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- Recent Upgrades and Enhancements of the
FEM3A Model

S.T. Chan .
Lawrence Livermore National Laboratory

Summary

In 1984, the U.S. Army Edgewood Research, Development and Engineering Center began to
fund Lawrence Livermore National Laboratory to further develop FEM3, a fully three-
dimensional heavy-gas dispersion model, as a research tool for studying the atmospheric
transport and diffusion of certain chemical systems. As a result, a significantly improved version
of the model, called FEM3A, was delivered to ERDEC in 1988. During the past few years, two
more major improvements have been developed and tested. They are: improved mass
conservation for treating dispersion scenarios with large density variations, and the addition of an
advanced turbulence submodel based on the k- e transport equations. These enhancements have
resulted in substantial improvements in the dispersion simulations of heavy-gases and can greatly
extend the range of applicability of the model, including the ability to treat problems with large
density variations and dispersion scenarios of much greater complexities. Documented in this
report are the new features and some of the improvements obtained with the new model.

1. INTRODUCTION

During the early 1980s, Lawrence Livermore National Laboratory (LLNL) developed a
three-dimensional finite element model called FEM3 (Chan, 1983) for simulating the
atmospheric dispersion of liquefied natural gas (LNG) and other heavier-than-air gas (or heavy
gas) releases. The model is based on solving, via a modified Galerkin finite element method, the
set of time-dependent conservation equations of mass, momentum, energy, and species, together
with the ideal gas law for the density of the gas/air mixture. A generalized anelastic formulation -
is used to preclude sound waves and to allow density variations to go beyond the range of the
Boussinesq approximation (~0.3). Turbulence is modeled via an algebraic K-theory approach
with certain ad hoc modifications to account for the presence of a heavy-gas cloud. The model
can handle both continuous and finite duration releases, and terrain effects as well. Over the
years, FEM3 has been validated to a large extent using data obtained from both laboratory-scale
and field-scale heavy-gas dispersion experiments (see, for example, Ermak et al., 1982;
Chan et al., 1984; Ermak and Chan, 1985; Havens et al., 1987).

In 1984, the U.S. Army Edgewood Research, Development and Engineering Center
(ERDEC, formerly known as U.S. Army Chemical Research, Development and Engineenng
Center) began to fund LLNL to further develop FEM3 as a research tool for studying the
atmospheric transport and diffusion of certain chemical warfare systems. As a resuit, a newer
version of the model, called FEM3A (Chan, 1988), was created and delivered to ERDEC in
1988. Besides being more user-friendly, FEM3A offers many new capabilities, including the
treatment of multiple and overlapping sources, material phase-change, and the ability to handle
obstructions such as buildings, dikes, and tanks. Additionally, an iterative solver for the pre<sure




equation was implemented to enable the code to solve problems of larger size, and with greater
efficiency, than was previously feasible with a direct solver. Some of the applications and
evaluation studies of FEM3A can be found in Ermak and Chan (1986), Rodean (1987a),
Chan et al. (1987a), and Chan (1992).

During the past few years, two more major improvements have been developed to further
extend the range of applicability of the FEM3A model. They are: improved mass conservation to
treat dispersion scenarios with density variations much larger than the LNG range (~0.6), and the

- addition of an advanced turbulence submodel based on the k- ¢ transport equations. In the first

area, the source of deficiency with the original formulation has been identified and effective
remedies, based on solving a slightly modified set of governing equations and an additional
constraint for conserving global mass, have been developed and tested. The k-¢ turbulence
submodel, owing to more complete physics, has resulted in substantially improved predictions
for the dispersion simulations considered in this report and can greatly improve the code’s ability
in dealing with dispersion scenarios of greater complexities. User’s guides for using the upgraded
model, FEM3C, are documented in Chan (1994).

In the next section, the theoretical basis of the FEM3A model is first summarized to provide
a basis for subsequent discussions. In section 3, the issues and remedies regarding mass
conservation and the treatment of dispersion involving large density variations are discussed,
with the effectiveness of the new algorithm demonstrated by numerical examples. In section 4,
the formulation and implementation of the k-¢ turbulence submodel are described, together
with numerical results to demonstrate the improvements obtained with this advanced turbulence
submodel. Finally, some concluding remarks are given in the last section.




2. THE FEM3A MODEL

In this section, we describe briefly the theoretical basis of the FEM3A model. These include
the governing equations, boundary conditions, initial conditions, and the submodels for
representing the source, turbulence parameterization, ground heat transfer, and treatment of
phase-change of the dispersed materials. More details of the model can be found in Chan (1988).

2.1 Governing Equations

The following three-dimensional, generalized anelastic equations, written for the mean (time-
averaged) quantities in a turbulent flow field, are solved in FEM3A:
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In the above equations,

u =  velocity field = (u, v, w),

p =  mixture density,

P =  pressure deviation from a hydrostatic pressure field (p,)
corresponding to an adiabatic atmosphere (i.e., constant
potential temperature) at rest,

P =  density field corresponding to the adiabatic base state,

g =  acceleration due to gravity,

e =  potential temperature deviation from an adiabatic atmosphere

at @, (reference temperature),




mass fraction of material in vapor phase,

4y - =

q: =  mass fraction of material in liquid phase,

K™ K% K° = eddy diffusion tensors for momentum, energy, and species,

- respectively, ,

Cp =  specific heat of the ambient atmosphere,

Cp =  specific heat of the dispersed material in vapor phase,

Cpe = specific heat of the liquid material,

C, = specific heat of the mixture = C,q, + C,.q; +(1- 4, - 4,)C,q.
L =  latent heat of phase-change for the dispersed material,

v =  gradient operator,

t = time,

(-‘%—) =  time rate of change of material vapor due to phase-change,

pe

M =  molecular weight of the mixture,

M, =  molecular weight of air,

M, =  molecular weight of the material in vapor phase,

P =  total pressure = p,+ p,

R =  universal gas constant,
T =  absolute temperature = (6+ 8, )[(P/looo mb)*’ “Cr].

For problems of current interest, because the heights of interest are generally small (<<1 km),
the ratio P/1000 mb is approximately equal to unity, hence no distinction is made between the
absolute and potential temperature in the present model (which is fortunate since the above
relationship is strictly valid only when R/MC; is constant).

The above conservation equations were obtained by generalizing the anelastic approximation
of Ogura and Phillips (1962). The essential features of the present generalized anelastic
conservation equations are that variable density is allowed and sound waves are filtered a prion
(thus time steps are not restricted by acoustic effects). The proper interpretation of neglecting
dpfa in the total mass conservation equation is that acoustic density variations in time are
assumed to be of very small amplitude and occur so quickly that it is a good approximation to
assume density is always in (temporal) equilibrium with the other thermodynamic variables. The
time dependence of density is then determined implicitly by the time variation of temperature,
pressure, and composition via the ideal gas law. It is not appropriate to interpret equation (2.2) as
implying dp/#=0, since p does indeed vary with time. More detailed d1scuss1ons of the
generalized anelastic formulation can be found in Lee et al. (1983).

The equations for energy and species, as seen above, contain no source terms other than that
due to material phase-change. The source material and the associated temperature field are
instead defined by either boundary conditions (to model an evaporating area source for
continuous or finite-duration spills) or initial conditions (for instantaneous sources).




2.2 Submodels

Source characterizations

For continuous or finite-duration spills, the released source materials are modelled by
vertically injecting the materials, which can be in both vapor and liquid phases, from a
preselected area on the ground surface. Over such area, a constant mass flux m (m = pv, v being
the vertical velocity) is imposed for the duration of the spill. ‘

In generai, the total mass flux per umt area can be separated info

m, = mF (2.72)
for material vapor and

m, = m{l - F) | ' (2.7b)

for liquid material. In the above equation, F is the material fraction in vapor phase as determined
by '

F=C,(T,-T,)/L, 28
where

C, = specific heat of liquid at constant pressure,

T, = liquid temperature,

T, = boiling point of liquid at atmospheric pressure, and

L = latent heat of vaporization.

Equation (2.7) is implemented in the computer model as boundary conditions for the species
equations in the following form, ,

k4 ‘;nq' =m(F-q,)lp (2.92)
.and )
K=~ %, —m(l -F-q,)lp . (2.9b)

in which K¢ is the eddy diffusivity in the vertical direction for the material species.

- For the temperature equation, generalization of the enthalpy balance over the vapor source
(see Ermak and Chan, 1985) leads to :




ke L =aflC,F e (1-F)] 6,1C,~6}1p . | 2.10)

in which the new symbols are defined as

K? = eddy diffusivity in the vertical direction for the energy equaﬁon, and

v

8, = liquid temperature measured from the reference temperature 8,.

During source injection, the following boundary condition is also imposed over the source
area for the vertical momentum equation,

pv=rh . @.11)

After a finite-duration sbill is terminated, the above boundary conditions are changed to
correspond to zero fluxes (i =0) in Eqgs. (2.9) _through (2.11).

