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ABSTRACT

We show that the Green's function solution of
the Anderson model calculated by the functional
derivative pethod developed earlier yields the den-
sity of states having the three-peak structure pro-
posed by Grliner and Zawadowski and that the central
peak indeed introduces the nT dependence.

INTRODUCTION

It is generally accepted that the problem of
localized moments in metals maylbe discussed more
naturally by the Anderson model™ than by the s-d
model, although the Kondo: effect™ has been fornu-
lated solely by the s~d model. The Schrieffer-Wolff
transformation™ can convert the Anderson mocdel to the
8-d model, but this is possible only in the limit
where the density of states for d electrons is negli=
gible at the Fermi surface. gircumvent the dif-
ficulties, Grimer and Zawadowski® have proposed the
density of states exhibiting a three-peak structure.
At high temperatures where many body corrections are
not strong emough to mcdify the Hartree-Fock results,
two broad but well-geparated peaks corresponding to
the majority- and minority-~spin electrons appears,
The conductior electron scattering is then described
with two phase shifts. At zero temperature, on the
other hand, the system is in the singlet ground state
with a well-defined single phase shift, introducing a
narrow third peak., They have assumed that this nar-—
row resonancg is responsible for the Kondo effect.
Zlatic et al” have constructed a scattering amplitude
by adding this narrow resonance but did not find the
L2aT dependeuce.

THE CALCULATION OF THE GREEV'S FUNCTION

In this paper, we shall show t1 -~ the Green's
_function solution of the nondegenerat: Anderson model
calculated by the functional derivative method devel-
oped earlier® yields the density of states having
the three-peak structure and that the central peak
indeed intrcduce the 2nT dependence. Let us consider
the equations of motion for the two types of Green's
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(D, and A = d or k. Here, in line with the

H bard tre?tyent of narrow bands, the projection
operators N are inserted so that the iantra-atomic
interaction U is correctly calculated whenever an
electron with opposite spin 0 appears at the impurity
site. The one-electron Green's functlon is then
given by ¢ = I'(H) 4+ T(-),

The equations of motlon iavolve the fellowing

two types of terms
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where V, . is the hopping matrix element between coa=
duction electron k and localized electron d. If one
neglects g, and g,, the equations can be solved im-
mediately, yielding Go‘ Since 8 and g, can be re~
duced to functional derivatives of G, Lﬁey can be
calculated iteratively by inserting G_. The reason
wvhy, instead of the Hartree~Fock sclufion, G_ is used
as the zeroth order approximation is that the 'intra-
atomic interaction U ig included rigorously in each
step of perturbation calculation, making our result
distincely different from any other existing calcu=-
lation. The result is
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and €, are the energies of electroms k and d;
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if J|v lzl(ure ) is replaced by €, , the structure of
X dk k k

above expression beccmes exactly the same as that of
the Hubbard model obrainad in Ref. 8 . The value of
Elvd lzl(w—ek) may be evaluated as [-iA, where T(<0)
and E are the effective energy shift and the width
paraceter of the d states, respectively. However, the
term involving iGdﬂo(aDY(w) in the summatioen Z,...
should be handled with care, since iGddo(_w) = [E«-f(m)]
A(w) where f(w) is the Fermi-Dirac distribution
function and A(w) the sgectral function. Ia this

particular term, Ilvdkl /(w-€,) cannot be reduced to
k
I'-iA, and insteag the relatiom
2
E'Vﬂk' £(w)/(w-ep) = k(W-1f(w) (5)

should be used where K(w) is the Kondo integral
respounsible for the 2nT dependence of the resisti-

vity and o2 (w) = f(w)A. Then
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where k = (kT +70) /02+8%) and £ = (# T-kb)/ (T2+4%).
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THE RESULTS AND DISCUSSIONS

Since M-, T and A are all proportional to IVZI,
the Kondo term (k~i2) is of order ?V&: in G a (w) and
of order ,V6] in the conduction electron Greéen's
function G (w) in agreement with the result of the
Schrieffergﬁglff transformation. However, the 2T
dependence will appear only if the density of d
electrons, A(w), is finite at the Fermi level. We
shall show this by solving the polynomial egquation
G‘é {w) = 0 graphically. Since the method is com-
piegely parallel to that used in the Hubbard model,8
we shall only outline the procedure and the results.

