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Abstract

In this paper the parallel benchmark code PSTSWM is
used to evaluate the performance of the vendor-supplied
implementations of the MPI message-passing standard on
the Intel Paragon, IBM SP2, and Cray Research T3D. This
study is meant to complement the performance evaluation
of individual MPI commands by providing information on
the practical significance of MPI performance on the exe-
cution of a communication-intensive application code. In
particular, three performance questions are addressed: how
important is the communication protocol in determining
performance when using MPI, how does MPI performance
compare with that of the native communication library, and
how efficient are the collective communication routines.

1. Introduction

The MPI message-passing interface standard [7] holds
great promise in providing both portability and, througha
very rich model for interprocess communication, perform-
ance efficiency for application, library, and compiler de-
velopers. The active participation of numerous vendors in
the standardization process and the early appearance of both
portable and platform-specific implementations of the lib-
rary bode well for its success. In this paper, we evaluate
the current status of the vendor-supplied implementations of
MPI on the Intel Paragon, the IBM SP2, and the Cray Re-
search T3D in terms of the following performance issues:

e sensitivity of performance to choice of communication
protocol

e relative performance as compared with proprietary
message-passing libraries

o relative performance of collective communication
routines as compared with portable implementations
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In short, we are interested in determining how best to use
MPI, and what, if anything, is given up by its usage.

A typical approach to evaluating interprocessor commu-
nication and communication libraries is to measure the per-
formance of individual commands in isolation or in small
kernels representing common communication functions {2],
[6]. While these types of experiments are a necessary step
in an evaluation, the communication protocols and the con-
trolled measurement environment used in the experiments
may not be typical of how the commands are used in prac-
tice, and it can be difficult for an application developer to
interpret the results.

This study is meant to complement the “low level” stud-
ies of MPI commands by providing a qualitative evaluation
based on quantitative measurements of MPI performance in
a specific application code. The study is qualitative in that
the results reflect the peculiarities of the application code,
but the overall conclusions as to MPI performance should
be more generally applicable.

In this study we use the ParkBench [6] compact applica-
tion code PSTSWM [10], [11]). PSTSWM is a paralle] al-
gorithm testbed and benchmark code that solves the non-
linear shallow water equations on a rotating sphere using
the spectral transform method. PSTSWM was developed
to evaluate strategies for parallelizing spectral global atmo-
spheric circulation models [3}, {4], and has imbedded a large
number of parallel algorithm options. Among these options
are numerous choices for the communication protocols used
to implement the different parallel algorithms and numerous
choices of message-passing layer, including MPL

The version of PSTSWM used here differs from that
currently used in the ParkBench benchmark suite. First,
this new version uses FFT and BLAS math library routines
when available on a given platform. This improves com-
putationa! performance, thus increasing sensitivity to com-
munication performance. The new version also includes
the “double transpose™ parallel FFT, a new parallel al-
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gorithm that is used in the study. Finally, the new
version includes calls to the MPI collective commands
MPI_ALLTOALLYV and MPI_ALLREDUCE as two of the
parallel algorithm implementation options and includes the
command MPLSENDRECY as one of the communication

protocol options. :
2. Methodology

PSTSWM is a spectral timestepping code. During each
timestep of the model simulation, the state variables of
the problem are transformed between the physical domain,
where most of the physical forces are calculated, and the
spectral domain, where the terms of the differential equa-
tions are evaluated. The physical domain is a tensor
product longitude-latitude-vertical grid, and transforming
from physical coordinates to spectral coordinates involves
performing a fast real Fourier transform (FFT) for each line
of constant latitude, followed by integration over latitude us-
ing Gaussian quadrature, approximating the Legendre trans-
form (LT). The inverse transform involves evaluating sums
of spectral cocfficients (“inverse LT”) and inverse real FFTS.

The parallel algorithms in PSTSWM are based on de-
compositions of the physical and spectral computational do-
mains over a logical two-dimensional processor mesh of
size PX x PY. For the FFT and LT, there are two general fam-
ilies of parallel algorithms: distributed algorithms, using a
fixed data decomposition and computing results where they
are assigned, and transpose algorithms, remapping the do-
mains to allow the transforms to be calculated sequentially.

In this study we examine MPI performance for two dif-
ferent parallel algorithms: DP, a (D)istributed FFT with a
(P)ipelined distributed LT, and TN, a (T)ranspose FFT with
a (N)onpipelined distributed LT. Neither of these are neces-
sarily optimal for the underlying problem or for the given
platforms, although they are reasonable, nor are they ne-
cessarily appropriate for comparing performance between
platforms. (In other studies we have investigated choos-
ing appropriate algorithms for each platform and problem
size to allow for fair intermachine benchmarking [3].) In-
stead, these parallel algorithm were chosen because they
have significantly different message-passing characteristics
and exercise different aspects of message-passing perform-
ance, and because the second parallel algorithm can be im-
plemented using MPI collective communication routines.

