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ABSTRACT 

Metallurgical examinations and evaluations were  performed 

on a group of 52 2-1 /4  Cr  - 1 Mo fe r r i t i c  s tee l  t a rge t  tubes f r o m  

Atomic Power Development Associates '  Rig 10. 

were  exposed to smal l  leaks of water  in 6 1 3 0 ° F  flowing sodium. 

The extent of wastage wa.s determined by dimensional and volu- 

me t r i c  measurements .  IWetallographic, hardness,  and scanning 

electron microscopic analyses indicate th4xt the tube wastage 

process  was controlled by  (1) droplet  impingement, and ( 2 )  tem- 

pera ture  r i s e  in the target  tube caused by sodium-water reaction. 

A probable mechanism of wastage f o r  the tubes is postulated. 

These tubes 
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I. INTRODUCTION 

Fifty-two tubes [ tes ted unfder the Atomic Power Development Associates 

(APDA) Sodium- Water Reactio:n P r o g r a m ]  were  received f r o m  APDA fo r  

metallurgical examination and evaluation, 

2-1/4 C r  - 1 Mo fe r r i t i c  steel with 1-in. OD. The distributions of the p r imary  

target  tube and of the secondary tubes in the t e s t  assembly (Rig 10) a r e  displayed 

in Figure 1. 

rows B and C it was 1 / 8  in. 

ment  and sodium-water reaction in APDA's Rig 10. 

resul ts  a r e  summarized in  Table 1. 

All the tubes were  made  of nominal 

The nominal wall thickness of the tubes in row A was 1/16 in. ,  in 

The target  tubes were  exposed to water- je t  impinge- 

The t e s t  conditions and 
(1)  

The objective of this evaluation is to charac:terize the nature  of wastage 

damage of the p r imary  and secondary tubes. The scope of work included: 

1 )  Measurement of the extent of erosion and/or  corrosion. 

2 )  Determination of the nature  and mechanism of wastage. 

3 )  Determination of the maximum tempera ture  reached by the affected 
ma te r i a l  in the wastage a reas .  

4 )  Determination of the contribution to plastic straining due to water- je t  

impact and subsequent thermal  surge  resulting f r o m  sodium-water 

reaction and /o r  impact. 

LMEC- 70-2 I 
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SODIUM FLOW I 
-INNER 

FLOW 
SHROUD 

17.6 in.- 

/ 

ROWA ROWB ROWC ROWD 

2 

4 in 
I- 

+ 

-m 

/ 

c 

GAS-FILLED TUBE 

CIRCULATING 
WATER COIL 

-518 in. 

WATER INJECTION 

/ 
WATER INJECTION 
NOZZLE 

INSPECTION PLATE 

FLOW SHROUD 

-REACTION VESSEL 

NOTE: 1 )  C 4  DENOTES THE TARGET TUBE; A L L  
OTHERS ARE SECONDARY TUBES. 

OF 2 in., 8 4  DENOTES THE TARGET 
TUBE AND THE TUBES IN ROW C 
ARE REMOVED. 

2) FOR INJECTION-TO-TARGET SPACING 

76934762 

n 

(1)  Figure 1. Elevation C r o s s  Section of Tube Bundle Assembly, Rig 10 
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C C 
TABLE 1 

TEST CONDITIONS AND DATA SUMMARY FOR APDA SAMPLES(') 
(Target Material  - 2- 1/4 C r  - 1 Mo Steel) 

as t  Numt  

48 

6-29-69 

~. 
T e s t  

Conditions 

Na Sys tem 

F lowra te  (gpm)  

Na veloci ty  ( f p s )  

Bulk t e m p e r a t u r e  ( O F )  

Iniect ion Wate r  Svs t em 

40  

-27 -69  

4 1  

5-3-69 - 

400 

2 

617 

2 

617 

2650 

1.036 

1 

28 

1.071 

Stagn. 

100 
N2 

T 
31  

1.11 

1867 

3.4 

ND 

ND 

5 

19 

42 

i-9-69 - 

400 

2 

600 

10 

600 

2650 

1.065 

1 

16 

0.63 

Stagn. 

100 
N2 

Neg. 

1901 

15 

ND 

ND 

5 

2 0  

4 3  

, -6-69 ___ 

400 

2 

610 

2 0  

60U 

2650 

I. 128 

1 

11.5 

1.7 

Stagn. 

100 
N2 

Neg. 

ND 

ND 

ND 

5 

32  

44  

i -  19-69 

45 

3-1-69 

46 

11-20-69 

4 7  

I O -  30- 69 

50 

9-25-69 

51 

12- 11-69 

52 

2 -4 -70  

53 

: -17-70 

400 

2 

615 

0.22 

615 

2650 

1.012 

1.0 

24.5 

1.009 

Stagn. 

100 
N2 

14 

0.57 

1380 

16 

ND++ 

ND 

6 

16.5 

400 

2 

585 

2 

585 

2650 

0.038 

1 

14.5 

0.071 

H 2 0  

2650 

9 
14 

0.96 

1749 

4.5 

ND 

ND 

5 

12 

400 

2 

602 

0.30 

602 

2650 

3.012 

114 

32.6 

1.009 

Stagn. 

100 
N2 

._ ,. . .,. 

18 

0.55 

1553 

18 

ND 

ND 

6 

12 

400 

2 

600 

IO 

600 

2650 

0.043 

1 I 4  

50 

0.20 

Stagn. 

100 
N2 

9 
15 

0.30 

1870 

49 

ND 

ND 

5 
15 

400 

2 

610 

20 

610 

2650 

0.062 

1 

62.5 

0.32 

Stagn. 

100 
N2 

9 
4 

0.06 

1821 

61  

ND 

ND 

5 

19 

400 

2 

606 

20 

606 

2650 

0.059 

1 

59.5 

0.34 

Stagn.  

100 
N2 

12 

I901  

15 

ND 

ND 

5 

20 

400 

2 

600 

0.24 

600 

2650 

0.009 

114 

762 

3.0003 

Stagn. 

N2 
100 

. ,. 

17 

0.022 

983 

0.6 

ND 

ND 

5 

400 

2 

600 

0.24 

600 

2650 

0.009 

114 
I 1,040 

,00002 

Stagn. 

N2 
100 

.._.. ., ,, 

2 

1.0002 

639 

0.05 

ND 

ND 

5 

400 

2 

603 

0.24 

603 

2650 

0.008 

114 

55 

0.004 

Stagn. 

100 
N2 

., ., ., ,. 
20 

0.37 

1444 

40  & 46 

ND 

ND 

9.5 
11 

400 

2 

605 

1.0 

605 

2650 

0.02 

1 

42 

0.024 

Stagn. 

100 
N2 

§ 
26 

0.62 

1626 

36 

ND 

ND 

5 

14 

400 

2 

600 

10 

600 

2650 

0.043 

2 

43 

0.23 

Stagn. 

100 

N2 

I 
29 

0.67 

1860 

26 

ND 

ND 

6 

20 

400 

2 

610 

20 

600 

2650 

0.065 

2 

25 

0.79 

Stagn. 

100 
N2 

s 
I 1  

0.44 

1930 

27 

ND 

ND 

5 

25 

H 2 0  added ( Ib)  

T e m p e r a t u r e  (OF) 
P r e s s u r e  (ps ig )  

O r i f i c e  s i z e  ( in . )  

Inject ion spac ing  (in.)  

Inject ion du ra t ion  ( s e c )  

Inject ion r a t e  ( lblsec)  

T a r g e t  Tube 

F lu id  in  tube 

P r e s s u r e  (ps ig )  

Was tage  

P a t t e r n  

P e n e t r a t i o n  depth ( m i l s )  

Was tage  r a t e  ( m i l l s e c )  

M a x i m u m  m e a s u r e d  T 
("F) 

(set) 
T i m e  of m a x i m u m  T 

A r e a  of was tage  (in!) 

Volume of was tage  (in!) 

