UCRL-JC-124228
PREPRINT

CoNp. 9606 19/-= 2

Gist: A Scientific Graphics Package for Python

L. E. Busby QECEEEVED
JUN 2 7 1095
08T

This paper was prepared for submittal to the
4th International Python Workshop
Livermore, CA
June 3-6, 1996

May 8, 1996

Thisisa preprintof a paperintended for publicationinajournal orproceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author,

MASTER

DISTRIRUTION OF THIS DOCUMENT IS UNLIMITED
Olc-

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

(1

Gist: A Scientific Graphics Package for Python
Lee E. Busby

Abstract

"Gist" is a scientific graphics library written by David H. Munro of
Lawrence Livermore National Laboratory (LLNL). It features support for
three common graphics output devices: X Windows, (Color) PostScript, and
ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is
small (written directly to Xlib), portable, efficient, and full-featured. It
produces X versus Y plots with "good" tick marks and tick labels, 2-
dimensional quadrilateral mesh plots with contours, vector fields, or pseudo
color maps on such meshes, with 3-dimensional plots on the way.

The Python Gist module utilizes the new "Numeric" module due to J.
Hugunin and others. It is therefore fast and able to handle large datasets. The
Gist module includes an X Windows event dispatcher which can be
dynamically added (e.g., via importing a dynamically loaded module) to the
Python interpreter after a simple two-line modification to the Python core.
This makes fast mouse-controlled zoom, pan, and other graphic operations
available to the researcher while maintaining the usual Python command-
line interface.

Munro's Gist library is already freely available. The Python Gist
module is currently under review and is also expected to qualify for
unlimited release.

Background

The Gist graphics library was written by David Munro of LLNL, a
plasma physicist frustrated by the low quality of tools available in the UNIX
workstation environment. In this respect, Gist satisfies a general rule of
software design attributed to Eric Allman: Write programs that you want to
use. (A Quarter Century of UNIX, Peter H. Salus, 1994, pp. 145.) Munro has
invested several years in the design and implementation of Gist and Yorick,
an extensible interpreter specialized for scientific applications. It is not an
accident that Gist is well suited for incorporation into an interpretive
programming environment, and my Python interface to Gist is, for now,
virtually a clone of Yorick’s. This decision certainly reduced the effort and
cost of implementation, training, and documentation on my part, but it also
recognizes that Munro's interface is good enough.

Gist attempts to satisfy four important requirements of scientific
graphics: First, plots are often produced in great numbers and then scanned
for patterns or trends. Gist provides an efficient format (ANSI/ISO CGM) for
archival storage of graphics output, and a facility to easily create families of

1

DISTRIBUTION OF THIS DOCUMENT 1S UNLIAITED
B} 0 le

output files. With such output and the CGM browser included with Gist, it is
quite practical to produce, store, sift through, and select from files containing
dozens or hundreds of plots.

Second, Gist is oriented towards portability. It is written in Standard C,
and has demonstrated implementations on every major UNIX variant. It
produces excellent quality color PostScript either directly or by conversion
from the CGM format. Its X Window code is written directly to Xlib, so it is
independent of all X Toolkits, window managers, or other support programs.
Internally, the code drives a virtual output engine with a well-defined
interface, so that new engines, say for OpenGL, can be added with relative
ease.

Third, Gist provides a superior interface for detailed interactive
analysis and manipulation of plots. It provides simple mouse-controlled
zoom and pan, with continuous accurate feedback on the world coordinates
of the mouse cursor. The interface is unadorned, simple to use, and highly
responsive.

Fourth, Gist allows for iterative construction of important plots for
display purposes. (There is a saying around LLNL, only half in jest, that our
most important product is viewgraphs.) The user may edit plots element by
element, change the position of axes, add or remove text, and so on, before
committing the image to hardcopy.

Interface Overview

For the C programmer, Gist may be approached at several levels. At
the lowest level, it may be treated as an implementation of the Graphical
Kernel Standard (GKS), with bindings to C (and Fortran at level ma) and
output drivers for PostScript, X Windows, and CGM. Above this level, Gist
provides operators to control and image more complicated structures, such as
decorated polylines and quad meshes. At a still higher level, Gist provides for
display list creation and management, allowing the programmer to
manipulate several Drawings at a time, to display them on a variety of output
Engines, to edit and fine-tune their elements, and to encapsulate a variety of
parameters into style and color palette files. Python's C interface to Gist is
made at this level.