Communication for the distributed FFT in algorithm DP |

consists of (1 + log, PX) swaps of equal size messages in a
butterfly pattern, with some overlap of communication and
computation possible at the cost of doubling the number
of messages. Communication for the distributed LT in al-
gorithm DP consists of (PY — 1) send/receive pairs of equal
size messages to/from neighbors in a logical ring, and is ar-
ranged to allow significant overlap of communication and

computation (without any additional cost).

The transpose FFT used in algorithm TN is a “double
transpose” in which a transpose is performed both before
and after the FFT, returning the data decomposition to a
similar state. (The rationale behind the double transpose is
that it minimizes the load imbalance.) Communication for
each transpose consists of (PX —~ 1) swaps or send/receive
pairs (depending on the ordering of the communication) of
equal size messages in an all-to-all pattern. Each transpose
is functionally equivalent to MPL ALLTOALLYV.

The distributed LT used in algorithm TN completes all
local computation before invoking a parallel vector sum
routine. The vector sum is implemented using a variant of
the algorithm proposed in {8]. Communication for the vec-
tor sum consists of log, PY swaps of decreasing size, each
half the size of the previous swap, done twice for the for-
ward transform but with no communication during the in-
verse. The vector sum is equivalent to MPILALLREDUCE
using the predefined operator MPI.SUM.

With the exception of the tuning runs mentioned in the
next section, all experiments involved five day simulations
of the standard benchmarking problem specified in {9], rep-
resenting the calculation of solid body rotation steady state
flow, using 64 bit precision. Two different problem sizes
were considered: T42, using a physical grid of size 64 x
128 x 16, and T8S, using a physical grid of size 128 x 256 x
16. Experiments were run on logical processor meshes of
size4x 4,4 x 8,8 x 8, and 8 x 16, as well as on meshes of
size 16 x 16 and 16 x 32 on the Paragon.

The logical mesh topology is implemented explicitly in
the application code, not using the MPI topology routines.
With the exception of the collective communication exper-
iments described in the next section, a row major ((i, j) =
i + j - PX) or column major ((¢,j) — j + ¢ - PY) linear
encoding was used to map the logical mesh to the physical
processors, and the same topology and processor ordering
were used for both MPI and native implementations. On the
Paragon and T3D, the logical meshes were “mapped™ onto
physical processor meshes with the same aspect ratio, treat-
ing the second and third mesh dimensions on the T3D as a
single dimension. No information was available on the lay-
out of the physical processors used in the SP2 experiments,
and the row major encoding was used in all experiments.

FFT and BLAS routines from the KAl and ESSL libraries
were used on the Paragon and SP2, respectively. The corres-
ponding routines are missing from the T3D math libraries,
and T3D results reported here use PSTSWM-specific For-
tran subroutines for these functions.

2.1. Sensitivity and Robustness

All interprocessor communications in PSTSWM are
based on the SWAP or SENDRECYV functions. These can




be implemented using MPI_SENDRECYV, or they can be im-
plemented “by hand™ using combinations of the many other
MP1 point-to-point commands. Moreover, the different
stages of the hand-implemented SWAP and SENDRECV
functions can be separated, allowing, for example, receive-
ahead algorithms in which nonblocking receive requests for
multiple SWAPs are posted together, or overlap algorithms
in which computation is interleaved with the send and re-
ceive requests [11].

In order to evaluate the performance sensitivity of MPI to
these types of optimizations, we first conducted thousands of
short “tuning” experiments to identify a subset of good com-
munication protocols. We then compared PSTSWM per-
formance when using the optimal MPI communication pro-
tocol (determined over the subset) with performance when
using the “default” MPI.SENDRECYV protocol. Note that
the tuning experiments were also a rigorous test of the ro-
bustness of the MPI point-to-point communication routines.

2.2. Comparison with Native Libraries

Vendor-supplied MP1 is still relatively new on most plat-
forms, and often there exist alternative proprietary (“nat-
ive™) communication libraries. In time, we expect MPIto be
the high performance communication layer on most MPPs,
but currently there may be a discrepancy in performance
between the native libraries and MPI that can be exploited
for applications with critical performance requirements.

In order to examine this possibility, we repeated the tun-
ing exercises described above to identify optimal commu-
nication protocols for the native libraries and compared
PSTSWM performance between the “optimal” MPI im-
plementations and the “optimal” native implementations.
We also examined whether the optimal MPI protocols are
system-specific (reflecting the optimal protocols of the nat-
ive library), MP1-specific (common across the different plat-
forms), or implementation-specific (different for each MPI
on each platform).