C o v e r  Gas P r e s s u r e  

Befo re  t r i g g e r i n g  (ps ig )  

P e a k  du r ing  t e s t  ( p s i g )  

*Broad, shallow depression 
tShallow pit 
ICerge area, central hump 

**Shellow pit 
t tND - No data 



II. EXPERIMENTAL PROCEClURES 

A. DIMENSIONAL MEASUREMENTS 

The extent of erosion/corrosion was determined by dimensional and volu- 

me t r i c  measurements .  Dimensional measurements  (maximum length, width, 

and depth of the impact a r e a )  were  made f r o m  Facsimile*” castings of the indented 

a reas  by using a Scherr  microprojector  (precision *0.001 in.). 

affected a r e a s  was measured  f r o m  impressions of the idented a reas .  

was used because of its ease  of application and i ts  accurate  dimensional r e -  

p r o duc ib ilit y . 

.I, 

Volume of the 

Facsimile  

( 2 )  

Castings were  made a t  room temperature  and were  shaped (filed) a t  room 

temperature  to match the contour of the tubes. 

checked and assured  by a Scherr  microprojector .  

the volume of wastage was measured  a t  room tempera ture  by immers ing  the 

Facsimile  impression in a 10-cc burette, 

(depending on the s ize  of the casting), containing a known level of water.  

net volume of the wastage a r e a  was determined by fluid displacement in the 

burette o r  in the graduated cylinder. 

IXmensional accuracy was 

After the castings were  made, 

10- o r  30-cc graduated cylinder 

The 

B. METALLOGRAPHIC SAMPLE PREPARATION 

After being sectioned, the samples were  mounted fo r  metallography and 

hardness  measurements .  

sample preparation. 

Normal procedures we’re used f o r  the metallographic 

Nital etchant (9570 HNO 3- !jy, methanol) was used for  all 3 
the samples .  

hardness t e s t e r  with 100-gm load. 

a r eas  a s  well a s  on a r e a s  180 deg away f r o m  wastage. 

hardness  indentations were  made in selected a r e a s  of the impact region for  

comparison. 

Microhardness  testing was done or! a s tandard Leitz Miniload 

Hardness identations were  made on wastage 

In some cases ,  detailed 

:::Trade name of a plastic mater ia l  made especiallly for  the duplication of surface 
roughness and indentation. 

LMEC- 70-2 1 
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.............. ........... ~ . .  ....- 

Ill. RESULTS 

A. EXTENT O F  MATERIAL WASTAGE 

The extent of mater ia l  wastage due to impi.ngement/erosion was determined 

by dimensional and volumetric: measurements .  

sufficient s ize  to measu re  were  found on only 21 of 52 tubes. 

shown in Table 2. 

Wastage (indented) a r e a s  of 

The resul ts  a r e  

B. METALLOGRAPHIC DATA 

Macrographs of the impact a r e a s  were  taken for  the 2 1  tubes which exhibited 

measurable  indentation on the tube surface.  

Appendix, In general, the surfaces  in the wastage a r e a s  appeared to be  polished 

and somewhat shiny. 

The resul ts  a r e  presented in the 

Stereomicroscopic examination of the impacted a r e a s  revealed i r regular  

indented surfaces  with a high density of impingement c r a t e r s .  

pingement c r a t e r s  a r e  shown in Figure 2. 

particularly evident in a r e a s  away f rom the region of highest wastage, which, 

in general, exhibited a polished and smooth appearance. 

Typical im- 

The hemispherical  c r a t e r s  a r e  

Microstructural  examination of the p r imary  target  tubes (e. g . ,  TR44, 

TR46, TR47, and TR52-B4) disclosed a general bainitic s t ruc ture  with large,  

proeutectoid f e r r i t e  grains (Figure 3) ,  a micros t ruc ture  typical of normal  

2-1/4 C r  - 1 Mo fe r r i t i c  steel .  

bides in the f e r r i t e  grains, retained austenite (identified by s elective etching) 
was found in the tube. No mechanical twinning bands o r  Neumann bands were  

detected in the f e r r i t e  grains.  

ence of recrystall ization, but no such indication was found. 

indication of corrosion was observed i n  the wastage a reas .  

In addition to the presence of undissolved c a r -  

Special effort  WE.S devoted to detect  the p r e s -  

Furthermore,  no 

Microstructural  examination of the wastage a r e a s  in the secondary tubes 

(e. g . ,  TR47-A2, TR47-A3, TIi46-B3-A) revealed a significantly different 

s t ruc ture  relative to  the p r imary  target  tubes. 

in the secondary tubes exhibited a coa r se  bainite s t ruc ture  with practically no 

proeutectoid f e r r i t e  grains (Figure 4). The sec3nd-phase par t ic les  (retained 

austenite) appeared to have increased and the i r  distributionappeared to be random 

Specifically, the wastage a r e a s  
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TABLE 2 

WASTAGE DATA FOR SODIUM-WATER REACTION TARGET TUBES 

Sample  No. 

40 

4 1  

41-B3 

41-B5 

42 

43  

44  

44-B5 

45 

4 6  

46-A2 

46-A3 

46-A4 

46-A5 

46-A6 

46-BZ 

46-B3 

46-B4 

46-B5 

46-B6 

46-C2 

46- C 5 

47- 

47-A2 

47-A3 

47-B3 

47-B5 

4 7 - c 5  

Depth 
(in.) 

1.017 f 0.002 

1.041 f 0.001 
- 

- 

3.043 f 0.001 
- 

0.044 f 0.001 

0.020 f 0.001 

0.021 f 0.001 

- 
0.039 f 0.001 

0.031 f 0.002 

0.017 f 0.001 

- 
0.013 f 0.001 

0.068 f 0.003 

0.065 f 0.002 

0.022 f 0.001 

0.025 f 0.001 

0.035 f 0.001 

(in.) 

1.10 f 0.00 

1.38 f 0.03 
- 

- 
- 

3.55 f 0.20 
- 

3.30 * 0.00 

0.90 f 0.06 
- 

0.37 f 0.03 
- 

- 

- 

1.27 f 0.012 

0.05 f 0.001 

0.97 f 0.18 

- 
0.03 f 0.001 

1.62 * 0.17 

1.45 f 0.003 

0.12 f 0.001 

0.90 f 0.0 

0.87 f 0.04 

0.43 

1.81 
- 
- 

0.58 
- 

2.36 

3.52 

2.52 

- 
- 

3.2 1 

1.73 

4.95 

- 
- 

0.60 

4.03 

4.52 

1.25 

3.35 

3.71 

Vidth 
(in. ) 

0.59 

1.14 

0.76 
- 

1.45 

1.50 

0.94 

0.24 

0.81 

1.96 

0.51 

0.67 

1.26 

0.71 

1.58 

1.80 

lample No. 

48- 

48  (a  1 
48 (b )  
50- 

5 1- 

51-C1 

51-CZ 

51-C3 

51-C5 

5 1-C6 

52-A2 

52-A3 

52-A4 

52-A5 

52-B3 

52-C4 

52-B4 

53-B4 

53-A3 

53-A4 

53-A5 

53-B3 

53-B5 

5 3 - c 4  

Depth 
(in.)  

0.015 f 0.001 
- 

0.026 f 0.00 

0.023 f 0.001 
- 

- 
- 

- 

0.035 f 0.001 

0.009 f 0.001 

- 

- 

- 

- 

0.016 f 0.001 
- 

0.02 f 0.00 

0.08 f 0.01 

0.22 f 0.02 
- 
- 

- 
- 
- 

- 

1.97 f 0.01 

0.60 =t 0.0 
- 
- 

- 

- 

- 
0.33 * 0.011 

- 
- 

.ength 
(in.) 

0.61 
- 

0.04 

1.29 
- 

- 

6.15 

2.93 

- 

- 
2.0 

- 
- 

Width 
(in. ) 

0.49 

0.09 

1.03 
- 

- 

1.78 

1.83 

- 
- 

- 
- 

1.31 
- 

Note:  - deno tes  tha t  the  i m p a c t  a r e a s  w e r e  too shal low to  b e  m e a s u r e d .  



Mag 1OX 76934753 

Figure 2. Impact Cra te rs ,  Typical of Surfaces 
in Wastage Areas  

in the grain. However, in area.s 180 deg away f r o m  wastage, the proeutectoid 

f e r r i t e  grains were  again apparent in  the bainitic: s t ructure ,  a s  shown in Fig- 

u r e  5. 

grains. 

Again, no twinning band.s o r  Neumann bands were  found in the f e r r i t e  

No indication of corrosion was observed in the wastage a reas .  