For instantaneous releases, a different source submodel is employed. For each instantaneous
source, a group of mesh points within the computational domain is designated to represent the
desired source configuration filled with the material to be released. In each source region, with
the total mass fraction specified, appropriate initial values for vapor and liquid concentrations, .
together with the mixture temperature, are determined based on local thermodynamic
equilibrium. In order to minimize the spatial oscillations in the concentration and temperature
solutions due to the presence of short wave lengths (relative to the grid spacings) in the initial

“conditions, the initial concentration and temperature fields are often extended (smoothed) by

trivariate Gaussian functions in the region immediately surrounding the nodes representing the
sources. Within each source region, velocity is set equal to zero and hydrostatic pressure is
assumed prior to release of the source material. Upon initialization of the release, these
constraints are removed to simulate the instantaneous release of the sources. The FEM3A model
is capable of treating multiple and overlapping instantaneous sources. More details and
numerical examples can be found in Chan (1988).

Turbulence Parameterization

In FEM3A, turbulence is parameterized using a K-theory local equilibrium rriodel. The
turbulence diffusion tensors K*, K*, K° are assumed to be diagonal and it is further assumed
that K® =K°. Specifically, the vertical diffusion coefficient (for all transport equations) is given
by ,

_qua) +00)] "z

K, Py , (2.12)
where
k = von Karman’s constant = 0.4,
ug*+ = friction velocity of the ambient atmosphere,




z =  height above ground surface,

w. = in<cloud “convection velocity” = 0.5|(g/T)v,(T, - T)z } , in which g is the
constant of gravitational accclerauon, is the cloud temperature, Ty, is the ambient
ground temperature, and v, is the effective heat transfer velocity between the ground
and the vapor cloud, and

® = Monin-Obukhov profile function.

The form of the Monin-Obukhov profile function, @, is taken from Dyer (1974). When the
Richardson number (see Eq. (2.14) below) is greater or equal to zero, @ is defined as

d=1+5 Ri, Ri>0 (2.13a)

for all three (momentum, enérgy, and species) vertical diffusion coefficienfs. When the
Richardson number is less than zero, ® is defined as

(1-16 Ri)™* for momentum, ) :
Ri<0 (2.13b)

(1-16 Ri)™* for energy and species.

The local Richardson number is, in turn, defined by an ad hoc approach of “combining” the
. turbulence in the ambient atmosphere and the stabilizing density stratification effects of the
dispersing species,

i= i—-——2 +nk*(z (p P.)_
K R‘(u‘.+w,) nk'(2/h) p (2 +w)

(2.14) -

where the new symbols are defined below:

Rig = Richardson number of the ambient atmosphere = /L, L bemg the Momn-Obukhov

length scale,
ps = density of the ambient atmosphere,
n = 2, anempirical constant based on the experimental results of McQuaid (1976),

h. = characteristic cloud height.

The first term on the right hand size of Eq. (2.14) is designed to include the turbulence in the
ambient atmosphere and the second term represents the effects of density stratification, which is
generally a reduction of turbulence in the stably stratified, dense gas cloud. As can be seen, for
isothermal, neutrally buoyant gas or in the absence of a dispersing cloud, the present submode!
recovers the ambient diffusivities. A typical Richardson number profile has a zero value it
ground level and a maximum value near the top of the vapor cloud, where large-density gradient
and small-shear stresses normally exist.

T




‘The horizontal diffusion coefficient, K, is expressed as
K, = aku,J®, , | (2.15)

where @, = ®(Ri,) and a is an empirical parameter with a value of 6.5, which was inferred from
the Pasquill-Gifford curves for the horizontal and vertical dispersion coefficients oy and o,.

Phase-change submodel

The present phase-change submodel is an extension of the humidity model developed by
Leone et al. (198S) for a moist atmosphere to treat the phase transition between water vapor and
droplets. It is based on the assumption of local thermodynamic equilibrium. Other physical
processes such as rainout, drop-size dependence, and chemical reactions are not included.
Basically, this submodel utilizes the local values of partial pressure of material vapor (Py) via the
ideal gas law, and the saturation vapor pressure (Pys) via the Antoine equation, together with the
inventory of the vapor and liquid materials, to determine the amount of material undergoing
phase-transition. If too much vapor is present (Py > Py*), the excess vapor must be condensed; if
too little vapor is present (Py < Pys), enough liquid material must be evaporated to restore
equilibrium (of course, only as much liquid material as is present can be evaporated and this fact
is incorporated). The phase-transition, however, is complicated by a feedback mechanism
between the energy and the species equations. That is, when vapor condenses, latent heat is
released, thus raising T and Pys to suppress vapor condensation. On the other hand, when liquid
evaporates, latent heat is absorbed, thus decreasing T and Py+ to prevent further evaporation of
the liquid material. Therefore, these equations must be considered as a coupled system. The
relevant numerical procedures are described in Chan (1988).

Ground Heat Transfer

For heavy-gas dispersion problems involving cryogenic materials, e.g., liquefied natural gas
(LNG), the effects of heat transfer from the warmer ground surface into the colder vapor cloud
could significantly affect the dispersion process. The main effects from such ground heating are
the decrease in mixture density and the increase of turbulence intensity, both of which tend to
enhance the mixing and dilution of the vapor cloud. ’

A bulk coefficient submodel is currently used for the energy equation to account for the heat
flux from the ground surface, i.e.,

K,’%g=v5(0,,-8) : (2.16)
where v; is an effective energy transfer velocity obtained from field measurements, 8, is the
ground temperature, and 0 is the computed temperature on the lower boundary of the
computational domain. For the Burro series of LNG spill experiments (Koopman, et al. 1982),
the value of v, was found to be approximately 0.0125 m/s.

’




2.3 Boundary Condmons

Figure 2.1 ‘illustrates the typical boundary conditions used in a heavy -gas dispersion
simulation. Note the orientation of the coordinate system and the corresponding velocity
components being used, which were chosen for the convenience of handling both two- and three- .
dimensional problems in one code. The origin of the coordinate system is normally placed at the
center of the source area (in the case of a continuous/finite-duration spill) and the mean wind is
assumed to be parallel to the x-y plane. :

Top
v=0
du _ow 08 99y _9q

y 3y oy oy  dy
Rear
w=290
du _av_238 _ 99, aq
9z oz 9z 9z oz

Downwind

aQV GQI

__‘:—-:o

on on

Fig. 2.1. Typical boundary conditions for the governing equations solved by the FEM3A model.

- A wind profile is specified at the upwind boundary. This profile is expressed as a function of
height above ground level. In nature it is usually a logarithmic profile with zero velocity on the
ground surface. However, in practice, due to the use of coarse grids, a data-fitted parabolic or
logarithmic profile, together with a “slip velocity” on the ground, is often used to better represent
the overall ambient wind profile without attempting to resolve the surface “loganthmic
sublayer.” The remaining variables on this surface are normally specified to correspond to the
ambient conditions. (Note: 0 is the deviation temperature from the reference temperature, 8,).

Natural boundary conditions, a by-product of the GFEM, are normally specified at the
downwind (outflow) boundary. These conditions include zero normal “traction” for momentum
“in the x-direction and zero normal gradients for the remaining variables. On the top and lateral
boundaries, which presumably are “far enough” from the vapor cloud, the respective normal
velocity component and normal gradients of the remaining variables are set equal to zero.




On the ground surface excluding the source area, either no-slip (zero velocity).or generalized
“partial slip” boundary conditions are specified for the momentum equations. No-slip boundary
condmons are appropriate provided sufficiently fine grid spacings are used to resolve the surface
sublayer; otherwise, the “partial slip” boundary conditions are more appropriate. In this case, the
velocity component normal to the ground surface must be set equal to zero and shear stresses
must be specified in the tangential directions. For the case involving variable terrain, appropriate
local normal and tangential directions must be determined for the nodal points involved

- (Engleman ez al., 1982). Presently, one of the tangential directions is chosen to be parallel to the
x-y plane and, in this direction, a shear stress of p, uZ, is specified. Zero shear stress is specified
along the other tangential direction because of the lack of field data in that direction (the
associated shear stress is presumably small). The appropriate boundary conditions for mass
fractions outside the source area are “/, = % i.e., there is no loss or gain of species on the
ground surface.

For flat terrain, because the solution is usually symmetric about the vertical center plane, only
one-half of the domain has to be considered. In this case, symmetry boundary conditions,
namely, the velocity component and the gradient of all other variables in the normal dlrccuon
being zero, should be applied on the center plane.

For finite duration spills, the flux boundary conditions of Eqs (2.9) through (2.11) are
imposed over the source area until the simulated source injection is terminated, after which the
corresponding fluxes are set equal to zero for each appropriate variable.

2.4 Initial Conditions

Before the start of a dispersion simulation, initial conditions corresponding to the ambient
atmosphere must be provided. These initial conditions may, depending on the pre-existing
temperature field, correspond to either an isothermal or a stratified atmospheric flow. Generating
the ambient flow field generally requires that the model be run without the species equations for
a sufficient length of time to establish a steady-state wind field within the computational domain,
starting with an assumed wind field and appropriate boundary conditions. The resulting steady-
state wind field and corresponding temperature field are then used as initial conditions in the
dispersion simulation. )

For instantaneous spills, the steady-state wind field should also account for the presence of
the sources which are treated as obstructions via imposing the appropriate boundary conditions
discussed earlier. For an all-vapor dispersion simulation, the initial mass fraction of vapor and
‘the corresponding temperature must also be specified for each of the instantaneous sources. For a
simulation involving vapor/liquid material, the initial total mass fraction of the dispersed matenal
must be specified for each source, from which the model ‘will determine the appropnate
vapor/liquid fractions of the source material, together with a consistent temperature field based
on a local thermodynamic equilibrium submodel.

