of variation actually
observed among the observed MUF's. When nonrandomness obtains,
Q2 would be the appropriate measure of this variance. It is
very enlightening to compare these values with those obtained
"internally,'" i.e., by propagating the errors of the quantities
making up a given MUF.

If all the variance sources are accounted for and are
estimated with sufficient precision, then the '"external" and
"internal'" estimates of variance MUF should agree. Failure
to agree points out that the situation has not been modeled
properly, or that the input data are in error. It is very
important to know this because otherwise the cost-minimization
approach in the section devoted to costwise minimization of
variance can lead to wrong answers as to where the effort
should be expended. Even if formal cost minimization pro-

cedures are not followed, the evaluator is certainly guided by
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his assumed components of error structure in determining this
effort allocation. It is important that he have the error

structure properly appraised.

As a final note in this section, the evaluator should at
the very least plot sequences of MUF's to see how they vary
over time. An especially effective plot in detecting small,
persistent biases and/or shifts in bias is the so-called
Cusum plot which accumulates the sum of the MUF's and plots
this sum as a function of time. Clearly, when in control, this
plot should hover around zero.

In the next section, a different topic is considered with
the treatment of biases in analyzing and interpreting data

reviewed.

The Treatment of Biases in Uncertainty Statements

Suppose that a measurement, x, has expected value
E(x) = 8 + 6§ (26)

where 6 is the 'true'" value of the measurement, and § is the
bias in the measurement. The precision of the measurement is

obtained from

o2 = E[x - E(x)]? (27)

The expected squared difference between the measurement
and the true value 1is

E(x - 9)2 E[x - E(x) + E(x)-e]2

i

Bx-E(012 + 28 {[x - (] EG)-01} + E[EG)-0]?

The middle term is zero, and the last term is 62, from
Equation (26). Thus,
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1
Q
+
O

E(x - e)z =

2

.. . 2
"precision"” + "bias"

(28)

In this sense, bias2 may be considered as a variance
component. This concept 1s essential to an understanding of
the nature of the uncertainty of a MUF. If desired, the
bias? component may be thought of as a random component which
persists over the time period in question. For example, it
may represent a calibration error, and the instrument in
question may be recalibrated at the beginning of a new time

period, thus inducing (possibly) a new value for s.

Precisions, expressed in relative terms, improve (i.e.,
random variances decrease) with increased numbers of measure-
ments, while biases do not. For this reason, moderate biases
for individual determinations can prove to be dominating in a
campaign. When making cost-minimization studies, these biases

certainly must be kept in mind.

Cumulative Error Model in Calibration Work

This subject will not be developed fully in this report,
but it is important enough that mention must be made of it.
In the previous section, it was pointed out that moderate
biases will often dominate over a campaign, and calibration
error was given as an example of such a bias. It is our con-
cern that the calibration error assigned in a given situation
may be an underestimate of the true error, and, in fact, it

may well be a serious underestimate.

This concern arises because of the way in which calibra-
tions are generally performed. In tank calibrations, for
example, increments of liquid are added and successive readings
are taken. These readings are not statistically independent

of one another but rather, the random errors are cumulative in
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nature. The calibration data are often fit by least squares
techniques, even though the assumption of an independent and
equal error structure for each value of the dependent variable
does not hold true. The net result is that the precision
assigned the calibration may be grossly overstated. Since
calibration precisions affect safeguards numbers as biases, the
effect of the invalid analysis of the calibration data can be
very misleading, and can lead to the assignment of uncertainty
to a MUF that is grossly incorrect.

For a more complete discussion of this topic, see Refer-
ences 4, 5, and 8. The latter reference is specifically
directed at tank calibrations.

Future and Extended Uses of Statistics in Safeguards

There are many exciting future possibilities for the appli-
cations of statistics and closely related techniques to the
problems of safeguarding nuclear materials. Areas in which
some attention has been given future applications are men-

tioned briefly in this closing section.

One of the aspects of future safeguards is the development
of quantitative criteria for making objective judgements on
the performance of safeguards activities. Are decisions to be
made on the basis of absolute effectiveness alone? To what
extent should cost-effectiveness play a role? What is the pro-
per way to include the variables (amount diverted and time to
detect) when evaluating them jointly? It is in answering
questions such as these that sfatistics, in using the many
subject-matter forms that the subject now takes, can be
extremely helpful in setting forth in quantitative and unam-
biguous form the objectives of safeguards efforts. This will
create an interacting relationship between the decision maker
and the systems developers and will be helpful in directing
the future thrust of activities into a commonly-agreed-upon

quantitative channel.
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Another exciting possibility is the application of the
theory of games to safeguards problems. In the pure safeguards
situation, the primary emphasis is in developing the optimum
strategy for defeating an adversary. Adversary strategies,
probabilities of attempts at diversion, and counter strate-
gies should be formally studied. In view of the complexity
of the situation, simple closed-form answers are probably not
possible. Here again, though, with the availability of modern
high speed computers, simulation studies which will provide

adequate answers are entirely feasible.

Finally, consider the application of decision theory
to safeguards. The general objective of decision theory,
which is closely related to the theory of games, is to make
the best decision on the basis of the available information.
It accomplishes this by mapping an outcome space of possible
results into a decision space. In the safeguards context,
the kinds of statistical indicators of diversion would be
mapped into the space of diversionary tactics, the intent
being to infer the origin of the diversion. Such an approach,
whether formalized or not, is really basic to good safeguards
since it does little good to have evidence of diversion if
one is at a loss to know what investigative and corrective

action to take.
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