C. SCANNING ELECTRON MICROSCOPIC DATA 

Four sections (1/2 x 1/2 x 1 /8  in.)  of the wastage a r e a s  f r o m  four  different 

target  tubes (TR47-A2, TR48-B, TR50, and TR45) were  cleaned and examined 

under a scanning electron microscope. 

through 16. In addition to those l a rge  c r a t e r s  observed under an  optical mic ro -  

scope (Figure 2) ,  a l a rge  number of mic roc ra t e r s  in the s i ze  range of 1 to 

2 microns  was found in the wastage a reas .  

The resul ts  a r e  shown in Figures  6 

LMEC-70-21 
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-.. I -5  

a. Microstructure  a t  Outside Diameter 

76934754 

b. Microstructure  a t  the Middle of the Tube Wall 

Figure 3. Microstructure  of a Targe t  Tube (Tube 4 7 )  - 
Bainitic Structure with Large Proeutectoid F e r r i t e  

Grains in the Wastage Areas  

LMEC- 70-2 1 
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a. Outside Diameter of the -Wastage Area  

76934755 

b. Mid-Wall of Tube 

Secondary Tube - Note the Virtual Absence of 
Large Proeutectoid F e r r i t e  Grains 

Figure 4. Microstructure  of the Wastage Area  in a 

LMEC- 70-2 1 
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a. Outside Diameter of Tube 

76934756 

b. Mid-Wall of Tube 

Region 180 Degrees Away from the Wastage - 
Note the P resence  of Large Proeutectoid 

F e r r i t e  Grains and Bainite Structure 

Figure 5. Microstructure  of a Secondary Tube in  the 

LMEC-70-21 
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(Mag 1OX) 76934757 

Figure 6. Macrograph of Tube 47A-2 at the Tip of 
the Penetration Region. Regions A, B, and C Cor-  

respond to Top, Tip, and Bottom, Respectively, 
of the Sections Traversed  by the Scanning 

Electron Mic r o s cop e 

D. HARDNESS 

Hardness measurements  were  made  on five p r imary  target  tubes and s i x  

secondary tubes. 

Table 3 which shows that there  is a significant d:!fference between the hardness  
values in the p r imary  target  tubes and the secondary tubes. 

the p r imary  target  tubes, there is no difference in hardness  between the impact 

a r e a  and the a r e a  180 deg away f r o m  impact,  However, fo r  secondary o r  adja- 

cent tubes, there  is a Significant difference in hardness  (maximum change of 

hardness  is -200 KHN, Knoop Hardness Numb'ei.) between the wastage a r e a s  

and a r e a s  180 deg away f r o m  the wastage. For example, the average hardness  

in the wastage a r e a  is 391 KHN fo r  tube TR47-A2; and the average hardness  

values in areas 180 deg away f r o m  wastage is only 228 KHN. 

Table 3, there  is no difference in hardness betxwen the wastage a r e a  and the 

a r e a  180 deg away f r o m  wastage fo r  tube TR46#-112. 

that tube 46-A2 also showed no measurable  wastq2ge. 

The avera.ge hardness values of the tubes a r e  shown in  

Specifically, in 

As shown in 

But it should be noted 
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n 

(Mag 700X) (Mag 1400X) 

(Mag 3500X) (Mag 7000X) 
76934758 

Figure 7. Scanning Electron Micrographs of Region A (Figure 6 )  at Various 
Magnifications - Secondary Tube 

LMEC-70-2 1 
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(Mag 1400X) (Mag 3500X)  

(Mag 7000X) (Mag 14, OOOX) 
76934759 

Figure 8. Scanning Electron Micrographs of Impact Areas  in  Region B 
(Figure 6 )  - Microcra te rs  Probably Produced b y  Impingement 

(Secondary Tube ) 

LMEC-70-21 
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n 

(Mag 700X) 

(Mag 3500X) 76934760 

Figure 9. Scanning Electron Micrographs of Impact Areas  in Region C 
(Figure 6 )  - Microcra te rs  Probably Produced by Par t ic les  

Impingement (Secondary Tube ) 
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(MAG 350X) 

(MAG 700x1 

76934761 

Figure 10. Scanning Electron Micrographs of Impact Areas  
of Maximum Wastage in Tube 48I3 - Low Area,  

Region A. - P r i m a r y  Ta:rget Tube 
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n 

(Mag 350X) (Mag 700X) 7693-4798 

Figure 11. Scanning Electron Micrographs of Impact Areas  in Region B 
(Figure 10) of Tube 48B - P r i m a r y  Targe t  Tube 

(Mag 350X)  (Mag 700X) 7693-4762 

Scanning Electron Micrographs of Impact Areas  in  Region C 
(Figure 10)  of Tube 48B - P r i m a r y  Targe t  Tube 

Figure 12. 

LMEC-70-21 
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(Mag 350X) 

(Mag 700X) 76934763 

Scanning Electron Micrograph:; of the Impact Area  in Figure 13. 
Tube TR50 - P r i m a r y  Target  Tube 
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TABLE 3 

COMPARISON O F  HARDNESS CHANGE IN PRIMARY IMPACT TARGET 
TUBES AND IN SECONDARY (ADJACENT) TUBES 

P r i m a r y  h p a c t  Target  Tubes 

Average Hardness (KHN) 

f r o m  Impact 

TR41 

TR44 

TR46 

TR47 

TR52-B4 

42 9 

233 

243 

233 

411 

445 

2 14 

234 

228 

42 9 

Secondary (Adjacent) Tubes 

I Hardness (KHNI 

I Area  

TR46-A2 

TR46-B3A 

TR47-A2 

TR47-A3 

TR47-B3 

T R 5 2  - A 3  

1 5 4 ::: 

394 

391 

3 13 

374 

4 3 5  

:::No measurable wastage 

i' 

(Mag 2x1 76934764 

Figure 14. Impingement Damage on Tube TR45 
(P r imary  Targe t  Tube) Showing a Toroidal 

Wastage Pa t te rn  

180 deg Away 
f r o m  Wastage 

169 

183 

22 8 

194 

239 

253 
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(Mag 350X) 

(Mag 1400X) 76934765 

Figure 15. Scanning E1ect:ron Micrographs 'of Region A (F igure  14) 
fo r  Tube TR45 - P r i m a r y  Targe t  Tube 
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n 

(Mag 70X) (Mag 350x1 

(Mag 700X) 7693-4766 

Figure 16. Scanning Electron Micrographs of Region B 
(Figure  14) fo r  Tube TR45 
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IV. DISCUSSION d3 
A. EXTENT O F  MATERIAL WASTAGE 

The extent of ma te r i a l  wastage (removal)  clue to impact and sodium-water 

reactions, o r  both, is  presented in Table 2. The value presented for  each tube 

is  an  average of th ree  measurernents made on ith:ree Facsimile  castings for  

each tube. 

standard deviation of the mean, S 

The quoted e r r o r  o r  standard deviation f r o m  the mean for  each tube i s  also 

l is ted in Table 2. 

be reliably reproduced by the casting technique. 

Since there  a r e  only three measurements  made fo r  each tube, the 

is  used f o r  Ihe quoted e r r o r  for  each tube. m' 

It can be see11 that the depths and volumes of wastage can 

A comparison of the depth of penetration measurements  made  by LMEC 

and those made by APDA i s  shown in Table 4. 

volume of wastage fo r  the target  tubes because there  was no comparative data 

available. 

a r e  somewhat higher than those obtained by APDA. 

NID comparison was made on the 

In general, the depths of penetration measured  in this investigation 

A summary  of the average ra tes  of wastage of the p r imary  ta rge t  tubes 

obtained in this investigation i s  also shown in Table 4. 

injection ra te  on p r imary  ta rge t  tube penetration (depth) ra te  is plotted in 

The effect of water  

Figure 17. 

to 10- 

p r imary  ta rge t  tubes. 

However, for  the ra te  of volume wastage (in cc /sec) ,  this type of correlation 
is not found (Figure 18). 

It can be seen that the water  injection ra te  in the range of 1 x 
1 lb / sec  appears  to impar t  the maximum da.mage (penetration) on the 

APDA. data a r e  also included f o r  comparison purposes.  