For continuous or finite-duration releases, since the injection-like source submodel (via
Eqgs. (2.9) through (2.11)) is employed, initial conditions for the species equations are always xt
equal to zero. In general, the initial wind field should also account for any terrain effects For
problems involving flat terrain, however, a wind field having a vertical profile identical to that at
the inlet plane is often a good approximation to the initial wind field required in the dispersicn
simulation.



3. IMPROVEMENTS IN MASS CONSERVATION

In the FEM3A model, since the original generalized equations were derived as an extension
of the classical Boussinesq equations to stretch the density change to a larger value (up to 0.6 for
LNG—the material considered at the time), ensuring mass conservation was not thought to be an
issue—as it is not considered an issue in the Boussinesq equations. In the past, the model has
indeed been observed to conserve mass reasonably well, when density changes were in the LNG
range and adequate mesh resolution was used. However, certain past applications (Rodean,

" 1987b) revealed that the lack of conservation for species and global mass was quite significant
and sometimes deleterious, when much larger density changes (e.g., chlorine or hydrogen
cyanide) were involved.

In the following, the problem of mass conservation with the anelastic equations solved by
FEM3A is identified and cost-effective remedies are discussed. Following a description of
algorithm implementation, two numerical examples are. presented to demonstrate the
improvements obtained with the new algorithm.

3.1 Deficiency of the ‘Old’ Equations

The governing equations being solved in FEM3A were presented in section 2. For
convenience of discussion, they are presented once again in the following:
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C = vaq"»_*'-cplql +(1 -q,- ql)Cpa . ‘ (3.7

As is well known, the true continuity equation for a single- or multi-component continuum
system is -
p

-é—-+V~(pu)=O.

(3.8a)

Its equivalent global mass conservation equation is

%Ipdv +'[pu~n da=0, (3.8b)
Q r ;

in which Q is the domain (fixed in time), T" is the boundary of Q, u is the velocity and n is the
outward-di;ected unit normal vector.
For the anelastic equations solved in FEM3A, the mass conservation equation (3.2) implies

Irpu-n da=0, (39)

i.e., no net mass flow is allowed to leave (or enter) the domain. This is the only global
conservation law contained in the ‘old’ code. Equations (3.8b) and (3.9), if both are true, imply
the following global mass conservation equation for the generalized anelastic model,

d ' 3.10
Z‘jap dv=0. 0

However, because the density field is defined by the ideal gas law of (3.6) for which P, M and T
are all time-dependent, rather than being obtained from (3.8a), there is no guarantee that equaton
(3.10) is actually satisfied by the existing model, i.e. there appears to be an inconsistency in the -
governing equations. ‘ -

For species (other than air), the FEM3A model solves basically the following

Jdw; 1 . .
—at—'+ll'vw‘>=»;v~(px Va)‘)’ (3.11)

in which @,(i=1, 2) is the mass fraction of species i. For simplicity and clarity, the term
involving phase-change has been purposely omitted, because a two-step scheme is used to ueat
the phase-change process and the term is irrelevant to the following discussions. Addiuoaally,
we assume herein the problem has a closed domain.

To study the conservation properties of (3.11), we first rewrite it, using (3.2), as
ERER RS

p%?t—'#V-(puw;):V'(pK‘-Vwi) .



Next, we integrate over the domain, employing the divergence theorem and the boundary
conditions that a-n=0 and n-Va; =0 to yield
0w, | . 313

which is the species “conservation law” built into the current model.

To assess this result, let us recall the rigorous species conservation equation,

9—(?)+V-(puwi)=v-(pK‘-Vwi) : » (3.14)

Applying the same procedures used above, we obtain from (3 14) the following (rigorous) global
species conservation equation, : :

d _ (3.152)
= [.po, av=0

or, equivalently,

jp Ldv+ | w.‘?L’. dv=0. (3.15b)

In the current model, equation (3.15b) is generally not satisfied, although the first term is zero

as a result of (3.13), but the second term is not. This is so, since o; >0 and dp/dt =0 because p
varies owing to (3.6) and the fact that P, M, and T are time-dependent. If, for example, dp/ar is
largely negative in a region with high concentration of ®,, the system will very likely lose
“species i as well as the total mass of all species. This probably explains the numerical results
reported by Rodean (1987b), in which significant species mass was lost for instantaneous -
releases with high density variations. :

3.2 Proposed Remedies

As discussed above, there are two aspects concerning the properties of mass conservation in
the FEM3A model: (a) global conservation of individual species, and (b) global mass
conservation of the mixture. Since the global conservation of individual species is important and
since it also affects the global mass conservation of the mixture, we first discuss the remedy for
species conservation.

As demonstrated above, solving (3.14) instead of (3.12) should ensure the desired property of
global species conservation. Note, however, that equation (3.14) can be simplified, making use of
(3.2), to yield

i(gt-ﬁfl+pu-Va)i=V-(pK‘-Vm,-). (3 16)




The above equation is preferred, because it is consistent with the momentum equations and is
simpler to compute as well. Thus the first fix is to replace (3.11) with (3.16). If no phase-change ,
is taking place, only one equanon for species, i.e., w; =g,, has to be solved.

For problems mvolvmg phase-change, in order to conserve the contaminant in both vapor
and liquid phases, equations (3.4) and (3.5) should be replaced by: :

a(p V) . c . a(pq\') | (34&)
=5 +pu-Vg, =V-(pK Vq,)+[———a‘ A
and
pac) e va )| 2Pg.) -

In addition, the last term of (3.3) should be replaced by

It is to be noted that, since equation (3.14) (or its equivalent, 3.16) applies for every species
except air, summation of (3.14) over all species including air does not lead to Jdp/dr =0 because
the conservation equation for air is not in the form of (3.14). An equation for air can be obtained
by subtracting the summation of (3.14) over all species from (3.2) to yield

a -
(La;__e).+v.(puw¢)=v.(pxc,vw‘) ) (317)

) - N
in which @, = the mass fraction of air =1- Y @, . The presence of the spurious term -dp/dr.in
equation (3.17) is a consequence of the geheralized anelastic approximation (ie., it is a
consequence of the omission of dp/a¢ in the mass conservation equation for the mixture). Such an
error hopefully is not a concern with heavy-gas dispersion problems, for which the conservaton
of species is generally more important. Note too that by virtue of the global mass conservauon
equation, (3.10), the error is totally eliminated from a global conservation point of view.

We now address the remaining problem: conservation of total mass (and air mass). As
derived earlier, equation (3.10) is the global mass conservation equation desired for the
" generalized anelastic model. Alternatively, the requirement can be stated as

Jp dv=m° , (3.18)
A .

in which m? is the initial mass contained in the domain. Because the mixture density is defined
by the ideal gas law and it is, in general, a function of the species composition, temperature. and
pressure, equation (3.18) obviously will not hold under the most general circumstances.
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However, based on the premise that most of the density variations are caused by differences in
molecular weight, species composition, and temperature, but not pressure, we propose to satisfy
the equation by finding a pressure increment (8p) = which is spatially uniform but time-
dependent, such that equation (3.18) is always true, i.e., :

JL”:EEP.’dw mo . | | (3.19)

From the above equation, the required pressure increment can be determined via

= (mo - j %‘Tiva / I%dv. (3.20)
Q fol

After obtaining &p, the density field is updated to satisfy (3.19). The success and cost-
effectiveness of the proposed remedy requires that |p/ P| << 1, so that resolving the discretized
pressure Poisson equation is not necessary. This is usually the case, because the value of total
pressure (including hydrostatic pressure) for most atmospheric problems is several orders of

magnitude larger than dp.

The above approach has been tested and appeared to work satisfactorily for ;‘containcd” :
flows as will be demonstrated in our examples. For similar ideas in this direction, and different

equations, see Chenoweth and Paolucci (1986).

3.3 Algorithm Implementation

In order to accommodate various kinds of heavy-gas dispersion scenarios, two mass-
conservation options have been implemented and tested. They are:

A. Option to conserve species mass,
B. Option to conserve both species mass and global mass.

The first option is suitable for problems whose global mass is not known or inconvenient to
determine, such as those with open boundaries and/or an area source; the second option is
suitable for any problems whose global mass is known and remains constant in time.

Option A - Conserving Species Mass Only

With this option (and the next option too), the equations of species being solved are either
(3.16) for contaminant in vapor only, or (3.4a) and (3.5a) for contaminant in vapor and liquid
phases. In either case, the values of density for the individual species: p,(=pq,) and p,(=pg,). are
computed directly, in a way similar to solving the momentum equations for the values of mass
flux pu, pv, and pw. After the values of species density (p,.p,) are obtained, however. 1t is
important to compute the resulting mixture density (p) and mass fractions (g,. ¢,) in a consistent
manner. An early approach using the following approximations (n is the time step number)




@ =plp"",

and
¢ =pifp™"

in (3.6) to evaluate the mixture density and then use it in the subsequent time-integration of the
species equations has proven to be numerically unstable. For consistency, the following equation,
instead of (3.6), is used to evaluate the mixture density

M, (M . (3.21)
p'=~;7'.—."-[;‘°1}%+ﬂz

v

in which P* is the total pressure at time step a. The corresponding values of mass fraction are
then given consistently by

o =ptlp" . , ’ (3.22a)

and

a =pi/p" . (3.22b)

The entire numerical algorithm for this option is then basically the same as that to be
“described for option B (below) except removing step 7 from the time-marching process. For
brevity, these procedures are omitted for this case.

