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Abstract

First principles methods are used to aid the material designers and metallurgists in
the investigation and design of new materials. These methods suffer from a divergent
O(N3) scaling which restricts the problem sizes that can be addressed. It will be
demonstrated that the O(/N3) scaling problem can be overcome by employing real-space
multiple scattering techniques to calculate the scattering properties, combined with
the QMR algorithm. By incorporating the QMR method into our real-space multiple
scattering code, we observed O(N) scaling for the large problem sizes of interest. This
advancement will provide researchers with the necessary tools to treat large systems.

1 Introduction

The design of new technologically advanced materials is of extreme importance to the
industrial and economical competitiveness of the U.S. The modern design of new materials
makes use of local-density approximation (LDA) based, first principles electronic structure
calculations. These methods are parameter—free methods, requiring no experimental input.
This means they are predictive methods that can be accurately used to calculate materials
properties.

The development of LDA-based, first principles electronic structure methods that scale
linearly with the number N of atoms in the system grows is necessary because current
methods exhibit O(N3) scaling, which renders the study of large systems comprised of
hundreds of atoms computationally intractable. The O(N3) scaling arises in LDA methods
due to either a eigenvalue-eigenvector solve or a matrix inversion. Our problem concerns
the latter and by incorporating the quasi-minimal residual (QMR) method into the our real
space multiple scattering code, we are able to achieve O(N) scaling for the problem sizes
of interest.
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2 Local Density Approximation

The density functional theory (DFT) is an exact method for calculating the energetics of an
electron system in the field of the atomic nuclei within a single-particle framework|[6). This
theory in principle includes all of the many-body quantum mechanical effects of electron
exchange (Pauli-exclusion principle or exchange energy) and correlation.

A central result of the theory is that the total energy of the system yields the correct
ground-state energy at its minimum. At the heart of this formalism is the calculation
of a pon-local, exchange-correlation potential that accounts for the many-body effects of
electron exchange and correlation. However, the non-local exchange-correlation potential
is unknown, requiring further approximation.

The local-density approximation to density functional theory is a technique for treating
the non-local exchange-correlation potential within a mean-field theoretical framework,
resulting in a set of single-body Schrodinger-like equations (Kohn-Sham equations) with an
effective potential containing a local exchange-correlation potential [8]:

(1) [ V2 + VIHI(P]D(F, €) = ep(7 ).

It should be noted that the DFT-LDA theory is a ground-state theory. The eigenvalues of
the Kohn-Sham equations only represent the true eigenvalues of the system in its ground
state and are not the true eigenvalues for the excited states.

3 Real-Space Multiple Scattering

The real-space multiple scattering method is based on multiple scattering theory. It is
similar in spirit to the Korringa, Kohn and Rostoker (KKR) method [9][7][10]{4][5]. The
KKR method makes use of scattering theory to calculate the scattering path operator,
which is used to construct the single-site, site-diagonal, Green’s function and is written in
the angular momentum representation as

Go(7,Tre) = Y Z8(F, )rie(€) Z3(T,€) — Z§(F, ) I3 (7, €)rr],
L.L’

where € = is the complex energy, and

Zg(, €) = regular single-site wave function of the a*® atomic specie;

J§(7, €) = irregular single-site wave function of the a** atomic specie;

Tgl’-JO,O(G) = single-impurity scattering-path operator of the a* atomic specie. The scattering
path operator 709,(¢) relates the outgoing wave from one site into an incident wave on
another and includes all possible scattering paths (multiple scattering). However, instead of
calculating the scattering properties of the infinite periodic system, the real-space multiple
scattering method includes only a finite set of atoms in the system. The real-space multiple
scattering technique calculates 709, (scattering properties) for each atom in the unit cell
and is expressed in general, in matrix notation as,

(2) () = 1()ij + Yt (e)g" (R, )7 (e)
k

where R is a real-space translation vector. The physical properties of the system are
determined by the site-diagonal scattering path operator 7%°(¢) which leads to,

(3) 70 =[7- t(e)g(}-?:, )] t(e).
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converts an incoming wave

at site i into an outgoing wave
at site j and includes all possible
scattering paths between the
two sites.