B. NATURE O F  WASTAGE 

F o r  all the p r imary  target  tubes and secondary tubes examined under a 

light microscope (total 12 tubes),  no evidence (of cor ros ion  in the indented impact 

a r e a s  was observed. Typical micrographs of the clean eroded outside diameter  

surfaces  in the wastage a r e a s  a r e  shown in  Figure 19. Macroscopic evidence of 

mechanical damage due to droplet  impingement is presented in Figure 2 ;  typical 

impact c r a t e r s  found in  wastage a r e a s  a r e  shown. 

plastic straining o r  bending in the wastage a r e a s  is i l lustrated by Figure 20. 

In addition, the presence of 
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a.. P r i m a r y  Targe t  Tube 

b. Secondary Tuble 
76934769 

Figure 19. Typical Micrographs of the 'Outside Diameter  Surfaces 
in Wastage Areas  -- Note the Absence of any Corrosion 
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76934770 

Figure 20. Macrograph of Tube TR47A-2 (Secondary Tube) 
Showing the Thin W a s t a g e  Areas, A and B, and the 

Areas  180 Degrees Away from the Wastage, C 

F r o m  the measurement  of inside diameter  displacement on the figure, the bend- 

ing deflection is found to be 0.03 in., which i s  attributed to droplet  impact. 

ther  microscopic evidence of mechanical damage due to droplet  impingement i s  

supported by scanning electron microscopic work, as shown, f o r  example, in  

Figures  7 through 9. 
cess  was controlled pr imar i ly  by impingement o r  erosion is supported by: (1)  the 

presence of droplet c r a t e r s  in  the wastage a r e a s ;  ( 2 )  the presence of plastic bend- 

ing (deflection) in the wastage a r e a s ;  and ( 3 )  the absence of any corrosion in the 

indented wastage a reas .  This conclusion i s  in  full agreement  with that reported 
( 3 )  in  a previous examination. 

Fu r -  

Therefore,  the conclusion that the ma te r i a l  removal pro- 

F r o m  the conditions of the water-injection t e s t  in Rig 10, it is not surpr is ing 

to find that the wastage could be controlled by erosion, a s  explained in  m o r e  de- 

tail in the next section. 

n 
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/ \ C. EFFECT O F  SHOCK LOADING O N  MATEFLIAL 

1. Dynamics of Shock-Loading Due to W a t e r  Impingement W 
In the sodium-water reaction tests conductedin APDA’s Rig 10, water  was 

forced through a ve ry  nar row capillary passage (ranges f r o m  0.008 to 0.128 in.)  

at a high ra te  because of the prevailing high-pressure differential between the 

water  injection sys tem and the sodium-water reaction chamber.  

model for  the impingement effects of a smal l  water  leak in  a sodium-heated 

s team generator,  P e r r y  and B ~ : r n e l b u r g ( ~ )  have indicated that, as the water  is 

depressurized, it will f lash and the result ing wet s t eam will be  accelerated to 

high supersonic velocities, thus forming a superisonic je t  at the injection tube 

exit. 

s t eam and possibly entrained. sodium droplets in the per iphery of the jet. 

the jet  encounters a ta rge t  tube, a detached shock wave will f o r m  closely ahead 

of that  tube!4) As fur ther  postulated by P e r r y  and Bomelburg, the vapor phase 

of the je t  will be decelerated abruptly to lower (subsonic) velocities. However, 

the liquid phase (water droplets)  will essentially re ta in  i ts  velocity, and impact 

on the obstacle with almost  i t s  high, preshock velocity. 

relating the one-dimensional t ransient  impact  pres s u r e  with velocity of droplet  

has  been derived and is shown as  follows: 

In a computer 

This supersonic je t  essentially consists ‘of water  droplets in the core,  

If 

A relationship cor -  

(4 1 

F’ = io4 [(a4 - 2 b a )  U., + b/3I . . . (1)  
# A  

where 

a4R t c t 2 c h  

2 (bR - d)- a =  

2 cu l  t dul  

’ =  b R - d  

LMEC-70-21 
37 



u =-at- 
2 

n 

and 

P = ' t ransient impact p r e s s u r e  on the s tee l  t a rge t  

= densities of water  and steel, respectively, a t  1 a t m  

= sound velocity in undisturbed s tee l  
p l ,  p4 

a 4 

c = sound velocity i n  undisturbed water  

d, b = empir ical  constants 

u1 = velocity of liquid droplet before impact. 

Based on the t e s t  conditions reported for  APDA's  Rig 10 small-leak tes ts ,  

the above relationship was programmed to compute the t ransient  impact p re s -  

s u r e  a s  a function of water  droplet  velocity. 

Figure 2 d 4 )  Fo r  the highest droplet velocity computed by P e r r y  and Bomelburg 
(3056 fps), the maximum computed t ransient  impact p r e s s u r e  i s  4 x 10 

which is somewhat below the Hugoniot elastic limit fo r  i ron  (-130 kbars  o r  

1.9 x 10 psi) .  However, these velocities a r e  sufficiently high to cause local 

damage to the steel ,  a s  indicated in  a number of test reports .  (5, 6, In addition, 

depending on the volume of injected water,  the number of droplets available fo r  

impingement can be ve ry  large.  F o r  example, fo r  t e s t  47, the number of water  

droplets was estimated to be in the o r d e r  of 1017 droplets f o r  2 0  lb of injection 

water.  

a s  measured  f r o m  scanning electron micrographs.  

that  this l a rge  number of droplets, coupled with their  high impact s t r e s ses ,  

could produce extensive damage (erosion)  due to multiple droplet  impact. 

The resul ts  a r e  reproduced in 

5 -'- 
psi; 

. r  1 

6 

This calculation was based on the average droplet  c r a t e r  s ize  of 1 micron, 

It can be  seen, therefore,  

Before continuing the discussion of impact p r e s s u r e  due to shock, it will be 

helpful to review some essent ia l  points about the effect of shock-loading on i ron  

o r  i ron  alloys. 

::Because of the many simplifying assumptions made in computing these p re s su res ,  
they should be considered only to be c o r r e c t  within an o rde r  of magnitude, 
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1 o2 
1 o3 1 o'l 1 o5 1 o6 

IMPACT PRESSURE (psi)  

7693-59144 

Figure 21. Transient  Irnpact P r e s s u r e  on a Steel Targe t  as a Function 
of 'Water Droplet Velocity(3) 

2. Effect of Shock-Loading Ion :Fe and Fe Alloys 

a. Hugoniot Curve fo r  F e  and ]?e Alloys 

A basic  description of the behavior of a me ta l  o r  alloy in shock loading, 

such a s  that produced by detonation of an  explosive, i s  given by the equation-of- 

s ta te  curve o r  Hugoniot curve. The Hugoniot curve f o r  i r o n  is shown in  Fig- 

u r e  22, which displays a distinct and well-documented discontinuity a t  a p re s -  

s u r e  of 130 kbar (-1.9 x 10 psi)!7) The marked  change in slope of the curve 

has  been attr ibuted to a pressure-induced polymorphic transformation f r o m  

body-center-cubic (BCC) a - i ron  to face center  cu'bic (FCC) y-iron!8) Brancroft, 

Peterson, and Minshall(8) have suggested that this transformation i s  the normal  

A3 transformation in Fe (from FlCC to FCC lat t ice)  depressed f r o m  91OOC 

(1670°F) to approximately 37°C (-998°F) by the high p res su re .  

data indicate that the temperature  coefficient of the c r i t i ca l  p r e s s u r e  is much 

l e s s  than predicted by the moded9)  Duff and Minshall ( l o )  reported that the 

p r e s s u r e  of the transit ion may  also depend on the initial t a rge t  temperature .  

6 

However, recent 
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The transit ion p r e s s u r e  i s  reported to increase  with carbon content and the 

alloying elements in  iron. 

Figure 23. 

C r  concentrations!") The effect of Mo in Fe is not known at the present.  

The effect of Ni  o r  Cr  concentration i s  shown i n  

The equation-of-state data a r e  presented in Figure 24 for  various 

b. Shock Loading Effects on Microstructure  

There  a r e  many references in the l i t e ra ture  which repor t  the resu l t s  of 

F r o m  a survey of these references,  it (11-14) 
shock loading of F e  and F e  alloys. 

becomes apparent that F e  and F e  alloys exhibit two major  charac te r i s t ics  when 

loaded impulsively: 

f e r r i t e  grains,  and ( 2 )  increase  in hardness  and strength.  