Option B - Conserving Both Species Mass and Global Mass

This option is basically the previous one plus the constraint of (3.19). It is applicable only to
problems for which the value of global mass is known and remains constant in time. In the
following, we summarize first the matrix equations and then the relevant numerical procedures of
the entire algorithm.

When the standard Galerkin finite element method is applied to equations (3.1), (3.2), (3.3),
(3.4a) and (3.5a), the following coupled system of matrix equations is obtained:

MU+[K+N(U)]u+CP%F, (3.23)
cu=o0, » (3.24)
M9+[Ky+Ng(U)]O=F, , (3.25)
Msp, +[K, +Ns(U)]q, = F, , (3.26)
and |
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Msp,+[Kp+ Ns(U)g, =F, , (3.27)

where U and u are global 3n vectors containing all nodal values of pu and u, respectively, P is a
global m-vector containing pressure values, M, K, and N (all 3n x 3n) are the mass matrix, the
diffusion matrix, and the advection matrix, respectively, C is the 3n x m pressure gradient matrix,
its transpose, CT, is the m x 3n divergence matrix, and F is a 3n global vector incorporating
natural boundary conditions (tractions) and the buoyancy force. The matrices for temperature (9)
and the density and mass fractions of material vapor (p,, ¢,) and liquid material (p,, ¢,) are
defined similarly, except their “size” is n instead of 3n.

Equations (3.23) through (3.27) are integrated in time via a modified forward Euler method;
that is, the physical diffusion tensors are augmented with a balancing diffusion tensor to
compensate for the negative diffusion caused by the simple forward Euler method when applied
to the advection term. Also, several cost-effective techniques, including mass lumping, reduced
quadrature, subcycling and others, were implemented in the present model. These techniques
were described in greater length by Gresho er al. (1984). Solution of the above system of
equations can be divided basically into two parts, i.e., problem initialization and time marching.

The initialization process consists of essentially the following steps:

1. Compute the hydrostatic pressure field for a selected base-state (such as one with a
constant reference temperature) and the density field, including contributions from all

species.

2. With a given initial velocity field and the above density field, form a momentum field
and project it onto a divergence-free subspace to satisfy equation (3.24).

3. Compute the initial (dynamic) pressure field corresponding to the above momentum field.
4. Update the density field to include contributions from the initial pressure.
5. Evaluate species density and the inventory of both initial species mass and glbbal mass.

With the system properly initialized, the time-marching part, described below for t=n &, is
composed of the following steps:

1. Form the partial acceleration vector (without the pressure gradient),
A" = M[F -k - MUt

2.. Solve the linear algebraic system (discretized Poisson equation) for the dynamic pressure
and update total pressure (P*), |

(C™M'C)p" =CTA" , and
P*=P,+p" .
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3. Update the'mass flux, accounting for the pressure gradient,
Ut =U"+ (A" - M)
4, Update the temperature and species density of the dispersed material,

o =07+ M, [Fy - K, 6" - N,(U7) 0]

Pyt =py + A M.’I[F‘S -K.q,-N, (U".)‘I:] '

and
Pt =pf + M [F7 - K, @ - Ns(U") 2]
5. Update the density of mixture,

o PM, (Mo )t e (3.28)
P '='§r—+}'(7-1)0.“+m b :

6. Evaluate the inventory of global mass,
3.29
mn+l =Ipu+ldv= MS pn+l . ( )

7. Determine pressure increment necessary in order to conserve global mass using equation
(3.20),

b= (m® - m™)[M(p™/P*) . | | (3.30)

This step usually requires a few relatively inexpensive iterations involving equations
(3.28) to (3.30), because the update of p**! to include &p affects the global mass m"*'..

8. Invoke the phase-change submodel to adjust the values of species density.

9. Advance the time step and repeat steps 1 through 8.

3.4 Numerical Examples

In the following, two numerical examples are presented to illustrate the degree of
discrepancies that resulted from the mass conserving and mass non-conserving schemes. The
first example, with a maximum density ratio of 10, is used to demonstrate the importance of
mass conservation; the second example, involving only moderate density changes, serves w0
vindicate the original formulation under such conditions. For both problems, the new algonthms
require virtually the same computer time as the old algorithm.




3.4.1 A Heavy-Gas Source Instantaneously Released in a 3D Enclosure

In this example, a ground level source of heavy-gas material is instantaneously released and
dispersed in a 3D enclosure of size 60 m X 60 m x 20 m (length X width x height). The released
material is assumed to have a molecular weight 10 times that of air and the initial distribution of
the source material is Gaussian about the source center on the ground surface with 100% mass
fraction at the center. The standard deviations (sigma values) are 2 m in the vertical and 6 m in -
the horizontal directions, respectively. The source material is, therefore, contained in a dome, for
which the contours of the density field on two representative planes are depicted in Fig. 3.1. For
simplicity, the problem was assumed to be isothermal at T = 20°C and a vertical plane of
symmetry was invoked to permit modeling only one-half of the problem domain.
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With the origin of the coordinate system placed at the center of the source, the computational
domain is defined by the following dimensions: -30 to 30 m longitudinally, O to 30 m laterally,
and O to 20 m vertically. A graded mesh consisting of 5,952 mesh points (31 x 16 x 12 in the
above three directions) was used. Additionally, constant diffusivities of 0.1 m?/s in the vertical
and 0.5 m%/s in the horizontal directions were used. The problem was simulated for 10 s with a
time step size of 0.05 s. No-slip conditions were used on all surfaces except the vertical plane of
symmetry, wherein no penetration and zero tangential stresses were Spemﬁed For the

© contaminant, zero flux was imposed on the entire boundary. :

The problem was solved via three different ways: the original (mass non-conserving)
algorithm, the species-conserving scheme, and the scheme conserving both species and global
mass. Since the velocity and concentration fields obtained with the two new schemes are hardly
discernible graphically, we compare in the subsequent figures only those resuits obtained with
the original and the species-conserving schemes. In Fig. 3.2, the time variations of the total
inventory of species mass and global mass are compared. These results show that, at the end of
the simulation, the original scheme has lost about 83 kg (~30%) in species mass and almost the
same amount in global mass. On the other hand, the species-conserving scheme is not only able
to conserve species mass exactly but is also able to conserve global mass reasonably well (but
with some minor oscillations). The zig-zag behavior of the curves in Fig. 3.2(b) is due to the
relaxation of the requirement of global mass conservation. It was indeed completely eliminated
when the additional constraint (3.18) was imposed.
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In Figs. 3.3 and 3.4, the concentration and velocity projection on two representative planes
obtained with the two schemes are compared. These figures reveal a general agreement between
the two numerical solutions regarding the overall flow field, the outward moving vortex ring, and
the size of the vapor cloud. However, significant discrepancies also exist, especially in the region
of higher concentration. For instance, the original scheme grossly under-predicts the maximum -
concentration and misses a couple of higher concentration contours. Also, the corresponding
flow field is generally less energetic, with its maximum speed reduced by as much as 12%. Since
the additional constraint of global mass conservation has practically no effects on the results, the
errors associated with the original scheme are apparently due to the omission of the w(dp/dr)
term in the species conservation equation. Since the value of species concentration is always
positive and the time rate of change of density is negative in the region with higher density, the
omission of such a term is equivalent to adding a sink term in the species equation in such a
region, wherein most Of the species mass is contained. This explains why the original scheme
suffers a substantial loss in specxes mass and global mass;, as indicated in Fig. 3.2.
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In Fig. 3.5, time history plots for two velocity components, density, and concentration at a .
- selected location {6:5 m from the source center and 0.5 m above ground level) are compared. As
is seen, the differences in velocity are quite noticeable; the discrepancies in density and
concentration are even larger, with the difference in concentration by as much as a factor of two. -
These results clearly demonstrate the importance of mass conservation, especially species mass,
in a problem involving large density changes.
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Fig. 3.5 Comparison of predicted field variables at 6.5 m from the source center and 0.5 m
above the ground surface for (a) horizontal velocity, (b) vertical velocity, (c) density,
and (d) concentration.

To evaluate the possible effects of temperature variations on the mass conservation
properties, this problem was also simulated for a cold gas with the same initial concentration
distribution. However, the molecular weight of the source material was reduced to
144.8 kg/kmole (five times that of air) and the mixture temperature was assumed to be Gaussian
with 2 minimum value of 146.5 K (cf 293 K of the ambient air) at the source center so that the
maximum mixture density remains at ten times that of the ambient air.




Results from the old and the new algorithms are, again, significantly different, especiaily in
the source region.-However, in spite of the noticeable differences in the inventory of global mass
indicated in Fig. 3.6, results from the two new schemes are basically the same (~3 digits
agreement) for all field variables.
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Fig. 3.6 Comparison of mass inventory for (a) species mass, and (b) global mass as obtaned
with the mass non-conserving and mass conserving schemes.