On the Paragon, the native library is NX. On the SP2,
the native library is MPL. On the T3D, we implemen-
ted an application-specific message-passing layer on top
of SHMEM, the low level library supporting direct read
and write from/to the memory of other processors. The
SHMEM implementation takes advantage of the fact that,
in PSTSWM, tagged message passing is not needed. Se-
lection by source is sufficient. This allows us to imple-
ment a very efficient SWAP and SENDRECY. This is a fair
comparison in that, while the native library here is not a
traditional message-passing library, using MPI for SWAP
and SENDRECYV may show reduced performance over an
application-specific implementation. The new MPI-2 stand-
ard will include one-way reads and writes (like SHMEM),
‘When this is introduced, one-way reads and writes can be in-

corporated into the MPI communication protocol sensitivity
studies.

2.8. Collective Communication

The collective communication routines (should) repres-
ent highly optimized implementations comparable to math
library functions. In consequence, we compared the per-
formance of parallel algorithm TN implemented using MPI
collective routines with that of the best (native or MPI)
implementation using the equivalent PSTSWM Fortran
routines. Timings using the MPI collective routines were
made both with the “default™ mapping and with the process
numbering resulting from a call to MPL.CART CREATE
with the reorder option specified, allowing the system to
pick a better mapping if possible. The timings for the For-
tran implementations were all made using the default map-
ping.

We also present data from instrumented runs to identify
how much time is spent in the transpose and reduction
routines. While much care was taken to ensure the accuracy
of these measurements, they are only approximate in that
load imbalances show up as communication cost and con-
taminate the comparison. Fortunately, TN has the best load
balance of all the parallel algorithm options.

3. Results

The following data was collected in March and April
of 1996 on the 1024 processors Paragon XP/S 150 MP at
Oak Ridge National Laboratory, on the 160 processor SP2
at NASA Ames Rescarch Center, and on a 128 processor
T3D at Cray Research in Eagen, MN. The Paragon was run-
ning OSF/1 Paragon Release 1.4, which includes a version
of both MPI and NX communication libraries. The SP2 was
running version 4.1.3.3 of the AIX operating system and
version 2.1.0.8 of the parallel operating environment (poe)
and parallel and switch software (pssp). The T3D was run-
ning version I5-9.0 of the operating system and version 1.4a
of the CRIVEPCC MPI communication library. Note that
the SP2 at NASA Ames is a homogeneous system in which
timesharing of individual processors is not allowed, and thus
is a good site for performance measurements.

3.1. Application Characterization

‘We begin by presenting a characterization of the commu-
nication cost in PSTSWM for all three platforms. Figure 1
contains graphs of the runtime of the fastest implementa-
tions as a function of the number of processors. The “Ideal”
curves were generated by subtracting the measured commu-
nication time from the fastest 16 processor run to get an es-
timate of the computational time, then plotting this compu-
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Figure 2. Communication percentages for fastest im-
plementations



tational time estimate for larger numbers of processors by
assuming perfect scaling.

Figure 2 contains graphs of the percentage of time spent
in communication routines for the fastest implementations
as a function of the number of processors. As with the dir-
ect measurements of time spent in collective communica-
tion routines, the percentage of communication is difficult
to measure. We believe the estimates to be reasonably ac-
curate, having taken great care in the experimental design,
and if anything, are an underestimate.

Note that the T3D and the Paragon have similar com-
munication percentages up to 128 processors. The SP2 has
a much higher communication percentage, which is a con-
sequence of the relatively faster computation and the relat-
ively slower communication capabilities of the SP2. Thus,
the SP2 will be more sensitive to communication perform-
ance than the Paragon or the T3D. However, the results of
the sensitivity analysis are still comparable across the plat-
forms in that the difference in communication/computation
ratio between the SP2 and the others affects all codes. Fi-
nally, note that algorithm DP has a lower communication
percentage than algorithm TN even though it is the slower
algorithm for these problem cases. This is because the com-
putational rate for algorithm DP is lower, due to the dis-
tributed nature of the transform, and because the attempt to
overlap communication and computation can cause the in-
strumentation logic to mislabel some communication cost as
computational cost.

3.2. Robustness

All three of the vendor-supplied MPI libraries are very
robust with respect to the point-to-point communication
routines exercised by the tuning experiments.

3.8. Protocol Sensitivity

Figure 3 contains graphs of the percentage degradation
from using the default protocol (using MPL.SENDRECYV)
instead of the optimal MPI protocol:

100 + (default_time — optimal_time)/optimal time

This is degradation in the runtime of the entire code from
a change in the communication protocol. To infer the ab-
solute difference in the communication cost, these results
should be compared with communication percentage graphs
inFig. 2.

MFPI on the T3D is not sensitive to the communication
protocol by this measure, simply indicating that the default
protocot is an optimal or near optimal communication pro-
tocol. This is cither an asset, indicating that no performance
is being lost by using the generic command, or an indica-
tion that the other MPI point-to-point commands are not im-
plemented efficiently. It is not possible to determine which
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from these results, but the comparison with the native imple-
mentations in the next section implies that the implementa-
tion of the nonblocking commands could be improved.