In the limit of I'=A=0, the poles of G is cal~-
culated by solving the quartic equation in w:

(w-e ) (weg-0) - [-£(W]¥(w) =0 , Q)

where f(w) A0 since we are calculating the scattering
amplitude of conduction electron k traveling right

above the Fermi level; G dU(w) is a part of G (w)
for this electron. The germ Y(w) is generatekkgy the

correction term g, and tends to introduce magneticm.



In fact, the solution calculated by Eq. (7) satisfies
the conditicn for mzgaetism én (ﬂd'Q/Sn;—<-1- As
long as !~ is swall, hlowever, gge pgles 0! and w!
will not deviate drastically from the isolated atomic
levels €, and €, + U while the addieional poles w;
are physgcally unimpoztant since they are nearly -~
equal to w, . and the spectral weights are vanishingly
small, ~ . :
The solutions of

(w-w ) (e )~ (A-kH)A(W)Y (w) = O _ (8)

can be calculated similarly. At high temperature
where K(w) is small, k3 £(w) and £ 4, 0. Iu the non-
magnetic limir n 0.5 B 5451/2, W e and Wy = ed+U
and hence Eq. (8) becumes identical te Eq. (7),
yielding w' = mi and 0! = w). In the fully magnetic
limit o, 21 and g 2 0, on the other hand, w_ =

=c g (3/4)u. As the magnetization n, - ny3
decreases, the value of w_ decreases from Ed$?3/h)u
to £, while the value ncreases from :
¢d+(§/4)0 to $,+U. Note that the difference between
wy and w_ remains large as long as the difference
By ~ nda-is appreciable.

The complete solutions w,, GA etc. of Eq. (6) can
now be obtained graphically by assuming A = £ = 0.
The contribution from the imaginary parts of the -
equation can then be estimated perturbationally. For
the nonmagnetic case, however, the calculation is
trivial since 0! = ' and w) = w'. W, and w_ (or
w, and w ) wili spl?t into two and tée separation,
being proportional to /IFI, would be small as com~
pared with the width parameter 8 of W and the two
peaks @, and @_ (or w, and &y } will look like a broad
single peak. Rs the magnetization Mg nd-increases
from zero to one, the difference w! - mi_ increases,
yielding two distinct solutions ) _and @_.
Although w, remains more or less coustant, in-?
creases from “g, to €, + (3/4)U. w, and E%a will
remain exhibiting a single peak.

As temperature is lowered, k(w) and heace (1-k)
and £ increase, making w' and w_ larger. The calcu-
lated value of n,  will Phen delrease and, to main-
tain the self-consisteat requirement én (nds)/5nd5-<
-1, n.~ has to increase, resulting in gge reduction

do
n,~ as well as w ,

of the magnetization n g a
Let us now summarize the foregoing vesults. At

high temperature wheze tha Kondo integral is negli-
gible, magretic solution with the three-peak structure
appears as long as the term Y(w) which enhances mag-
netdsm dominates over the term which is proportional
to [-1A and generated trom the correction term g,

and which tends to suppress magnetism, As lomg as



there exists a small density of d states at the Fermi
level €., the value of (1-k) increases as T decreases,
tending to make w_ larger. If the third peak w_ lies
below £, the peag ©_ will be shifted 3 ,
increasing the densi%y of d states and enhancing ghe
LnT dependence, As T is lowered further, the wag-
netization Ry, - nda-will decrease, naking w swmaller.
Consequently w111 not increase and instead
remaia coastant gear €,. 1, on the other hand, the
third pesk & appears above the Fermi level, the
tendency to lncrease w_ again introduces two competing
procedures, One is the tendency to redues ~he
density of d states at £, and hence the :=ndency to
increase w_ will be suppressed greatly. The secoud
effect is fo reduce the magoetization n, -~ nygs
makiog w' and hence @_ smaller. If @ °C becomes
smaller 3nd apptoacheg to €,, the dengity of 4 states
at ¢ increases, enhancing the ¢nT dependence in
(1-kf. Hence the third peak w_will be shifted
towards €! and remains there, ° :

As tﬁe naganetization 0y, ~ B — becomes small,
however, w' becomes nearly egual gg w! and will not
decrease firther. Tnen the mechanism to keep w
around €., will disappear and w_ starts to increase,
thus reducing the density of d states at €. and hence
reducing the RoT dependence. The system will then
behave like spin fluctuations. This is possible
because the imaginary parts of Eq. (6) are propor=
tional to [w-€,~(3/4-n/2)U)2 or [w-g;~(1-n )],

and hence the width ofdghe third peak remains

narrow,
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