The slight overprediction in global mass by the specxes-conservmg scheme, which can be
attributed to the-extra term of dp/or in equation (3.17), apparently has only minimal effects on
the numerical solution. As the temperature field becomes more uniform towards the end of the
simulation, the deviations in global mass starts to level off. In Fig. 3.7, contours of the density
field on the horizontal plane at 0.5 m above ground as obtained with the old and the new
algorithms are compared. Obviously, as the result of significant loss of species material in the -
source region (not shown), the density field predicted by the old algorithm is markedly lower.
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3.4.2 Simulations of a HF Spill Experiment

As an example of practical applications, the formulations discussed above are used here to
simulate a field experiment—the atmospheric dispersion of an aerosol cloud resulting from the
pressurized release of liquid anhydrous hydrofluoric (HF) onto the ground. The particular test
being simulated, test No. 1, is one of the six HF spill experiments jointly conducted by LLNL
and Amoco Corp. at the U.S. Department of Energy Nevada Test Site during the summer of 1986

~ (Blewitt, et al., 1987). This test was conducted under neutrally-stable atmospheric conditions,
with an average wind speed of 5.6 m/s at the 2-m elevation. The ambient temperature was 37°C
and the liquid HF temperature was 40 “C. A total of 4 m3 liquid HF was released for a duration

- of 125 s, through a flashing jet from the end of a horizontal pipe pointed downwind. A
preliminary simulation of the test was performed by Chan, et al. (1987b).

In the present simulation, the spill and ambient conditions have been changed slightly, based
on the more up-to-date data (which are, unfortunately, relatively sparse) published by
Blewitt, et al. (1987). Also a mesh with finer grid resolution near the ground was utilized. Due to
the lack of a jet model, the source was approximated as an area source of 20 m x 20 m, with an
injection velocity of 0.1 m/s. The friction velocity used in the K-theory turbulence submodel is
0.34 m/s and no heat transfer between the ground surface and the vapor cloud was assumed. It
must be emphasized that, because of the sparsity of experimental data and the use of ‘a relatively
simple submodel to approximate the actual, complex source (in particular the jetting effects and
aerosol generation), no serious attempt was made for a detailed model-data comparison. Rather,

the main purpose here is to invoke the modified phase-change submodel and compare results
from the old and the new algorithms.

In order to conserve computation time, lateral symmetry is assumed and thus only one-half of
the vapor cloud is simulated. The computational domain has a height of 20 m, a lateral
dimension of 60 m (for one-half of the cloud), and a longitudinal dimension extending from 20 m
upwind of the spill point to 400 m downwind. A graded mesh consisting of 7,605 grid points
(15 x 13 x 39) was used.

Owing to complications arising from non-zero mass flux over the source area and the
presence of open boundaries, there is really no convenient way in imposing the constraint of
global mass conservation. Therefore this problem was simulated only with the original and the
species-conserving formulations. Based on the results obtained in the first example, relaxing the
-requirement of global mass conservation is, nevertheless, not expected to have too much adverse
effects on the present solution, as long as species mass is accurately conserved. Listed in Table |
are the total mass of HF in vapor and liquid phases for different times as obtained with the two
formulations.



Table 1. CQIgpgﬁson of total amount of HF obtained with present and original formulations

Time ¢y (2) (3) - C))
(s) Present form Original form 2)-(1) & 100%
(kg) kg) .
10 140.82 146.41 5.59 3.97
20 282.69 288.42 5.73 2.03
30 424.55 429.46 491 1.16
40 566.41 570.06 3.65 0.64
50 708.07 . 710.18 2.11 0.30
60 847.37 847.51 0.14 0.02
70 975.32 972.31 -3.01 -0.31
80 1,076.19 1,068.23 -7.96 --0.74
90 1,140.63 1,127.14 -13.49 -1.18
100 1,172.81 ~1,155.23 -17.58 -1.50
110 1,182.15 - 1,162.67 -19.48 -1.6S -
120 1,179.19 1,159.62 -19.57 -1.66

As seen in this table, the total amount of HF obtained from the species-conserving scheme is
essentially linear in time prior to t = 60 s, after which the time rate of change begins to decline
because some of the dispersed material starts to leave the computational domain. Results from

.the two formulations are only a couple of percent different. Such differences are typical for the
other field variables as well. The close agreement between the two numerical solutions is
apparently attributable to the much smaller density variations in the present case. For example,
the value of maximum mixture density is only about 50% higher than that of the ambient air and
the region with 10% or higher density is largely confined within an area of 40 m x 10 m.

The fact that the original formulation produced slightly more species mass than desired
initially but less HF material for subsequent times can probably be explained, again, by the
missing term in the original species conservation equations (for both the vapor and liquid
droplets). During early times, because of the continuous influx of cold HF material, the value of
mixture density in the source region is increasing in time (as opposed to decreasing in time in the
first example), the omission of the term is equivalent to the addition of a source term in the
species equations. For times after t =60 s, because more HF material is leaving the

. computational domain than coming in over the source area (as suggested by resuits from the
species-conserving formulation), the density field is probably decreasing in time, thus creatung in
effect a sink term for the species equations (and thus the loss of species mass). Finally. as the
solution approaches steady-state (as does the density field), the effect of the above missing wrm
gradually diminishes and thus the loss of specxes mass begins to stabilize, as suggested by the
results near the end of the simulation.

Due to the closeness of the two numerical solutions, we will present only certain sample
results obtained with the new formulation and briefly compare them with data, if available. [n
Fig. 3.8, the predicted HF concentration contours on the vertical plane of symmetry and the
horizontal plane 1 m above the ground surface for t = 60 s are depicted. This figure shows a HF
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cloud that is nearly 50 m wide and is hugging the ground (note the height has been scaled up by a
factor of 2), even though the molecular weight of HF is only 20.01 (versus 28.96 for air). Such
heavy-gas behavior is caused by the low temperature and aerosol effects, namely, the presence of
HF droplets and the related evaporative cooling. A cold and ground-hugging cloud was indeed
observed during the field experiment.
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test No. 1 at time = 60 s. The contour levels are (in % vol): A=0.1,B=0.2,C=0.5,
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In Fig. 3.9, the HF concentration contours on the crosswind plane at 300 m downwind are
compared with-nieasurements, which were reconstructed from Fig. 4-3 of Blewitt, e al. (1987),
with the assumption that the cloud center is at +15 m off the array centerline. The experimental
contours beyond +30 m (of the original plot) are much less reliable, because measurements are -
available only at 1 m high. It is to be noted that the experimental contours above 8 m were
obtained by extrapolation because measurements were made at 1,3, and 8 m high only.
Nevertheless, the measurements strongly suggest a ground-hugging cloud and the FEM3A model
is indeed able to predict a similar cloud, although the predicted cloud is somewhat lower and has

higher concentration near the ground.
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In Fig. 3.10, the predicted temperature along the cloud centerline at two different heights are
displayed, together with the measured data (averaged over a 30-s period beginning at ¢ =
121.3 s). Despite a greater difference in the source area, the overall agreement, regarding the
general shape of the curves and the maximum change in temperature, is very good, especially at
distances sufficiently far away from the source. The fact that warmer temperature was predicted
in the source region is believed to be mainly due to the simplicity of the present source

- submodel, which neglects both the jetting effects and the cooling due to HF depolymerization
(Schotte, 1987).
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4. IMPROVED TURBULENCE MODELING

In the present section, further improvements to FEM3A in the area of turbulence modeling
are described. Firstly the time-averaged flow equations based on the new generalized anelastic
formulation are summarized. Turbulence modeling via a k-¢ formulation is then discussed.
Numerical solution of the k-¢ equations and treatment of the various Reynolds stress terms are
also described. Finally, two heavy-gas dispersion problems are presented to show the
improvements obtained with the k- ¢ model over the existing K-theory turbulence model.

4.1 The Time-Averaged Equations

As discussed in Section 3, the new model equations are (3.1), (3.2), (3.3), (3.4a), (3.5a), (3.6)
and (3.7), with turbulent mixing modeled via the K-theory formulation described in Section 2.
For convenience of describing .the k-¢ turbulence model, these equations are recast m a
Cartesian tensorial framework, together with the unknown turbulent fluxes such as—pui
-pu'8’

gt.(pu,.)ﬂ,u,g:_:=-%+axij(-pm)+(p-p.)s.- : @D
a_i‘(f’"i)=° , | 4.2)
S g (-, T+ ) 5

T e 5] - 6y

—(Pq.)+P ,-‘3%*501( uig)+ [ (Pq,)] . | @
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> =——{(-puiq )= . 4.5

at(PQI)fpul ax} axi( puqu [at(pq')], . ( )
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RT M,
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and
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In the above equations, it has been assumed that turbulent density fluctuations produce only
negligible dynamical effects in the mean transport equations, thus permitting the statistical
correlations involving the fluctuating density component p’ to be omitted. However, the
dynamic effects resulting from mean density variations, in both space and time, are fully allowed
for. As is seen, the above system of equations contain the unknown turbulent fluxes of
momentum, energy, and mass fractions, which need to be approximated (or modeled) to arrive at
a set of closed equations for the mean flow quantities. Described below is the k- ¢ turbulence
~ model implemented in the new computer code.