(1)  formation of mechanical twins (Neumann bands) in the 

Normally, in i ron  a t  low tempera tures  and/or  at high s t r a in  ra tes ,  twinning 
takes place before plastic deformation by s l ip  has  occurred. Fo r  polycrystalline 

mater ia l s ,  the nonuniformity of s t r e s  s, coupled with individual grain orientation, 

resul ts  in  a fa i r ly  wide p r e s s u r e  range fo r  twinning. 
pears  that  the twinning is produced by the elastic I wave. ( 5 ,  Thin mechanical 

twins a re  found in  i ron  alloy even when shocked to as low as 14 kbar (-2 x 10 

psi) .  (16) The number of twins increases  with increasing p res su re .  

p r e s s u r e  exceeds 130 kbars,  the micros t ruc tura l  features  become much finer. 

There  is no easi ly  discernible difference in the micros t ruc ture  as the p r e s s u r e  

F o r  shock loading, it ap- 

5 

When the 

increases  f r o m  130 kbars  to 350 kbars.  (17) The twinning frequency is  a l so  

influenced by the ma te r i a l  conditions (Figure 25), a s  well  a s  by the angle between 

the shock direction and specimen surface (Figure 26). Moreover, it is note- 

worthy that heat t rea tment  has  a significant effect on twin markings of commer -  

cia1 s teels .  (15) After shock loaded f r o m  45 kbars  to 75 kbars,  twin markings 

were  observed on a l l  s tee l  specimens with 0.25% to 1% C which had been ei ther  

annealed o r  spheroidized, but no twins were  observed on quenched samples  o r  

on samples  which had been quenched followed by tempering a t  lower tempera-  

tures .  

It i s  known that the passage of a high-pressure shock wave through a mate-  

Temperature  es t imates  fo r  rial resul ts  in a tempera ture  r i s e  in  the mater ia l .  
iron, under shock, have been reported and a r e  reproduced in  Table 5. (15) As 

shown, the temperature  r i s e  increases  with the p re s su re .  As a consequence 
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of this heating effect, the energy absorbed f rom a 650-kbar or higher p re s su re  

shock is sufficient to caus e localized recrystall ization. 

reported for  i ron  shock-loaded to  750 kbars.  

Recrystallization is 
(15) 

c. Shock Loading Effects on Hardness 

As indicated in the previous section, the shock loaded Fe  o r  Fe  alloys also 

- 

display changes in mechanical properties,  such a s  in hardness and strength. 

The magnitude of change increases  with pressure .  

only a moderate  increase  in hardness is found with pressure .  

above 130 kbars, a ra ther  rapid increase  in hardn'ess is found with p re s su re  up 

to 220 kbars,  as shown in Figure 27. ( I 7 )  The inc:rease in hardness  due to shock 

loading i s  attributed pr imar i ly  to : 

For  p re s su res  below 130 kbars,  

Fo r  p re s su res  

1 )  The pressure-induced phase transforrnation that occurs  fo r  Fe  and 

cer ta in  other fe r rous  a.lloys (for P > 130 kbars) .  

of this phase transformation a r e  still unknown, it i s  to be expected 

that the high degree of latt ice s t ra in  and the complex mic ros t r e s ses  

developed during the phase change will produce a high hardness.  

Although the details 

2 )  Twins produced by shock loading to p r e s s u r e  below the Hugoniot 

e las t ic  limit for  iron. 

hardening effect if a l a rge  number of firce twins a r e  produced, as in  

the p re s su re  region close to 130 kbaris. 

(i. e. ,  number of twins and finer twin spacing) will increase  hardness.  

Twinning can contribute an  appreciably grea te r  

Increased twin density 
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3 )  Plas t ic  deformation in  which s l ip  occurs ,  a s  in  room tempera ture  

deformation of F e / F e  alloy a t  slow s t r a in  ra tes .  

plosive hardening, because the re  is only a small percentage of g ross  

deformation and no microscopically visible grain distortion! 15) it is 

hard  to rationalize hardening in  t e r m s  of s l ip  process .  

theory predicts  that  fast-moving dislocations a r e  efficient producers  

of vacancies and inters t i t ia ls .  (18) While it is a t t ract ive to speculate 

on hardening ar i s ing  f r o m  a high concentration of point defects, no 

experimental  evidence is available a t  p resent  to confirm this hypothe- 

s i s .  On the other hand, it i s  possible that the instantaneous tempera-  

t u re s  produced during shock loading at high p res su res  a r e  sufficient 

to anneal out m o s t  of the point defects produced by shock loading. 

In the case  of ex- 

Moreover, 

3 .  Effect of Shock Loading on APDA Targe t  Tubes 

In view of the preceding discussion of shock loading effects on Fe  o r  fe r rous  

alloys, it is interesting to note the following observations on the p r imary  ta rge t  

tubes : n 
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1) No twinning bands or Neumann bands were  observed in any of the 

examined target  tube s ,, 

2 )  No microstructural .  o r  phase changes were  detected. 

3 )  No apparent increase in  hardness was rioted in  the wastage a reas .  

4)  Plast ic  deformation 1i:nes were  observed in only some of the surface 

grains in the wastage *areas. 

(4 1 Based on the one-dimension,al computer model of droplet impingement, 

and on the tes t  conditions in APIIA's Rig  10, the most  severe  t ransient  impact 

p r e s s u r e  estimated is 4 x 10" psi, which is below the Hugoniot elastic limit f o r  

Fe (-1.9 x 10 ps i ) .  Therefore, it i s  understandable that there  was no phase 

change in  the impacted target  tube. 

nitude, twinning bands o r  Neumamn bands a r e  normally expected to be present  

in  the f e r r i t e  grains of 2 -  1 /4  C r  - 1 Mo steel. F o r  instance, Zukas and Fowler 

observed extensive twinning (-85% of gra ins)  in annealed i ron  when shock loaded 

to 45 kbars  (-6 x 10 

to p re s su res  a s  low as 2 x 10 psi. ( I 6 )  Because of the many simplifying assump- 

tions made in the computation, the t ransient  impact p re s su res  obtained should be 

considered only to be cor rec t  within an o rde r  of magnitude. Therefore, the ac-  

tual  t ransient  impact p re s su re  could be below 10- psi, which may be too low for  

twinning to occur. However, in  addition to press 'ure,  twinning is also dependent 

on temperature ,  grain size,  ,alloy content, and ma te r i a l  condition. Figure 28 

shows the effect of t es t  temperature  on the cr i t ical  resolved shea r  s t r e s s  for 

twinning and slip in a typical BCC metal. (19) As shown, yielding occurs by 
twinning when temperature  T < 'T (cr i t ical  twin.ning tempera ture)  and by slip 

a t  T > Tt. It is known that T, is not constant for  a given material, but var ies  
t 

with s t ra in  rate, grain size,  and material conditions (i. e . ,  annealed o r  cold- 

worked). 

approximately 600"F,  which is believed to be too high fo r  twinning to take place 

in  iron. In addition, quenched commercial  s tee l  samples ,  o r  samples  which 

had been quenched followed by tempering at lower temperatures ,  a r e  reported 

to show no twinning af ter  shock loading to 45 and to 750 kbars .  (15) But samples  

which had been ei ther  annealed o r  spheroidized slhowed twins. (15) Biggs and 

Pratt'") reported that decarburization o r  p re s t r a in  at ambient temperature  can 

6 

However, under shock loading of this mag- 

(15) 

5 
psi) .  Some twinning was reported in fe r rous  alloys shocked 

E, 

t 

It should be noted that: the tes t s  in APDA's  Rig  10 were  conducted at  
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Figure 28. Effect of Tes t  Temperature  on the Crit ical  

Resolved Shear S t r e s s  T Y  fo r  Slip and Twinning in 

Twinning When T<Tt and by Slip a t  T>Tt (19 )  
a Typical BCC Metal. Yielding Occurs  by 

a l so  prevent twinning. In the ta rge t  tubes examined, some surface decarburiza-  

tion and minor  cold work indications were  found; but since the his tory of the 

ta rge t  ma te r i a l  is not known, the effects of heat t rea tment  and ma te r i a l  condi- 

tion on twinning of target  tubes could not be ascertained. 

