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1. Introduction

The stabilization of plasma turbulence by sheared poloidal rotation [1] is thought to
explain enhanced confinement [2] in tokamak plasmas. One method proposed for controlling
sheared flow is the use of externally driven radio-frequency (RF) waves [3]. A number of
calculations [4—6] and some experiments [7-8] have suggested that a modest amount of power
in the ion cyclotron range of frequencies (ICRF) can drive the needed flows.

Previous calculations [4—6] have relied on incompressible fluid models which balance
RF forces in the poloidal direction against neoclassical viscosity. But the incompressible as-
sumption is not always valid, particularly for ion Bernstein waves (IBW). Also, since the IBW
is a kinetic wave by nature, a fully consistent model should include kinetic effects. In this
paper, RF driven flows are calculated from both compressible fluid and kinetic points of view.

2. Fluid and Kinetic Models for RF Induced Momentum Transport

The starting point is the Vlasov equation for a plasma in the presence of perturbing RF
electric and magnetic fields,
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where By(r) is the static magnetic field and E;(r, ¢) and B(r, ¢) are perturbing RF fields with
" time harmonic dependence expli(k-r—wr)] where @ is the wave frequency. The distribution
function f can be expanded in powers of the electric field as

f(r,v,t) =fo(r,v)+f1(r,v,t)+F2(r,v,t) (2)

where fj is the equilibrium solution, f; is the linear solution o< exp[i(k-r—?)], and F; is the %
slowly varying, second order response. The lowest order solution for fy(r, v) is assumed to be ﬂ
an isotropic Maxwellian. The first order equation can be solved for fi(r,v,?) in terms of fy(r, v)
by integrating along unperturbed particle orbits [9]. The second order equation is [10]
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where ( ), represents a time average. The slowly varying ambipolar electric field E; has been m
neglected, but can be included by superposition of results from a later calculation.

In fluid models [4—6], the poloidal flow is found from the velocity moment of Eq. (3)
for each species s,
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where nV, = | vF; ¢ dv is the slowly varying flow velocity, and P, ;= ] mvvF; g dv is the
second order, nonlinear pressure tensor. The last term in Eq. (4) represents momentum lost due
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to collisions, where . is the neoclassical viscosity. The poloidal (y) component of Eq. (4) yields
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where € is the cyclotron frequency. Summing over species s, the second term on the left
(proportional to ngV,,’) sums to zero by ambipolarity, and in steady state, we are left with
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where V5, is the mass averaged flow velocity in the poloidal direction, and pT . is the total mass
density. A similar result can be derived for the toroidal flow velocity. The first term on the
right of Eq. (6) is the "Reynolds stress”", and the second term is the "electromagnetic (EM)
force". For closure in the fluid model, the second order pressure tensor P, is approximated as
the time average of the product of first order oscillating velocmes Py~ nsms{Vi Vi) in
which case, the Reynolds stress becomes

(V- -Pas)y = nems{(Vi,s - VIV + Vil (V- Vi) (7

where Vi is calculated from the plasma current for each species as V5 = J1 5/ n; g, For
incompressible forces as in the case of plasma turbulence, the second term (proportional to
V-V, has been neglected [4-6]. But for some RF heating modes (particularly IBW) this
assumption is not correct, and this term must be retained.

For waves which are intrinsically kinetic such as IBW, momentum can be carried by
particle motion on the scale length of the wave. This is analogous to the "kinetic flux" [11] in
energy transport. To treat this flow accurately, and to avoid approximating P, for closure in the
fluid model, a kinetic treatment is necessary. In this case, Eq. (3) can be solved directly for F;
" in terms of f; by integrating along unperturbed orbits:

t
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To properly treat singularities at cyclotron resonance, @ is assumed to have a small imaginary
part Y. Also, the lower limit on the integral is chosen to be O rather than — e to avoid the
singularity in F, at t=—o and y — 0. The time averaged power deposition dW/dt can be
found by taking the energy moment of Eq. (8) and differentiating with respect to time
W _ [mw? 9F, 4