42 The k—-¢ Turbulence Model

The isothermal version of the standard k- ¢ turbulence model has been derived by Launder
and Spalding (1974) and an extension to treat buoyancy was described by Rodi (1980). Based on
these models, Haroutunian (1987) developed a new k-e¢ turbulence model and applied it to
simulate, with some success, the atmospheric dispersion of heavy gases. For the present model,
we follow very much the lines of Haroutunian except that a simpler approach is taken for
modeling anisotropic turbulence and the concept of flux Richardson number is employed to
determine the turbulent Prandt number.

In the standard k-¢ turbulence model, the unknown turbulence fluxes of momentum,
energy, and mass fractions are approximated as:

-puu,’ = pl((— +—4] -=pkd;, | (4.8a)

— K 96
—pu@ = @ 4.8b
P pPr,a ax,. (4.50)
- 2 4 = o e . 48c
P =P 5 on, | (4.8¢)
— K Jq,
—oWd = p—x_ % 4.8d
PUde=Poc o (4.89)

In Eq. (4.8), K is the isotropic (or scalar) eddy viscosity, k is the turbulence kinetic energy.
and Pr,e and Sc,c are the turbulent Prandtl and Schmidt numbers. The eddy viscosity, in tum, is
obtained from a Kolmogorov-Prandtl relationship of the form

K=C, /e (49)
in which
r=l7 (4 10a)
2 t bt 4

and
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e=% v M (4.10b)

In Eq. (4.9), C, is an empirical constant and ¢ is the viscous dissipation rate of turbulence
kinetic energy.

The variables k and ¢ are governed by the following transport équations

2, * 3 K x | |
5(pk)+puisg- 3:,- (pm-;x—j-}ks-l-b pPE , 4.1
? de 2 K o € e’ ‘
797("‘)"”"’3?'79"["7»729: ]*"*(J“q(“@)(ﬂ”‘g"(‘k‘} @12

wherein Pr,k and Pr,e are the turbulent Pranddl numbers for & and ¢ respectively. In Eq. (4.11),
s is the production of turbulence kinetic energy resulting from interactions between the mean
strain field and the turbulent stresses, and b is the production/destruction term resulting from the
turbulent density fluctuations. The exact expressions for these two terms are

s=-puu g-x"- (4.13a)
and
b=p'u g, . (4.13b)

These terms are modelled as

= ; P 4.14
$=p 3x+3x)3x 3P% %, | R
and
K | | ,
=- . 4.14b
Pr.p ox L “ A )

in which Pr,p is the empirically prescribed turbulent Prandtl number for density.

In the e equation, the modeling of the source/sink terms is largely based on intuition and
dimensional reasoning, which is discussed in detail by Launder (1984). The terms C (&/k)s and
C; p(€*/k) represent respectively the shear generation and viscous dissipation processes of €. and
G and C, are model constants. The buoyancy term C;{1- C;X¢&/k)b is also based on intuition and
is due to Rodi (1980).

Values of the model constants used in the standard k ~¢ model are:




C,=0.09, G =144, C, =192, Prk=10, Pre=13

The remaining model coefficients, Pr,s, Sc,c, Pr,p , and C, are flow dependent and need
to be determined empirically. For simplicity and in the absence of relevant data to suggest the -
contrary, the above turbulent Prandtl/Schmidt numbers are assumed to be equal '

Pre = Pr,p = Sc.c = Prt 4.15)

wherein Prr is called the turbulent Prandtl number, which is a direct function of the local state of
stratification and will be discussed shortly. The value of C3 is rather controversial and should, in
principle, be determined from “model tuning.” For convenience, the values used by Betts and
Haroutunian (1988), namely, -0.8 and 2.15 for the unstable and stable regxons respectively are
employed in the present study.

v With the above standard k-¢ model, isotropic eddy viscosity/diffusivities are assumed. In
order to model the turbulence process more appropriately for stratified flow such as heavy gas
dispersion, the above k-¢ would have to be extended to allow for anisotropic turbulent
diffusion. One such extension has been presented by Haroutunian (1987). The basic idea is to
model the unknown turbulent fluxes with the following generalized K-theory expressions by
replacing the scalar eddy viscosity/diffusivity with their corresponding eddy viscosity/diffusivity
tensors. More specifically, Eq. (4.8) is rewritten as:

-puu =pK,, (g: ZJ—%pk&, , (4.16a)
-puf = pK‘ g: (4.16b)
‘P“{q\. =pK gz; (4.169)
-puq, = pK‘ ‘;Z' | | | (4.16d)

J

where K, K,‘, K, are the eddy viscosity/diffusivity tensors for momentum, energy, and mass
fractions, respectively. K, is a fourth-order tensor, whereas Xj and K are second-order
tensors. -

With the above concept and certain simplifying assumptions, a fairly sophisticated
anisotropic turbulence model was derived by Haroutunian (1987) and used to simulate, among
others, the dispersion of the dense gas cloud of the Burro 8 LNG (Liquefied Natural Gas) field
trial conducted by Koopman, et al. (1982). Although the main features of the dense gas cloud
were simulated reasonably well, the predicted vapor cloud was generally too low and too wide.
Additionally, severe numerical difficulties were encountered when an attempt was made 0
include the actual terrain in the numerical simulation (Betts and Haroutunian, 1988) The




deficiencies of Haroutunian’s model are probably due, in part, to the improper use of a geometry-
dependent stratification parameter and wall-effect function in evaluating the turbulent Prandtl
number, which is an important ingredient in modeling the turbulent fluxes of energy and mass
fractions. Strictly speaking, the turbulent Prandtl number should be made a function of the flux
Richardson number, which is defined by the buoyancy generation/destruction and the shear

production terms in the turbulence kinetic energy equation.

In the present study, the flux Richardson number is employed. Additionally, in order to
achieve a balance between model sophistication and computational cost, a simpler, ad-hoc
approach to mimic the anisotropic turbulence diffusion in a dense gas cloud is adapted herein.
Specifically, the anisotropic diffusion tensors are defined as:

. B. B. 1
K—C,— B. B, 1. ' . (4172
1 1 1
K=k=c2l"% o b /pre, 4.17
i =Ky ue{ 0B 0 . (@17

wherein 8, is an input (or tuning) parameter (usually greater than unity) of the model. Note that
setting B4 =1 leads to an isotropic diffusion model. Equation (4.17a) is a shorthand notation used
to represent the nine non-zero elements of a fourth-order tensor and Eq. (4.17b) is a second-order
tensor with non-zero entries for the diagonal terms only. The coordinate directions x,y, and : are
assumed to be the principal directions, with x-y on the horizontal plane and z being normal to
the x-y plane. Strictly speaking the value of 8, should depend on local stability conditions.
However, for atmospheric boundary layer flow including heavy-gas dispersion problem,
advection transport is usually dominating in the horizontal directions, its precise value is thus
presumably not very crucial to the performance of the model. In the FEM3A model (Chan, -
1988), a value of 6.5 was used in the K-theory turbulence model and appeared to perform

reasonably well.

~ The turbulent fluxes and diffusivities for ¢ and ¢ are defined in a similar way:

—_— ok : , ‘
—-puk’ =pK; — , (4.18a)
ﬁaxj i
— o€
pue =pKf— , (4.18b)
) axj
with
K=c 2|t 0 k (4.1%¢)
v e[ o o % ,




k=2l 2 ¢ |
=Gl o B O (/P (4.18d)

In the context of anisotropic turbulence diffusion, the shear production and buoyancy
production/destruction of turbulent kinetic energy are modelled as '

Jdu, Jdu \du 2 . Ju
=P “-(ax_ ax,}ax,. 3P 55, (4.152)
| and
ap :
b=-Kf g, , : (4.19b)
q ax]
in which
KE=K; . (4.19¢)

As alluded to earlier, the flux Richardson number, which is defined beldw, is more
appropriate for determining the turbulent Prandt number. Knowing the value of R,,

the inverse turbulent Prandtl number is then determined using the following relationship

1 (1- 10R,)

Pr_ O (l-Rf)z 4.21)

»

based on the fitting of certain atmospheric and laboratory data (Ueda et al., 1981). In the present
study, the value of o, is selected to be 0.9852 (instead of 1.2 used by Ueda et al.) based on the
corrected similarity profiles (see Haroutunian, 1987) for the famous Kanas experiments. Also, in
order to maintain realistic values for Pr¢ , the range of R, is set to be between -20 and 0.099.

4.3 Solution of the k- e Equations

With the k-¢ turbulence model, the governing equations being solved are (4.1) through
(4.9), together with Egs. (4.11) and (4.12) for the turbulence kinetic energy and its dissipaton
rate. The model is augmented by the turbulent Prandtl number defined by Eq. (4.21). For
anisotropic turbulent mixing, a simple ad hoc approach described by Egs. (4.16) through (4.19) is
taken in the current study.

