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THE KONDO EFFECT IN THE ANDERSON MODEL*

Tadashi Arai
Argonne National Laboratory, Argonne, Illinois 60439

ABSTBACT

We show that the Green's function solution of
the Anderson model calculated by the functional
derivative method developed earlier yields the den-
sity o£ states having the three-peak structure pro-
posed by Gruner and Zawadovski and that the central
peak indeed introduces the £nT dependence. -

INTRODUCTION

It is generally accepted that the problem of
localized moments in metals may be discussed more
naturally by the Anderson model £han by the s-d
model, although the Rondo> effect has been forau-
lated solely bjt the s-d model. The Schrieffer-Wolff
transformation can convert the Anderson model to the
s-d model, but this is possible only in the limit
where the density of states for d electrons is negli~
glble at the Fermi surface. To circumvent the dif-
ficulties, Gruner and Zawadowski have proposed the
density of states exhibiting a three-peak structure.
At high temperatures where many body corrections are
not strong enough to modify the Hartree-Fock results,
two broad but well-separated peaks corresponding to
the majority and minority-spin electrons appears.
The conduction electron scattering is then described
with two phase shifts. At zero temperature, on the
other hand, the system is in the singlet ground state
with a well-defined single phase shift, introducing a
narrow third peak. They have assumed that this nar~
row resonance is responsible for the Kondo effect.
ZlaCic et al have constructed a scattering amplitude
by adding this narrow resonance but did not find the
£nT dependence.

THE CALCULATION OF THE GREEN'S FUNCTION

In this paper, we shall show f. ~ the Green's
function solution of the nondegeneratu Anderson model
calculated by the functional derivative method devel-
oped earlier" yields the density of states having
the three-peak structure and that the central peak
indeed introduce the £nT dependence. Let us consider
the equations of motion for the two types of Green's



functions 1 ^ = «Cdff(t)Ny (t) c;a(t»)», where

N (t) = N (t) = C (t) C, (t), N (t) = 1 —

Nj^(tJ, and X = d or k. Here, in line with the
Hubbard treatment? of narrow bands, the projection
operators Nvt' are inserted so that the intra-atomic
interaction D is correctly calculated whenever an
electron with opposite spin O appears at the impurity
site. The one-electron Green's function is then
given by G - rC+) + r(-),

The equations of motion involve the following
two types of terms

-\d<<cdaCt) ̂ ^ C d j W - ^ ^ e ^ C f )»}, (2)

where V, , is the hopping matrix element between con-
duction electron, k and localized electron d. If one
neglects g. and g~, the equations can be solved im-
mediately, yielding 6 . Since g, and g~ can be re~
duced to functional derivatives of G, they can be
calculated iteratively by inserting G , The reason
vhy, instead of the Hartree-Fock solution, G is used
as the zeroth order approximation is that the intra-
atomic interaction U is included rigorously in each
step of perturbation calculation, making our result
distinctly different from any other existing calcu»
lation. The result is

, n-
<»-£.-(l-n,--)U

a dcr

where e, and £. are the energies of electrons k and d;
n * <N, >. d

do
n, * <N, >. and
do" do

CT " -4r-W ± liG,. (w)] CU/4),
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If Ii v
d k| /(«*-Ek) is replaced by e. , the structure of

above expression becomes exactly the same as that of
the Hubbard model obtained in Ref. 3 . The value of
£|Vd. |

2/(w-ek) may be evaluated as T-iA, where T(<0)
and E are the effective energy shift and the width
parameter of the d states* respectively. However, the
tern involving iG,. (w)Y(u) in the samaation £«,«••
should be handled with care, since i-O.^Jui) =• ll*-f(w)3
A(w) where f(u) is the Feral-Dirac distribution
function and A(u>) the spectral function. la this
particular term, E|v,. \*/(ui-c. ) cannot be reduced to

k
F-iA, and instead the relation

, (5)

should be used where <(w) is the Kondo integral
responsible for the £nT dependence of the resisti-
vity and ̂ (ti>) = f(o))A. Then

(w-e )(E-e -U) - [l-fCu)]A(ui)Y(»)
;i(ro> d d

10 -^-(1-n^

| | ^ 2

vhere k =• (<r +</fA)/<T
2-?-A2) and £ » C^" T - K A ) / Cr

2+A 2).

THE RESULTS AND DISCUSSIONS

Since M-, T and A are all proportional to |V |,
the Kondo term (k~i£) is of order |V*J in G,. (05) and
of order Jv^| in the conduction electron Green's
function G.. (to) in agreement with the result of the
Schrieffer=wolff transformation. However, the £nT
dependence will appear only if the density of d
electrons, A(u), is finite at the Fermi level* We
shall show this by solving the polynomial equation
Gr (w) - 0 graphically. Since the method is com-
pletely parallel to that used in the Hubbard model,"
we shall only outline the procedure and the results.