It can be seen, therefore,  that  the absence of twinning in the impact a r e a s  

of the target  tube is probably attr ibuted to one o r  a combination of the following 

reasons : 

1)  Thermal  t reatment  o r  t ransient  in the ta rge t  tubes, which re ta rds  

twinning when shock loaded, such as that reported by Zukas and 

Fowler. (15) 

2 )  The prevailing high temperature  conditions, which m a y  be too high 

for  twinning to occur.  

3 )  Conditions of the ta rge t  ma te r i a l  p r i o r  to shock loading. 

4 )  The magnitude of shock which could be too low for  twinning to take 
place. 
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As presented in Table 3, there  i s  no change in hardness in the wastage w a r e a s  of the p r i m a r y  target  tubes when compared to other a r e a s  away f r o m  
5 wastage. With an estimated shock impact p r e s s u r e  of 4 x 10 psi, the hardness 

in  the s tee l  should, in general, increase  for  i ron  (Figure 27) .  Specifically, at 

25 kbars  (-3.6 x 10 

to increase  about 3070, i. e., f r o m  Vicker 's  Hardness Number (VHN) 65 to 

VHN 85. (17) However, the insensitivity of hardness  to shock loading on the 

ta rge t  tubes can possibly be  explained by the aforementioned reasons suggested 

fo r  the lack of change in  microstructure .  

5 p s i )  p ressure ,  the hardness  of shocked i ron  is reported 

In summary, the t ransient  ;shock impact p r e s s u r e  produced by water  injec- 

tion did not affect the micros t ruc ture  and hardness  of the ma te r i a l  in the wastage 

a reas ,  in consonance with the previously published sodium-water reaction data. ( 3 )  

D. EFFECT O F  TEMPERATURE RISE 

1. Wastage of Secondarv Tubes 

As  noted in the previous section, the p r imary  target  tubes did not exhibit 

any apparent micros t ruc tura l  (i. e., twinning, phase change, o r  recrystal l iza-  

tion) o r  hardness  changes. However, f o r  a l l  the secondary (or  adjacent) tubes 

examined, significant changes were  found both in micros t ruc ture  and in hardness,  

as shown in  Figure 4 and in Table 3, respectively. Specifically, f o r  tube 47-A2, 

the micros t ruc ture  in the wastage a r e a s  exhibited a coa r se  bainite s t ruc ture  

with virtually no proeutectoid f e r r i t e  grains (Figure 4). 
however, the micros t ruc tures  displayed a normal  bainite s t ruc ture  with large,  
proeutectoid f e r r i t e  grains  (Figure 5). This micros t ruc tura l  change is attributed 

to thermal  excursion due to the exothermic sodium-water reaction and subsequent 

quenching by flowing sodium at a much lower tempera ture  (-600°F). 

comparison with controlled micros t ruc tures  produced by quenching 2- 1 / 4  Cr  - 
1 Mo steel j3)  the maximum temperature  could have reached 1800°F in the wastage 

a r e a  of the secondary tube. But for  the p r imary  ta rge t  tube, the maximum tem- 

pera ture  estimated is only 1400°F; the mos t  probable tempera ture  reached could 

have been much lower (- 1200" 17).  

Curve fo r  2-1/4 C r  - 1 Mo s tee l  (Figure 2 9 ) ,  the micros t ruc ture  produced by 

quenching f r o m  1700 o r  1800 O F  to 600 O F  should consis t  of only bainite without 

the presence  of proeutectoid fe r r i te ,  

In a r e a s  180 deg away, 

Based on 

F r o m  the Time- Temperature-  Transformation 

(21) in agreement  with the micros t ruc tures  0 observed in the wastage a reas .  
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Hardness comparison between the wastage a r e a s  and a r e a s  180 deg away 

f r o m  wastage a l so  disclose a significant hardness increase.  Specifically, for  

tube 47-A2, the average hardness in the wastage a r e a  is 391 KHN, and the 

average hardness in  a r e a s  180 cleg away f r o m  wastage is only 228 KHN. 

these hardness data indicate that the ma te r i a l  in the wastage a r e a  could have 

experienced a high tempera ture  (21800°F) and then a rapid quench to bulk 

sodium tempera ture  (-600 OF'), in consonance with the micros t ruc tura l  observa-  

tions. 

other  examined secondary tubes. 

tube TR46-B3 i s  211 KHN (i. e . ,  394 KHN vs 183 KHN); for  tube 47-A3 it is 

119 KHN (i. e., 313 vs 194 KHN). 

cause there  was no measurable  wastage (Table 2 ) .  

Again, 

Similar changes in  micros t ruc ture  and in hardness  were  found f o r  a l l  

Hardness increase  in the wastage a r e a s  for  

Tube 46-A-2 did not exhibit any change be- 

2. Effect of Tube Location on 'Wastage 

As  additionally noted in the preceding section, t he re  a r e  significant dif- 

ferences in  wastage, in microstructure ,  and in  hsrdness  between the p r imary  

and secondary (adjacent) impacted tubes. These observations suggest that the 

path length between the injection orifice and the tube may  play a significant role 

in  wastage. The c r i t i ca l  location of the tube i s  defined a s  the location where 

the majori ty  of the je t  of water  droplets would be moderated to sufficient low 

velocities for  sodium-water reaction to occur. 7'0 i l lust rate  this point, con- 

s ide r  t e s t  47 in which two secondary tubes were  completely penetrated by wast-  

age. 

to the secondary tubes is shown in  Figure 1. While the path length between the 
injection orifice and the prin-iary ta rge t  tube is only 1 in., the distance between 

the injection point and any secondary tube in Row A (Figure 1)  i s  at l ea s t  3 in., 

depending on the tube of interest .  The p r i m a r y  ta rge t  tube (tube 47-C4) exhibited 

a penetration depth of only 0.013 in., the walls of' two secondary tubes in Row A 

(tubes 47-A2 and 47-A3, 0.065 in. nomin'al wall thickness)  were  completely pene- 

t ra ted:  a five t imes  increase  in penetratdon depth relative to that of the p r i m a r y  

ta rge t  tube. In addition, the measured  Golume of' wastage fo r  the p r imary  target  

tube is 0.03 cc ;  f o r  secondary tubes 47-42 and 47-A3, wastage volumes a r e  1.62 

and 1.45 cc, respectively. 

therefore,  m o r e  than 50 t imes that exhidited by the p r i m a r y  ta rge t  tube. Hence, 

i f  other t e s t  pa rame te r s  (e. g., water  purity, p ressure ,  temperature ,  initial jet  

The location of the injection orifice relative to the p r imary  target  tube and 

I 

The volume df wastage f o r  the secondary tube is, 
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velocity, orifice size, angle of deflection, volume of water,  etc. ) a r e  kept con- 

stant, the wastage appears  to increase  with path length f rom the injection point 

in a complex manner, contrary to the behavior of droplet velocity which even- 

tually decreases  with distance f rom the point of i n j e ~ t i o n ! ~ )  It is  postulated that 

this increased path length contributes to increased wastage through a combina- 

tion of the following effects: 

1)  Agitation and mixing of reactants, promoting sodium-water reaction; 

2 )  Increased t ime available for  sodium-water reaction initiation; and 

3)  Reduced velocity of the reactive s t ream, permitt ing more  water 

droplets to participate in  the reaction. 

The preceding observed differences between the p r imary  target  tube and 

the secondary tubes suggest that, in addition to high impact p re s su re  and la rge  

number of droplets obtainable under the t e s t  conditions in  Rig 10, a prevailing 

high-temperature condition on the tube impact region is also necessary  for  the 
extensive wastage observed in  some of the secondary tubes. 

the heat of reaction of sodium and water o r  s team (or both) could have provided 

the required thermal  energy for the temperature  increase.  Therefore,  the 

magnitude of wastage on the tube appears to depend on: 

"massive" sodium-water o r  s t eam reaction on o r  near  that tube; ( 2 )  the volume 

o r  number of droplets o r  par t ic les  that participated in the mass ive  sodium- 

water reaction and impingement processes ;  and (3) the velocity (therefore, the 

impact p r e s s u r e )  of the deflected droplets o r  par t ic les  that impinged on the tube. 