In the following, certain numerical aspects of the improved model are presented. which
include a discussion of treating the turbulent flux terms in the momentum equation, a semi-
implicit treatment of the sink terms in the k, € equations, a clipping procedure designed (0




-eliminate the undesirable values of & and ¢, and the associated boundary conditions. For
convenience, the following discussion will be restricted to isotropic turbulence only; extension to
include anisotropic turbulence is straightforward and, in principle, involves merely replacing the
scalar diffusivities with their corresponding tensor diffusivities. '

In order to retain a code structure that is useful for both the existing K-theory model and the
new k-¢ turbulence model, the new terms arising from the k-¢ model in the momentum
equations are treated as additional source/sink terms. As an illustration, the turbulent momentum

~ flux term for the x-momentum equation is arranged in the following way,

a -7 7,7 a 7.7 7.7
_.b;j.(puul_) = —-—(puu) sy—(pu )‘Bz(pUW)
= 9| ok[2, ) _2
= % ["K(ax * 3x) 3 ""]
+ gy- [pK(g-;f. %)] +§; pK(%+%)]
= 9 (x24) o9 () 9 ( g 2 (2
2e2] 23] 2010
* 5 (PK);E t5 (k) 5+ (PK) =
ox\dx dy Iz

In the finite element formulation of the above terms, the first three terms are treated via the
conventional Galerkin method of weighted residuals with integration by parts, thus yielding the
same kind of natural boundary conditions as before. The fourth term is conveniently absorbed in
the pressure gradient term, and the next three terms are treated as sources/sinks. The last term is
assumed to be negligible (indeed, it vanishes for incompressible flow with constant density) and
is thus omitted. The turbulent fluxes for other components of the momentum equation are treated
in a similar manner. '

Now, let us look at the numerical solution of the k -¢ Eqgs., (4.11) and (4.12). These transport
equations are similar to the species Egs. (4.4) or (4.5) except the source/sink terms are different.
Thus the finite element discretization procedures and time integration scheme described in the
previous section still apply except special care must be taken of the viscous dissipation terms in

‘these equations. Haroutunian (1987) observed that explicit treatment of the viscous dissipation

terms, namely, -pe in the k equation and -C; p(£) in the e equation, are responsible for
producing negative nodal values of k and &, especially in regions of strong stable stratificauon,
thus causing the numerical solution to diverge rapidly. As a means to stabilize the numencal
algorithm, these terms are linearized and treated implicitly in time marching. Specifically. Eqs.
(4.11) and (4.12) are rewritten as

d pE ok d K Jdk 19-
g pE ok , 22
5 Ph) + (pk) (ok) + pu; o  ox, (” Pr.k o, )‘“ S (
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2 ces o _ 3
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ot (pe) C’( k) (pe) + pu ox; ox; (p Pr.e ij] * e | (4.23)

p

where

fi=s+b ,
£.=G (%)s + C,(l—Q)(%)b

Equations (4.22) and (4.23) are now in the same form and thus can be solved using the same
numerical approach.

Summarized below are the procedures for obtaining the transient solution for the field of
turbulence kinetic energy. After applying the Galerkin finite element method to Eq. (4.22),
including integration by parts of the diffusion term, the following matrix equation is obtained:

M,% (pk) + aM,(pk) + (K +N,) k = F, (4.24)

where M,, K,, N, are the mass matrix, the diffusion matrix, and the advection matrix
respectively, F, is a global vector incorporating natural boundary conditions and the source
terms and “g” denotes the value of pe/pk. For computational efficiency, a lumped (or diagonal)
mass matrix, together with a vector containing the nodal values of “a”, are used in the time
integration scheme. By treating the second term of Eq. (4.24) implicitly and the remaining terms
explicitly, one finally obtains the following time-stepping algorithm

(o)™ = (pk)' +AeM;' [F; (K, +N,) k*]/(1+Asa") (4.25)

with a" = (pe)" (o)’
Similarly the time-stepping algorithm for pe is

(pe)™ = (pe)' + & M; [F2—(K, +N,)e"]/(1+a: %) . (4.26)
in which
b" =Gy (pe) [(ok)"

Once the nodal values of pk and pe are obtained, the values of eddy viscosity at nodal points
are evaluated according to

k=G, (o) (o -pe) - (427

Due to insufficient mesh and/or time resolutions, the solutions of pk and pe can exhibit
negative values, especially in regions of strong stable stratification. Besides being unphysical.



such values will generate negative turbulence diffusivities for the transport equations, thus -
causing the numerical solution to diverge.

In order to avoid numerical instabilities, the following “clipping” procedures have been
developed and implemented in the model. The procedures will readjust, if necessary, the nodal
values of pk and pe such that the resulting nodal values of eddy viscosity (K) are within a
desired range [Kpum. Kme ) Which are input parameters of the model. The procedures consist of -

the following steps:

1. Search through the entire computanonal domain for the maximum values of pk and
pe and call them (pk)___ and (pe),,,

2. Define the minimum values of pk and pe to be
(pk)u_ = 10"(pk)_ .
(pe),, =10"(pe)

3. For nodal points with pk <(pk),_,. or pe <(pe),... adjust their values to be

= (pk)m ’
pe= Cu(pk):h/p K‘

4, Evaluate nodal values of eddy viscosity (K) according to Eq. (4 27).

S. Readjust nodal values of pk and pe so that the values of K are within the specxﬁed
range (Ko, Kome)- Specifically, if K <Ky, set

K=K, and pk=(pK,, -pe/C,)*
If K>K_,
K=K, and pe=C,(pk) [pK_

. After applying the above chppmg procedures, boundary condition for pe is finally updated
accordmg to

e=p(CH)* /e | | (4.28)

for any nodes on the boundary over which the logarithmic wall function is used. In Eq. (4.28). «

is the Van Karman constant and A is the standoff distance between the boundary of the
computational domain and the nearby solid surface. On the same boundary, the natural boundary
condition of 559- =0 is applied for the k-equation. For the momentum equation in the streamwise
direction, a momentum flux boundary condition in the following form is applied,




pK%‘;- = plu-u)[x (C2) *1/en(EA (i R)* o] C @429)

in which u,, is velocity on the solid wall (usually zero), u, is the streamwise velocity at the node
under consideration, E is an empirical constant (9.0 for smooth wall), and v is the dynamic
viscosity. Similarly for the temperature equation, the following heat flux boundary condition is
applied, ‘

9"9 - (o, —O[r(C"k ]/Prtln[EA (cKx)%/o] (4.30)

in which 8,, is temperature on the solid wall.

4.4 Numerical Examples

Before the final version of k-e turbulence submodel was applied to simulate the
atmospheric dispersion of heavy gases, a standard version for isothermal flows was first
implemented and assessed against results from two important laboratory experiments, namely,
the fully developed channel flow of Laufer (1951) and the massively separated flow over a
backward-facing step conducted by Kim (1978). In both cases, excellent agreement between the
predicted results and measured data were observed. For brevity, results from these test problems
are not included herein. In the following, two heavy-gas dispersion simulations, one for a
laboratory test and the other for a field experiment, are presented and discussed. The two
simulations have been performed using both the X-theory turbulence submodel and the more
advanced k-¢ equation submodel, and the numerical predictions are compared with measured
data to illustrate the improvements obtained with the advanced turbulence submodel.

4.4.1 Heavy-Gas Dispersion Simulation of 2 Wind Tunnel Experiment

This example is a simulation for one of the three laboratory experiments conducted by
McQuaid (1976), which were designed to investigate the structure of shear flows with stable .
‘density stratification. The experiments were conducted in a wind tunnel with a fully developed
rectangular channel flow of air into which carbon dioxide was introduced as a ‘line’ source at
ground level. The simulated experiment, test No. 3, has the following test conditions: a source
rate of 0.0227 kg/s, an average in-flow velocity of 1.28 m/s, and a source Rlchardson number (a
measure of buoyancy versus turbulent flux) of 17.8. S

The two-dimensional computational domain is defined by x=-0.82 m to 6.0 m and y=0 to
0.5 m, with the source centered at the origin of the coordinate system. A graded mesh consisung
of 5,000 points (50 and 100 in the vertical and horizontal directions, respectively) was used in
the calculation. The continuous source was modeled via injecting CO, , with a vertical injecuon
velocity of 0.275 m/s, over a width of 0.08 m. At the inlet, a logarithmic velocity profile for a
neutral atmospheric boundary layer, which is characterized by a friction velocity of 0.0528 mvs
and a roughness length of 10-5 m, was assumed. The problem was simulated with both the
. similarity based K-theory and the k- ¢ equation turbulence submodels. For the latter, a stand off
distance of 0.01 m above the ground surface was selected to permit the use of wall funcuons on
such a boundary. '




In Fig. 4.1, the predicted concentration contours obtained with the two turbulence submodels
are depicted and tompared. Overall a ground-hugging cloud is predicted by both submodels but
the differences are quite noticeable, especially in the source region. Generally, the K-theory
turbulence submodel predicts a somewhat higher cloud, together with significantly higher

“concentration in the source region. Such over-prediction of concentration is more clearly shown -
in Fig. 4.2 for the ground level concentrations. In contrary, the predictions by the k - ¢ equation
submodel are in much better agreement with the measured data, regarding both the concentration
values and the slope of the curve in the downwind direction. ' '
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Fig. 4.1. Calculated concentration contours for McQuaid’s experiment No. 3 by two turhulence
models.
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Fig. 4.2. Calculated versus measured ground level concentration for McQuaid’s expenment
No. 3.