For the Python programmer and user, the Gist module provides a set
of functions to produce and manipulate graphics in one or more new screen
windows. The command

import gist; gist.plg([0, 11)

is enough to start out. You may create up to 8 simultaneous graphic
windows. Each window may have its own associated hardcopy output file, or
it may reference a default file. Windows or files may be opened or closed at
any time, and windows can be directed to any X display. One window at a
time is current, selected by the current_window function. Meanwhile, the
familiar Python command line interface continues to operate in its original
window without apparent change.

Each window contains one or more coordinate systems for graphic
output. The current system and the (X,Y) value of the mouse cursor are
continuously displayed in the window title bar whenever the cursor is within
the window boundaries. Zoom and translation operations can be
accomplished by clicking and dragging with the mouse, or by using the limits
command.

Plots are built up by one or more calls from the command line to
display graphic objects, add text, adjust the position and type of markers, and
so forth. The current state of the plot may be saved to the hardcopy file at any
time, or several times, using the hcp command. To begin a new plot, use the
fma (frame advance) command.

The Gist library selects appropriate default values for most adjustable
properties so as to minimize the tinkering required. Property default values
can be set by several methods. The most comprehensive method is by style
files, which preset things such as the number and location of coordinate
systems in a frame, the location of axes, type, size, and labeling of tick marks,
and so on. Gist ships with several style files to choose among, and most
casual users will be quite satisfied with one of them.

Gist currently provides functions to plot two major types of objects.
First, the classic X versus Y graph: You may plot any 1-dimensional Python
sequence type, so for example,

plg ("Lee Busby")

produces a graph of the ASCII values of the successive characters in my name.
More typically,

x =2 *pi * arange (100)/99.0

plg(sin(x), x)

produces a plot of the sin function. The pldj function (plot disjoint line
segments) provides a useful variation. It accepts two arrays as arguments, and
draws a series of (disjoint) lines whose endpoints are the successive respective
elements of each array.

The second area addressed by Gist concerns discrete functions over a
2-dimensional quadrilateral mesh. Such meshes are represented internally by
a pair of 2-dimensional arrays X and Y, where the (i,j) element of each array
gives the X or Y coordinate respectively of that point in the mesh. The library
gives a variety of ways to display such functions, including contours, vector
fields, and several color or gray scale cell plot forms. The library is also
capable of producing cell image plots of any 2-dimensional array (without
reference to an underlying mesh). In all, there are some 40 commands, from
animate to zoom-factor in the Gist module.

One other part of the interface is novel enough to mention. All the
commands in the Gist module have extensive on-line documentation.
Recall that my Python interface to Gist is very similar to Munro's Yorick Gist
interface. Documentation for that interface already existed as an ASCII text
file of some 1,000 lines in length, which I was highly motivated to reuse.

The solution I provided is embarrassingly simple, but it is independent
of Gist and written purely in Python, so I describe it here. My solution
depends upon the ability of the UNIX more and grep commands to search for
a regular expression in a file. I've written a small module help.py with a
single external ' method help, which takes a string argument. It is used as in

from help import help
help ("Plg")

This initiates a (grep) search along the components of sys.path for the pattern
/"plg:$/ in all files having the suffix ".help". The first match found is passed
to more using the same regular expression. The help files themselves are just
arbitrary ASCII text, where the "plg" topic begins with a line of the form
shown in the regular expression above. The lookup goes reasonably quickly
on a good workstation, and it's easy to cache the most recently accessed help
file to speed future searches. Searches can also be directed to a particular help
file (e.g., module) if you know the module name: help ("gist.plg") will find
the "plg" topic only in the file named "gist.help".