In the; limit of F^A^O, the poles of G is
culated by solving the quartic equation in (1):

(w-ed-D) - [l-f(u)JY(u) = 0 , C7)

where f(us)%0 since we are calculating the scattering
amplitude of conduction electron k traveling right
above the Fermi level; GddcT(w) is a part of G M ^ C 1 0 )
for this electron. The term Y(w) is generateaby the
correction term g- and tends to introduce magnetism.



In fact, the solution calculated by Eq- (7) satisfies
the condition for magnetism £n. (a.—)/5n ,— <-!• As
long as !•$— is small, however, the poles wj and ul
will not deviate drastically froia the isolated atotalc
levels E, and E, + U while the additional poles u'
are physically unimportant since they are nearly —"
equal to til and the spectral weights are vanishingly
snail, -

The solutions of

- 0 (S)

can be calculated similarly. At high temperature
where K(o>) is small, k%f(uO and £ % 0. lu the non-
magnetic limit n. » n,—%l/2, u) ™ t. and ajj, »
and hence Eq. (8J becomes identical to Eq. (7),
yielding ta' - cu! and taJ m uiL. In the fully magnetic
limit a. m 1 and n,— " 0, on the other hand, ut *»
o^ - e d ? (3/4)U. As the magnetizar.ion n, - a n^-
decreases, the value of a decreases from £,+X3/4)u
to e. vhile the value to, increases fron
$.+(3/4)0 to 4>j+U. Note that the difference between
u. and d» remains large as long as the difference
nda " adl ls aPPreciable

The complete solutions u-,, u etc. of Etj. (6) can
now be obtained graphically by assuming A =• £• = 0.
The contribution from the iaaginary parts of the -
equation can then be estimated perturbationally. For
the nonmagnetic case, however, the calculation is
trivial since u! =» u' and wi = tiC. w, and w (or
b>2 and ia ) will split into two and tne separation,

being proportional to /jF|, would be small as cora~
pared with the width_parameter A of w and the two
peaks b3. and O) (or ui~ 3°^ (4 ) will look like a broad
single peak. As the Qagoetization n. - n,—- increases
from zero to one, the difference w' c~ tal increases,
yielding two distinct solutions ZL_and t) .
Although u. remains nore or less coustant,_o) in--
creases from ̂ z. to *V£ + (3/4 )U. to, and tit a will
remain exhibiting a single peak.

As temperature is lowered^ K(O>) and hence (1-k)
and £ increase, making o>' and tu larger. The calcu-
lated value of n. will then decrease and, to rsain-
ftain the self-consistent requirement ^nj3(

nj^)/^n(i^"
 <

-1, n.— has to increase, resulting in tne reduction
of the magnetization n. - n,— as well as u .

Let us now summarize the foregoing results. At
high temperature where thz Kondo integral is negli-
gible, magnetic solution with the three-peak structure
appears as long as the term Y(w) which enhances mag-
netism dominates over the term which is proportional
to f-iA and generated from the correction term g,
and which tends to suppress magnetism. As long as



there exists a small density of d states at the Fermi
level Ey, the value of (1-k) increases as T decreases,
tending Co make u larger. If the third peak u lies
below e , the peat u will be shifted ae ,
increasing the density of d states and enhancing the
£nT dependence. As T is lowered further, the oag-
netization n. - n ,— will decrease, naking OJ smaller.
Consequently u will not increase and instead
remain constant near c_. If, on the other hand, the
third peak wr appears above the Fenai level, the
teiidancy to increase o> again introduces two competing
procedures. One is the tendency to reduce the
density o_f_ d states at £_ and hence the ^ndency to
increase u will be suppressed greatly. The second
effect is 80 reduce £he magnetization n, - n,—,
maklag u' and hence u smaller. If u becomes
smaller and approaches to E_, the density of d states
at £„ increases, enhancing the JlnT dependence in
(1-k), Hence the third peak u will be shifted
towards £.' and remains there.

As the magnetization n, - n.— becomes small,
however, w1 becomes nearly equal to w| and will not
decrease further. Then the nechaaisis to keep w •
around e_ will disappear and (1) starts to increase,
thus reducing the density of dastates at e p and hence
reducing the £nT dependence. The systera will then
behave like spin fluctuations. This is possible
because the imaginary parts of Eq. (6) are propor-
tional to [o>-ed-(3/4-nd-/2)U]

2 or [u-£d-(i-nd-)U3,
and htnee the width of the third peak remains
narrow.
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