It i s  surmised  that 

(1)  the probability of a 

F r o m  the observed wastage data on the tube bundle, it is apparent that  the 

probability of a massive sodium-water reaction to occur on o r  near  a secondary 

tube depends on: 

path of the deflected jet of water droplets and s team part ic les ;  (3) the extent of 

mixing between sodium and water  o r  s team; and (4) the mean velocity of the jet  

or s t r e a m  of water droplets. 

o r  s team part ic les  a r e  functions of the original volume of water, the t e s t  con- 

ditions, the angle of deflection, and path length of the deflected jet  o r  steam. 

(1)  the distance of the tube f rom the injection orifice;  (2 )  the 

The volume and velocity of deflected water droplets 

At this point of discussion, a hypothesis involving a "crit ical" velocity 

concept may be introduced to explain the wastage observed in numerous secondary 
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tubes. It appears  that when thc: major i ty  of the droplet velocities a r e  above a 

cr i t i ca l  velocity (V ), no major  sodium-water reaction can  occur because the 

sodium would just  be pushed aside due to high kinetic energy of the je t  o r  s t eam 

of droplets o r  particles.  In addition, the je t  of droplets would be shielded f r o m  

sodium by the gas pocket produced by the sodium-water o r  s t eam reaction on 

the periphery of the jet. 

equal to o r  below V 

occur, resulting in a sudden and drast ic  increase  of temperature  a t  the reaction 

location. 

(damage) would occur  on the tube if  there  is a sufficient quantity of water  droplets 

o r  s team part ic les  available for  impingement on the tube. 

showing the hypothesized variation of temperatu:?e and mean velocity of the je t  

o r  s t r e a m  of droplets on the path length traveled by the s t r e a m  a r e  shown in 

Figures 30 and 31, respectively. 

C 

But when the majori ty  of the droplet velocities a r e  

a relatively la rge-sca le  sodium-water reaction would 
C’ 

If there  is a secondary tube a t  o r  near the reaction, extensive wastage 

Schematic diagrams 

3. Effect of Temperature  on I3rosion Resistance of 2-1/4 C r  - 1 Mo Steel 

It i s  known that erosion resis tance usually increases  with increased tensile 

s t rength and hardness of the mater ia l .  ( 2 2 )  Any t::eatment o r  parameter  that will 

cause an  increase  of tensile strength o r  microhardness  will, in general, increase  

erosion resistance.  Conversely, any t reatment  causing any reduction of micro-  

hardness  o r  tensile strength will1 lead to a decrease  of erosion resis tance,  

weakening effect of temperature  on tensile strength of 2-1/4 Cr  - 1 Mo fe r r i t i c  

s tee l  and on hot microhardness  of a f e r r i t i c  s tee l  is shown in Figures  32 and 33, 

respectively. 

in liquid meta ls  indicate that t h e  severi ty  of impingement damage may  be inversely 
related to the s t r a in  energy of the 

s t r a in  energy i s  defined a s  the a r e a  beneath the s t r e s s - s t r a i n  curve of a ma te r i a l  

and can be approximated by the equation: 

The 

In addition, recent impingement c amage data on various mater ia l s  

Under constant s t ra in  rate, the 

T E (st ra in)  

where 

u 

0 

= yield s t rength of the ma te r i a l  a t  t empera ture  T 

= tensile strength of the ma te r i a l  a t  temperature  T 
Y 

U 

F = elongation of the ma te r i a l  a t  temperature  T. 
T 
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Figure 33. Hot Microhardness 

Data fo r  a Fe r r i t i c  Steel(3) 

The s t ra in  energy of 2-1/4 Cr  .- 1 Mo s tee l  is reported to decrease  with tempera-  

ture ,  par t icular ly  a t  temperatures  above 1200"F,  a s  shown in Figure 34. 

The adverse  effect of temperature  on ultimate resil ience of 2-1 /4  C r  - 1 Mo 
ferr i t ic  s tee l  is shown in Figure 3 5 ! 3 )  Ultimate resilience is often a good indica- 

tion of the resis tance of a ma te r i a l  to erosion by cavitation. ( 2 2 )  

As previously mentioned in this section, the maximum tempera tures  reached 

in the p r imary  and secondary tubes were  estimated to be 1400" and 1800°F, r e -  

spectively. 

hibit a much higher wastage relative to that of the p r imary  ta rge t  tube. 

increased wastage in the secondary tube i s  attributed to the increase  in tempera-  

tu re  on the secondary tubes, particularly a t  t empera tures  above 1 5 0 0 ° F  where 

the strength of 2-1/4 C r  - 1 Mo fer r i t i c  s teel  is a lmost  ze ro  (Figure 32). 

And a s  reported for  t e s t  47, the secondary tubes were  found to ex- 

This 
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E. MECHANISM O F  WASTAGE; 

In an ea r l i e r  sodium-water reaction target-tube examination report,’3) the 

author proposed a wastage mechanism to explain the sodium-water reaction 

wastage process .  

be analogous to a high quality thermal -arc  plasma-cutting/hole-piercing process  

in which the plasma a r c  rapidly erodes the mater ia l ,  forming a hole/indentation 

about equal to the diameter  of the p lasma-arc  s t ream.  

reaction tes ts ,  the s t r eam would contain a je t  of wet s team and/or  sodium-water 

reaction products, traveling a t  high supersonic vldocity, which would impinge 

on the target  mater ia l .  

pera ture  of the target  tube, flow velocity, and the m a s s  of the water  droplets 

in the jet. 

from droplet impingement. 

As discussed in the report, the wastage process  appears  to 

In the sodium-water 

Material  removal would xhen be controlled by the tem- 

Material  loss  (wastage) is attributed to an erosion process  resulting 

Since the completion of examination of 52 m o r e  ta rge t  tubes, additional 

evidence has been discovered to substantiate the aforementioned wastage mecha- 

nism, as well a s  to refine the proposed wastage mechanism to cover the wastage 

of adjacent/secondary tubes in the tube bundle. 

tions of this report ,  metallograpliic, and scanning electron microscopic data on 

wastage a r e a s  have completely established that the ma te r i a l  loss  (wastage) is 

attr ibuted to an erosion process  resulting f rom droplet  impingement. 

and m o r e  rigorous, analytical t reatment  of the impingement effects of a sma l l  

water  leak in a sodium-heated s team generator  h s s  shown that a jet  of water  

droplets can be accelerated to ve ry  high supersonic velocities ( in  the o r d e r  of 

several thousand fee t  per  ~ e c o n d ) ! ~ )  Because of such high impact velocities, 

As discussed in previous sec-  

A recent, 

5 6 to 10 correspondingly high t ransient  impact p r e s s u r e s  (10 ps i )  can be generated 
locally in the impact a r e a  of the ta rge t  tube. (4 )  

Based on the experimental  and analytical data, a m o r e  refined wastage 

mechanism i s  suggested a s  follows (shown schem.atically in Figure 36). 

Because of the prevailing high-pressure differential between the water  injec- 

tion sys tem and the sodium-water reaction chamber, the subcooled water  is 

forced through the sma l l  diameter  injection capillary tube at a high rate. 

to depressurizat ion and subsequent flashing, the result ing jet of wet s team will 

be accelerated to high supersonic: v e l ~ c i t i e s ! ~ )  A.s schematically shown in Fig- 

Due 

u r e  36, the hypothetical s team ,jet contains, essentially, a co re  of water  droplets 6$ 
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NOTES: 
A L L  MATERIAL WASTAGE IS DUE TO 
IMPINGEMENT. I N  REGIONS 6, THE 
WASTAGE IS HIGHER THAN THAT I N  
REGION A BECAUSE OF THE HIGHER 
TEMPERATURE IN REGIONS B CAUSED 
BY SODIUM-WATERETEAM REACTION. 

DROPLETS WITH V 

MASS1 VE SOD1 UM-WATE RETEAM 
REACTION CAUSED DRASTIC 
TEMPERATURE RISE ON THE TUBE 

BOW SHOCK 

SUPERSONIC WET STEAM-J 

Na FLOW 

7693.4785 

Figure 36. Idealized Configuration of the Droplet Impingement 
and Sodium-Water Reaction P r o c e s s e s  in Rig 10 
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... . 

and a layer  of s t eam and entrained sodium droplets on the periphery.  its impact on the ta rge t  tube, the wi2ter droplets in the co re  of the je t  will be  

Upon 

deflected o r  sca t te red  inelastically and will continue to  t r a v e r s e  with lower 

velocities. 

push the sodium aside and will not resul t  in a mailor reaction with the surround- 

ing sodium. At this point, the damage produced on the p r imary  target  tube can 

be  classified into two main regions, A and B, a s  shown in Figure 36. Damage 

in both regions is  produced by droplets impingement. 

reactions in region B, wastage in region B will be higher than in region A be- 

cause the temperature  in region 13 will be higher than that in region A, resulting 

in  a toroidal pat tern of wastage. 

pact i s  shown in Figure 14. 