Another important means to measure the accuracy of a turbulence submodel is its ability to
predict concentration on the crosswind plane, in this case, the vertical direction (because of 2-D).
This evaluation is especially important for a heavy gas cloud, because an inferior submodel may
predict reasonably well the concentration in the downwind direction and yet with grossly
inaccurate cloud shape, typically a narrower and higher cloud than reality. Such assessments are
made in the next two figures. In Fig. 4.3, a comparison is made for the predicted heights
corresponding to 50% ground level concentration for various downwind locations. Again, results
from the k-¢ submodel are in much better agreement with the measured data than those
obtained with the K-theory submodel, especially near the source. The improvement obtained
with the k- ¢ turbulence submodel is further illustrated in Fig. 4.4 for the concentration profile,
i.e., concentration versus height, at x = 0.54 m behind the source.
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Fig.4.3.  Calculated versus measured values of A (the height with 50% ground level
concentration) for McQuaid’s experiment No. 3.
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4.4.2 Vapor Dispersion Simulation of an LNG Spill

The following is a simulation for one of the LNG vapor dispersion experiments, named Burro
series, conducted by LLNL in 1980 (Koopman, et al., 1982). The experiment being simulated is
Burro-8, which was conducted under very low wind speed and stable atmospheric conditions.
During the test, 28 m3 of LNG was piped onto the spill pond at a rate of 16 m3/min. The
atmospheric conditions were: an average wind speed of 1.8 m/s at 2-m height, an estimated
friction velocity of 0.074 m/s, a Monin-Obukhov length scale of 16.5 m, and an adiabatic lapse
rate of approximately -0.02°C/m. Again, the problem was simulated with the K-theory turbulence
submodel and the k-¢ equation submodel. :

In the numerical simulations, a logarithmic velocity profile based on measured data was
assumed at the inlet plane and also used as initial conditions. Flat terrain is considered herein and
the vapor cloud is assumed to be symmetric about the vertical plane bisecting the spill area and
along the prevailing wind direction, thus allowing only one-half of the vapor cloud to be
simulated. The computational domain has the following dimensions: 500 m longitudinally,
120 m laterally, and 15 m vertically. The total number of mesh points is 9,568 (46 x 16.x 13 in
the above directions). The spilled LNG was modeled via injecting NG vapor over a source area
of 25.6 m x 12.8 m (for one-half of the source) with a vertical injection velocity of 0.13 m/s over
a period of 108 s. In both simulations, heat transfer between the ground surface and the vapor
cloud was treated via a bulk heat transfer submodel with an effective heat transfer velocity of
0.0125 m/s. For the k-¢ turbulence submodel, the bottom boundary was defined at 0.05 m
above the ground over which wall functions were applied for the momentum equations. Another
simulation was also made with the k-¢ equation submodel, together with the turbulent heat
transfer defined by Eq. (4.30), instead of the bulk heat transfer submodel. A somewhat higher
and narrower vapor cloud was observed, suggesting an over-prediction of turbulent heat flux and
the need of fine tuning Eq. (4.30) for LNG simulations. The large differences in temperature
between the ground and vapor cloud are probably far beyond the range Eq. (4.30) was originally
developed for.

In Figs. 4.5 and 4.6, some sample results obtained with the k-¢ turbulence submodel are
depicted. Fig. 4.5 shows the predicted concentration contours and the velocity projection on a
plane 1 m above the ground. Profound changes of the velocity field from the originally
unidirectional wind field is apparent and the concentration contours manifest clearly the gravity
spreading of the vapor cloud in all directions, including upwind. In addition, a bifurcated vapor
_ cloud is seen, as suggested by those concentration levels higher than 15%. The lateral spread of
the vapor cloud is further examined in Fig. 4.6. Due to the presence of density gradient in the
lateral direction, an outward moving vortex is formed and air is entrained from the top surface
into the vapor cloud, thus resulting in a “nose shape™ region near the advancing front of the
cloud. '
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In Fig. 4.7, a comparison is made between the predicted and measured concentrations on the
plane 1 m above ground at t = 120 s. Both turbulence submodels are seen to be able to predict
gravity spread and the shape of the vapor cloud reasonably well. However, the wider cloud
predicted by the k-¢ model is apparently in better agreement with the measured data.
particularly, regarding features such as cloud shape and cloud bifurcation.
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1 m above ground at ¢ =120s.




In Fig. 4.8, the corresponding concentration contours on a crosswind plane 140 m downwind
are compared. Again, results from the k-¢ model are observed to agree much better with
experimental data regarding the cloud height, its bifurcated structure, and the width as well.
Unfortunately, the exact width of the cloud can not be determmed because the cloud spread .
beyond the edges of the sensor array.
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Fig. 4.8. Burro 8 calculated versus measured concentration contours on the crosswind plane
140 m downwind at ¢ =120s.




Finally, the prédicted time histories of concentration and temperature for a selected location,
at 57 m downwind and on the cloud centerline, are compared with field measurements in
Figs. 4.9 and 4.10 respectively. Although both submodel appear to simulate the field data
reasonably well, the improvements gained by the k-& submodel, typically 5% in (absolute)
concentration value and 10°C in temperature, are quite significant. The larger discrepancies

between numerical predictions by both submodels and the measured data for late times
(¢t > 160 s) are believed partly due to the inadequacy of the ground heat transfer submodel, such
as over-heating from the ground, and partly due to the meandering of the actual vapor cloud
(which was indeed not treated in the numerical simulations).
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- Fig. 4.9, Burro 8 calculated versus measured concentration for a point on the cloud centertine
at 57 m downwind and 1 m above ground.
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5. CONCLUDING REMARKS

In this study, two major improvements have been made to the FEM3A model: improved
‘mass conservation for treating dispersion scenarios with large density changes, and the addition
of an advanced turbulence submodel based on solving the k-¢ transport equations. These
enhancements have resulted in substantial improvements in the dispersion simulations, as
demonstrated by the numerical examples. Additionally, they have greatly extended the range of
applicability of the model, including the ability to treat problems with density variations beyond
the LNG range and dispersion scenarios of greater complexities, such as those involving
significant flow separations and recirculations.

Results from the present study indicate that, for problems with density variations in the LNG
range, the FEM3A model is adequately accurate. The results of this study also suggest that the
new algorithm can be cost-effective in restoring the conservation properties for most heavy-gas
dispersion involving large density variations. More specifically, when density variations are
predominantly caused by high molecular weight and high concentration of the species (as
opposed to large changes in temperature and/or dynamic pressure), solving the reformulated
species equations alone is sufficient to conserve the species mass and, with reasonable accuracy,
the global mass as well. The omission of the dp/d term in the global mass conservation equation
appears to have only little effect on global mass conservation and can probably be tolerated for
most applications. This is important and fortunate, because the inventory of global mass for most
heavy-gas dispersion problems is often time-dependent and inconvenient to determine.

For problems wherein large density variations are primarily caused by temperature
differences, enforcing species conservation alone may no longer lead to adequate conservation of
global mass. In such cases, global mass conservation may become equally important and should
also be enforced. Further investigation and development are necessary in order to adequately
address such cases. Similar type of problems in a closed domain have been considered by
Chenoweth and Paolucci (1986).

Although the algebraic K-theory turbulence submodel in FEM3A has performed reasonably"
well in the past for a relatively wide range of heavy-gas dispersion simulations, it is based on
similarity theory and is thus strictly valid only for situations wherein the flow is predominandy
the boundary-layer type. In contrary, more complete physics are treated in the k- ¢ equauon
turbulence submodel, including transport effects and more realistic length scales. As a result,
significantly improved predictions over the K-theory submodel have been observed. Such a
turbulence submodel can greatly extend the code’s ability in dealing with dispersion scenanos of
greater complexities, including flows with significant separation and recirculation.

While the k-¢ turbulence submodel has been shown to yield substantially improved
predictions over the K-theory submodel, its major shortcoming is probably the uncerainty
associated with the use of wall functions. If not used properly, the quality of the numencal
solution could be severely contaminated. To assure the quality of the numerical soluuon, care
must be exercised to make sure that the standoff distance (A) between the compuuatonal
boundary and the solid wall is selected properly so that the wall laws are valid on the
computational boundary. As a check on the validity of A, one should make sure the viiue of

—52—



u. AV (in which . is the friction velocity, u. =(0.3k)! , and v is the molecular viscosity of
the fluid) on the boundary as given by the numerical solution is between 30 and 200. There are
advanced turbulence submodels that permit the governing equations to be integrated all the way
to the wall, thus eliminating the need of using wall functions. These include the k- equation
model of Wilcox (1988) and the second-moment closure (7-equation) model devéloped by
Launder and Shima (1989). LLNL has some experience (and with encouraging results) in using
the k- model and is in the process of implementing the Launder-Shima turbulence model into
a new incompressible Navier-Stokes code. These -turbulence submodels, as expected, are
computationally more expensive; however, with some further developments, their utility for
heavy-gas dispersion simulations is feasible in the near future. '

Regarding tomputer time, the additional computing cost associated with the reformulated
equations to enforce mass conservation is nominal, while the upgrading of turbulence modeling
from the algebraic K-theory to the k—¢ transport equations is more substantial. Our numerical’
experiments for a few medium-size problems employing a direct solver, in conjunction with
subcycling to effectively solve the pressure equation, indicate an increase of 40-60% in CPU
cost. However, for large problems that the matrix of the pressure equation can no longer fit the
available computer memory, the cost associated with solving the pressure equation is expected to
be much higher and thus the percentage increase in CPU time using the k-¢ turbulence
submodel should be smaller. g
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