This is frankly a stopgap. I think the future of on-line help is clear
now, and it is written in HTML. Ubiquity, the ability to display multiple data
types including graphics and audio, and the ability to index essentially
everything make the Web browser an unbeatable tool for documentation and
on-line help. There may still be a separate role for class browsers and other
tools which analyze and present views of a dynamic system, but I contend
that they often should produce HITML as output.

Event Handling

The Gist library includes an event dispatching facility which multi-
plexes several concurrent input sources. Event handlers can be added or
removed during execution, and there is provision (unused in the Python
module) for calling a worker function at times when all input sources are
idle. The facility is based upon the UNIX select or poll system call.

It is not immediately obvious how to retrofit event handling into a
program structured like Python. Python executes an input program line by
line in three phases: First, it builds a parse tree representing the current line;
second, it compiles the tree into a list of instructions for a stack-based virtual
machine; and third, it executes the stack. Input characters are read from stdin
during the parse phase, whenever the tokenizer reaches the end of its buffer.
Thus (like most compilers), the program (not the user) decides when to read
input.

Event handlers often sit at or near the top of a program's call tree. In
this model, events are the central elements which drive all responses of the
program and which therefore motivate the program's logical structure. This
model would be awkward to force onto Python. For (just) one thing, it would
require radically re-structuring the logic that determines when to print an
input prompt, and which one (primary or secondary) to print.

Some implementations graft event handling onto an interpreter by
making it an external command called by the user. These fail in that, until
the event handler returns, the command line ceases to be available for more
input. '

There is another way to obtain the benefits of a generalized event
handler at minimal cost in terms of changes to the Python code. The
approach I chose places the event dispatcher at the lowest point in the Python
program call tree. Python normally reads input lines by calls to the fgets
library routine, in the file Parser/myreadline.c. This call may be replaced by a
call to a virtual function Py_fgets, declared and initialized in myreadline.c as:

char * (*Py_fgets)(char * buf, FILE * fp);
Py_fgets = &fgets;

This default initialization causes Python to operate without any change until
the Gist module is imported. When that occurs, the line

Py_fgets = &gist_fgets;

is executed. Gist_fgets is the eniry point to the event dispatcher. From that
point on, Python's requests to read stdin are routed through the Gist event

handler. Where the old Python will block attempting to read stdin, Python
Gist "blocks" in a select call. This means that the process is able to handle X
Window events without any apparent change in its command-line interface.

There are some limitations to this approach, of course. Python doesn't
get all of its input through the single fgets call in myreadline.c. There are
some other places in the code where input is read, sometimes using other
library routines or system calls. This problem could be overcome by a more
thorough application of the original nostrum — that is, replace all calls for 1/O
by appropriate virtual function wrappers. (In fact, the single replacement in
myreadline.c seems quite effective in practice — apparently, Python rarely
goes elsewhere for input.) '

A more fundamental limitation of my approach is that there is only
one virtual function to go around. If a module other than Gist also wants to
redirect Py_fgets to its own end, this would be difficult, to say the least. It
would be better to provide X event handling in a separate standard Python
module so that modules like Gist would simply register and remove their
specific handlers as they came and went, instead of grabbing Py_fgets.

Finally, the current scheme is only as portable as the UNIX select
system call. Gist has previously been ported to Macintoshes, although that
port does not allow mouse event handling. Other ports are obviously
interesting, but are beyond the scope of this paper. There may be other
approaches entirely, such as co-operative multi-tasking, or threading, which
can solve the problem of multiple input streams more generally and more
portably.

Future Work

Future work on the Python Gist module depends on the requirements
and wishes of its users. The current interface is unabashedly functional (as
opposed to object-oriented), and we have already considered some ways to
make the interface more OO. Presumably this would involve objects such as
curves and surfaces, with attendant methods to plot them, change their color,
size, orientation, and so forth. However, the natural methods and attributes
of graphic objects may not map naturally to the currently available routines
in the functional interface. For example, the current X-Y plotting function plg
implicitly draws axes, bounding boxes, tick marks, and labels in addition to
the curve of interest, and this may well interfere with the design of methods
for a curve object. So there will clearly be some iteration. involved in
adapting a different style of interface to the module.