Because of their  high velocities, the jet of water  droplets will just 

Because of sodium-steam 

A typical example of a toroidal pat tern a t  im- 

After deflection f r o m  the pri:mary target  tube, the je t  of water  droplets will 

continue to t rave l  through the sodium without any ma jo r  sodium-water reaction 

until m o s t  of the droplet  velocit.ies have been moderated to o r  below the thresh-  

old velocity V . A m a j o r  sodium-water and/or  sodium-steam reaction will fol- 

low, resulting in a mass ive  sodium-water reaction and a concomittant dras t ic  

increase  in local temperature .  Hence, the extent of damage (wastage) of the 

adjacent tubes would depend on: (1)  the distance (of the tube f r o m  the point of 

mass ive  sodium-water reaction; ( 2 )  the volume oE the deflected water  je t ;  and 

( 3 )  the orientation of the tube relative to the deflected je t  of water  droplets.  

hypothetical variations of temperature  and velocity with distance a r e  shown 

schematically in Figures  30 and 3 1, respectively. 

C 

The 

With the t e s t  conditions reported fo r  Rig  10, it should be emphasized that 

the occurence of a ma jo r  sodium-water reaction, with its instantaneous tempera-  

tu re  r i s e  in  the impact area,  i s  a necessary  requirement for  such extensive 

wastage observed in some of the tubes. 

m a r y  ta rge t  tubes and the secondary tubes, without the dras t ic  temperature  r i s e  

to ser iously deter iorate  the strength of the steel ,  the available t ransient  impact 

p r e s s u r e  and available number of droplets alone are  insufficient to produce such 

a high wastage. 

As shown by the wastage data f o r  p r i -  
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V. CONCLUSIONS 

Based on the dimensional, metallographic, hardness and scanning electron 

microscopic data obtained f r o m  52 APDA small- leak sodium-water reaction 

ta rge t  tubes, it has  been found th.at: 

1) Wastage (mater ia l  l o s s )  resulted pr imar i ly  f r o m  water-  je t  droplet  o r  

par t ic le  impingement (or erosion)  on the: p r imary  ta rge t  tubes, a s  

well a s  on the seconda~:y (adjacent) tubes. 

was found in  the impact a r eas .  

permanent plastic straining (bending) were  observed in  the wastage 

a reas .  

No evidence of cor ros ion  

Droplet impingement c r a t e r s  and 

2 )  Under the tes t  conditions in Rig 10, the water  injection ra te  in the 

range of 10 

tion) ra te  on the p r imary  target  tubes. 

- 2  1 to 10- I.b/sec imparted the maximum damage (penetra- 

3 )  Tube surface tempera ture  r i s e  caused by sodium-water reaction 
enhanced the wastage process  significantly in  a l l  the tubes. F o r  the 

p r imary  ta rge t  tubes, a maximum tempera ture  of 1400°F (*loo) was 

estimated. 

hibited measurable  wastage, the estimated maximum tempera ture  i s  

1800°F (*loo) .  

F o r  some of the secondary (adjacent) tubes which ex- 

4 )  F o r  the secondary tubes, significant hardening and micros t ruc tura l  

changes were  found in the wastage a r e a s  relative to a r e a s  180 deg 

away f r o m  wastage. 
pera ture  t ransient  experienced by the miaterial in the wastage a reas ,  

probably a resu l t  of a la rge-sca le  sodium-water reaction. 

'These changes are,  attr ibuted to a severe  tem-  

5)  F o r  the p r imary  target  tubes, no apparent changes in micros t ruc ture  

and hardness  were  noted in the wastage a r e a s  relative to a r e a s  180 deg 

away f r o m  wastage. The lack of change in hardness and in mic ro -  

s t ruc ture  is probably the resul t  of a small tempera ture  r i s e  in the 

wastage a r e a s  caused 'by a smal l - sca le  sodium-steam reaction. 

d3 

6 )  Under the t e s t  conditions in Rig 10, the t ransient  impact  shock p r e s -  
s u r e  generated by water  droplet  impact did not affect the micros t ruc-  

t u re  and the hardness  of the ma te r i a l  i n  the wastage a r e a s  of the 
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p r i m a r y  ta rge t  tubes. 

found in  the wastage a reas .  

No twinning bands o r  Neumann bands were  

7 )  Under cer ta in  test conditions, the wastage of secondary (adjacent) 

tubes can be significantly higher than that of the p r imary  ta rge t  tube. 

Specifically, f o r  t e s t  47, the volume wastage of a secondary tube was 

about 50 t imes  higher than that of the p r imary  target  tube. 

c r e a s e  in wastage of secondary tubes relative to that of the ta rge t  

tube i s  attributed to the drast ic  increase  of temperature  on the secon- 

dary  tube caused by a large-scale  sodium-water reaction. 

This in- 

8 )  Wastage data developed for  the secondary tubes strongly indicate that 

the wastage of a secondary tube i s  dependent on: 

a )  Whether a la rge-sca le  sodium-water reaction has occurred on o r  

nea r  the tube; and 

b )  The volume of deflected droplets o r  particles that participated in  

the final sodium-water reaction and impingement processes ,  

n 
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APPENDIX 

MACROGRAPHS OF WASTAGE AREAS OF TUBES 
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(Mag 2X) 
b. Tube 41 

Tubes 41 and 42 (Target  Tubes) 

76934786 
Figure A- 1. Macrographs of Wastage Areas  f o r  
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(Mag 3 / 4 X )  
a. Tube 44 

(Mag 2x1 
76934787 

b. Tube 46 

Tubes 44 and 46 (Targe t  Tubes)  
Figure A-2. Macrographs of Wastage Areas  for 

LMEC-70-2 I 
65 



99 
1 Z-OL-33Yv1 

W 

W 



(Mag 2x1 
b. Tube 46-B5 

76934789 
Figure A-4. Macrographs of Wastage Areas  fo r  

Tubes 46-B4 and 46-P,5 (Secondary Tubes)  
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(Mag 2x1 
a. Tube 47 (Targe t  Tube) 

(Mag 2x1 
b. Tube 47-A2 

76934790 
Figure A-5. Macrographs of Wastage Areas  f o r  

Tubes 47 and 47-A2 (Secondary Tube) 
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(Mag 1-1 /4X)  
a. Tube 47-A-3 

(Mag 2x1 
b. Tube 47-B3 

Tubes 47-A3 and 47-B3 (Secondary Tubes) 

7693-4791 
Figure A-6. Macrographs of Wastage Areas  fo r  

LMEC-70-21 
69 



(Mag 1x1 
b. Tube 47-C5 

Tubes 47-B5 and 47-C5 (Secondary Tubes)  

76934792 
Figure A-7. Macrographs of Wastage Areas  fo r  
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(Mag 2x1 
b. Tube 48(b) 76934793 

Figure A-8. M,acrographs of Wastage Areas  for  
Tubes 48 and 48(b) (Target: Tubes)  
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7693-4794 
b. Tube 52-B4 

Figure A-9. Macrographs of Wastage Areas  f o r  
Tubes 50 and 52-B4 (Target  Tubes) 
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(Mag 2x1 
b. Tube 52-A4 78934795 

Figure A-10. Macrographs of Wast:age A r e a s  f o r  
Tubes 52-A3 and 52-A4 (Second.ary Tubes)  
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(Mag 2x1 
a. Tube 53-B4 

n 

(Mag 1x1 
76934796 

b. Tube 53-A3 

Tubes 53-B4 and 53-A3 (Secondary Tubes)  
Figure A- 11. Macrographs of Wastage Areas for 

n 

LMEC- 70-2 1 

74 



(Mag 2x1 
b. Tube 53-B5 7693.4797 

Figure A- 12. Macrographs of Wasitage Areas  for 
Tubes 53-A5 and 53-B5 (Seco:nclary Tubes)  

, \  
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