F1G6. 1. Schematic display of the real-space multiple scatterng method. The atom at the center
of the prescribed boundary calculates its scatiering properties by including only those atoms which
fall within the boundary.

This results in a single inverse of a large matrix at a given energy to calculate 7%°. A
schematic representation of this process is shown in Figure 1. The solution to Poisson’s
equation and the total energy of the system is performed by including all the atoms in the
unit cell.

The advantage of this method, in the context of this study, is that it is a straightforward
procedure to increase the system size. For certain systems, such as Molybdenum, it can
require hundreds of atoms in the system in order to obtain accurate results (1600x1600
double precision complex matrix). Whereas, in the KKR method this same problem results
in a small one atom per unit cell investigation. However, the results of the analysis do not
depend on which code is used. The physics of the problem is the same for both codes and
both codes are based on multiple scattering theory. Hence, the results of the analysis are
invariant with respect to the codes.

4 Use of QMR
For this study, we were interested in investigating the use of the quasi-minimal residual
(QMR) methods for the solution of the linear system in Equation (3). The QMR method

was proposed by Freund and Nachtigal[3]. It is an iterative method for the solution of
general non-Hermitian linear systems, based on selecting a quasi-minimal residual iterate
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Fi1G. 2. Time required to solve for the inverse for each energy on the contour.

from a Krylov space built using the look-ahead Lanczos algorithm([2]. The particular variant
used was the transpose-free QMR method (TFQMR), proposed by Freund[1]. Unlike the
original QMR method, the TFQMR algorithm does not require a multiplication with the
transpose of the matrix at each step. However, the TFQMR is currently implemented
without look-ahead, which means that it is susceptible to possible breakdowns. In our
examples, we have not encountered any difficulties with the method, probably due to the
few number of iterations required to solve the linear systems. The quasi-minimal residual
algorithms have several properties that make them appealing: the underlying Lanczos
process requires little and almost constant work and storage per iteration. In addition,
the use of a quasi-minimization problem to define the iterates gives a smooth and almost
monotonically decreasing convergence behavior. For further details on the quasi-minimal
residual methods, we refer the reader to the references.

5 Results

We have compared two different methods for computing the inverse of a matrix associated
with perfoming electronic structure calculations on face-centered cubic (fcc) Copper and
body-centerd cubic (bcc) Molybdenum. The first is a direct method based on an LU-
factorization and the second is the TFQMR method.

These two atomic elements were chosen because of their different physical dependencies
on the multiple scattering at the Fermi energy (highest occupied electronic state in energy)
and the number of atoms (cluster size) that are necessary to accurately calculate the physical
properties of the system. It will be shown that these physical dependencies can have a
dramatic effect on the rate of convergence of the TFQMR method, but that the effects are
system dependent and obviously do not effect a direct method.

In Figure 2 is displayed the time required to solve for the inverse for each energy on
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FiG. 3. Comparison of timings for QMR vs. LU for various cluster sizes for Molybdenum.

the contour for a specific cluster size. Notice, that the time increases as one approaches the
Fermi energy (top of the contour) for both elements but, Molybdenum exhibits a substantial
increase in time as compared to Copper. This is to be expected because Molybdenum has
d-states (d-resonances) at the Fermi energy which require higher order multiple scattering
terms and hence, more iterations. In addition, to accurately calculate this type of behavior
and other physical properties of the system requires larger cluster sizes. This exemplifies
the dependency of the efficency of the TFQMR method with respect to the type of system
to be investigated.

In Figure 3 is the timing versus system size for the LU-based algorithm and the TFQMR
method for Molybdenum. As expected, the LU-based algorithm displays cubic behavior.
However, the TFQMR method exhibits near linear behavior in a regime where one would
expect quadratic behavior (hundreds of atoms which translates into 1600x1600 double
precision complex matrix). This unexpected result illustrates the robustness of the TFQMR
method and as importantly, means that it may be possible to study even larger systems
than was anticpated.

6 Conclusions

The effectiveness of the TFQMR method coupled with its efficient use of memory makes
it a highly effective algorithm that will enable material scientists to investigate large scale
problems which would otherwise be untenable due to the poor N3 scaling of direct methods.
In addition, the unexpected O(N) scaling of the TFQMR algorithm makes it even more
competitive than had been expected.
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