= / > Sy > 0. )
~ This is equivalent to the power deposition calculated in Refs. [12—14]. These references show
that Eq. (9) is positive definite even when significant energy flux is carried by the particles. By

analogy with Eq. (9), the total force per unit volume in the y direction is given by
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t
where the time average is over a cyclotron period to eliminate fast transients. In the limity —0,
there is a "resonant" part of Eq. (10) that is proportional to time and contains the increasing
velocities and energies associated with the RF fields. In the interest of examining the RF forces
before the plasma equilibrium has begun to change, we set ¢ =0 in those terms. As in the fluid
model, the steady state poloidal flow velocity can be calculated by balancing Eq. (10) against
neoclassical viscosity in the poloidal direction. '




3. Numerical Results for the RF Induced Poloidal Flow Velocity

In this section, the RF driven flow velocity in the y (poloidal) direction is calculated
using the fluid and kinetic models developed above. In both models, the RF fields are calcu-
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Fig. 1. Density, temperature and magnetic field profiles forai-D m_ and applied magnetic field By= 4.0 T on
tokamak plasma with R =0.67 m, a =020 mand B(0) =40 T. axis. The antenna is located Jus t outside the

plasma at R= 0.88 m, and is characterized by a toroidal wave number, k, = 10 m™, and poloidal

wave number, k, = 0 m™’ (i.e. no net input of poloidal momentum). Plasma profiles are shown

in Fig. 1.

Figure 2 compares the poloidal flow velocity as calculated from three different models:

(a) incompressible fluid, (b) compressible fluid, and (c) kinetic. The plasma consists of a 10%

minority of hydrogen (H) in helium-3 (He?), and the frequency is near the first harmonic of the

minority H. Absorbed power is 1 MW for all cases. To suppress mode conversion to IBW near
the two ion hybrid resonance layer, k, has been chosen artificially large. The long dashed line
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Fig. 2. Poloidal flow velocity for f = 50 MHz, B(0} = 4.0 T and kz =26 m-1.

shows the EM force, the short dashed line shows the Reynolds stress, and the solid line shows
the sum of both terms, i.c. the total flow velocity. The effect of compressibility in Fig. 2(b) is to
slightly reduce the contribution of the Reynolds stress. Kinetic effects, on the other hand, give
a slightly larger Reynolds stress than the fluid models. The magnitude of the flow is compa-
. rable in all three cases. Similar results are found near the second harmonic resonance.

The situation is quite different for directly launched IBW as shown in Fig. 3. Here, the
plasma consists of a 2% minority of He?® in deuterium (D). The antenna is just in front of the
second harmonic of D, and IBW is launched directly from the plasma edge. Again there is no
net input of poloidal momentum (k, = 0). As expected for IBW, compressibility is extremely
important in the fluid model, and the flow is reduced by two orders of magnitude in Fig. 3(b).
What is perhaps not expected is the additional decrease observed in the kinetic result. In this
case, wave damping is due predominantly to Landau damping (LD) and magnetic pumping
(TTMP) in the z (toroidal) direction. But for k, = 0, the wave has no poloidal phase velocity,
- and there can be no analogue to LD or TTMP in the poloidal direction. Therefore, momentum
in the y direction can only change due to second order finite Larmor radius terms, and the"
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Fig. 3. Poloidal flow velocity for f = 44 MHz, B(0) = 4.0 T and kz = 10 m-1.

resulting flow in Fig. 3(c) is very small. Similar results are found for IBW generated by mode
conversion.

We conclude that the choice of an appropriate model depends strongly on the type of
wave considered. For electromagnetic waves such as the fast magnetosonic wave in Fig. 2,
fluid models give a reasonable approximation to the complete result. But for electrostatic
waves such as directly launched IBW in Fig. 3, this is not the case. Here both compressibility
and kinetic effects are important, and a kinetic treatment is required. Significant flows are
driven at both first and second harmonic ion resonances even for k, = 0. But such flows do not
occur when wave damping is predominantly due to LD and TTMP since for k, =0, there can be
no match between thermal speed and the phase velocity of the wave in the poloidal direction.
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