We anticipate that 3-dimensional graphic output will be needed soon.
David Munro has done some preliminary work extending the Gist library in
this direction. Along with 3-dimensional output, there will be the need to

handle non-quadrilateral meshes. Such unstructured meshes will generally
be described using lists of edges, nodes, and cells, so we necessarily have to
develop or adopt conventions for handling this information in a graphic
context.

The users of Gist have often wished for simpler means to edit their
plots for display purposes. (The plq and pledit functions currently provide a
command line interface to query the identity of graphic objects in a plot, and
then edit their attributes.) It's not clear how best to proceed in solving this
problem. We hope that introducing Gist into Python may provide somé new
ideas, avenues, and tools for improving Gist itself, either by allowing us to
more conveniently categorize and manipulate the objects in Gist, or by giving
us access to other graphic tool kits in the same program.

Finally, I expect to consider the question of porting the Python Gist
module to other platforms such as Macintosh and/or Windows. A
Macintosh port of Gist already exists for Munro's Yorick program, although it
is not fully capable in the area of mouse input. A Windows port will probably
require a new OpenGL graphics engine for Gist (at least), but this work may
have other benefits in the area of 3-dimensional primitives.

Availability

The Python Gist module, the Gist C extension module, and associated
other files are available in gzipped tar format at

ftp:/ /icf.llnl.gov:/pub/Python Gistmodule.tar.gz
(or at python.org.)

The Gist graphics library and Gist CGM browser are both included in David
Munro's Yorick distribution, which may be obtained at
ftp:/ /icf.lInl.gov:/pub/Yorick. At the time of this writing, the current version
of Yorick is 1.2. Please direct bug reports, problems, or questions to the author
at <busbyl@llnl.gov>.

Example output

A

A Basic Plot of Sin(x)

0.5

0.0

teratetalatorctanditanatat

-0.5—=

'1-0:]llll|IlIl|llll|III
0 1 2 3

T —
4 5 6

Produced by:
x = 2*pi*arange(200)/199.
pla(sin(x),x)
A Quad Mesh Plot
Btdhinnennd g lrhll'rlllnlnlllalal_
10— -
0.5— —
0.0: :
0.5— -
-1.0— -
-|I|lll|l|l|I|III|I|l| |l|l’-l|.l—|l|l|l|l|l|l|-
-1.0 -0.5 0.0 0.5 1.0
Produced by:

x = ((arange(25°25)%25).reshape(25,25))/12, - 1

y = x.transpose()
2=x+1j"y; 2=5."2/(5.42°2)
xx = z.real; yy = z.imaginary
pim{yy,xx)

w
brennboinn b

n

-

A Set of Nested Cardioids

(SRR ENARE RN Lorealavinld

RN NER R RN AR RREER
-4 -3 -2 - 0 1

Produced by:
X = 2°pi*amay(arange(200),'d")/199.0
for i in range(1,7):
r=0.5"-(5-0.5") * cos(x)
plg (r*sin(x), r*cos(x}), marks=0)

Some Contours Over the Mesh

4

’ ',
AR RRERE

~

||||||||||||||'l|||||l‘|1'lr|‘||||||||||||||||||||l|
-1.0 -0.5 0.0 05 1.0
- Produced by:

plm (boundary=1, type=2)

plc (mag (x+.5,y-.5), marks=1)

where x and y are as before, and mag is
def mag(*args):

r=0

for i in range(len(args)):
r=r + args|i]*args[i)
retum sqrt(r)

Acknowledgments

Writing this module required little invention. Rather, I have stitched
together the original work of several others. I am grateful to Paul Dubois for
encouraging the project, to Zane Motteler for conversation about class
structures for graphical objects and to Judy Harte for contributing test files and
suggestions about test procedures.

I appreciate the assistance of Mark Hammond and Geoff Philbrick in
helping me puzzle out how to handle keyword arguments, and I appreciate
Guido van Rossum's answers to my numerous questions about Python
internals.

This module would have been impractical without the contribution of
J. Hugunin, K. Hinson, J. Fulton and others to the Python "Numeric"
module. I am grateful to David Munro for patiently answering my many
questions about Gist internals and X event handling.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under Contract W-7405-ENG-48.