On the Paragon, the utility of protocols that overlap com-
munication and computation is clearly shown by the im-
provement in algorithm DP performance when optimizing
the communication protocol. The TN results indicate that

the optimal protocols allow some latency to be hidden, but

itis not a significant effect until the communication percent-
age is quite large.

The SP2 results are more difficult to interpret, although
the trends appear clear for larger numbers of processors.
(These results are reproducible.) Apparently, the op-
timal communication protocols arc very effective at hid-
ing latency, as evidenced by the small problem size runs,
but that performance for the more bandwidth-limited lar-
ger problem size is less sensitive to the communication pro-
tocol. Note that DP and TN show similar trends, so the
SP2 implementation is not exploiting significant communic-
ation/computation overlap.

3.4. Comparison with Native Libraries

Figure 4 contains graphs of the percentage degradation
from using the optimal MP] implementation instead of the
optimal native implementation. As before, this is degrada-
tion in the runtime of the entire code from using the vendor-
supplied MPI instead of an alternative proprietary commu-
nication layer.

On the SP2, the optimal MPL implementations have a
slight advantage, but when compared to the communication
percentage on the SP2, these differences are not significant.
‘What is not indicated here is that we found MPI to be more
robust than MPL, which hung when using a few protocols
that should have worked. Also, MPL was relatively insens-
itive to the choice of communication protocol, with the de-
fault (MP_BSENDRECY) being optimal or near optimal a
large percentage of the time. This is in distinct contrast to
MPI on the SP2, indicating that the performance of these
communication libraries is more strongly a function of the
implementation than of the performance characteristics of
the underlying hardware and system software.

On the Paragon, the degradation in performance tracks
the increase in communication percentage very well for al-
gorithm TN, indicating a consistent difference between the
performance of the NX and MPI message passing. The
degradation in the performance of algorithm DP increases
faster than the increase in communication percentage for
large numbers of processors, possibly implying that overlap
is not as efficiently exploited when using the MPI library.
Given the close match between NX and MPI semantics, it
is surprising that the performance of the MPI and NX im-
plementations is not closer, but the difference in the over-
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all runtime is not significant until at least 128 processors are
used. Note that the optimal communication protocols are
nearly the same for NX and MPI, indicating that perform-
ance is strongly a function of the underlying system per-
formance characteristics.

On the T3D, there is a distinct advantage to using
application-specific message passing implemented using
SHMEM. The CRVEPCC implementation of MP1 is built on
the SHMEM_GET command, which has half the perform-
ance of the SHMEM_PUT command used in the optimal
communication protocols in PSTSWM. This performance
difference between SHMEM_PUT and SHMEM.GET ex-
plains about half of the measured performance degradation
shown in Fig. 4. The rest may be attributable to inefficient
implementations of the nonblocking MPI commands, pre-
venting computation/communication overlap and latency
hiding that are exploited more effectively in the SHMEM
implementation of PSTSWM.

8.5. Collective Communication

Figure § contains graphs of the percentage degradation
from using the MPI collective routines MPL_ALLTOTALLV
and MPLALLREDUCE in algorithm TN instead of the op-
timal Fortran implementation, both for the total runtime and
for the time spent in the collective communication routines.
Note that the range of the Y-axis varies between the graphs
for the different platforms. The results are all in terms of
the default (linear encoding) mapping of the logical pro-
cessor mesh. Any effects of using the mapping generated
by MPL.CART_CREATE are described in the text.

The Paragon results are peculiar. The percentage of de-
gradation is approximately constant with respect to the num-
ber of processors for the total runtime, with the perform-
ance of the collective routines being very poor for small
numbers of processors and relatively good for large numbers
of processors. Using the processor ordering generated by
MPLCART.CREATE has little effect on the performance
results.

The SP2 results show uniformly mediocre performance
for the collective routines. The “up and down” behavior of
in the graphs reflects that, for example, going from 32 to 64
processors changes the aspect ratio from 4 x 8 to 8 x 8, thus
increasing the parallelism in the transpose FFT but notin the
distributed LT. Apparently, the two collective commands are
not equally poor performers. Unfortunately, the interactions
between the two make it difficult to separate their perform-
ance differences in these experiments. Using the processor
ordering generated by MPLL.CART_CREATE has no consist-
ent or significant effect on the performance results.

On the T3D the MPI collective communication imple-
mentation of algorithm TN is competitive with the op-
timal MPI Fortran implementation for up to 64 processors,
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but is significantly worse for the 128 processor runs. In
comparison with the optimal SHMEM Fortran implementa-
tion, the collective communication routines perform poorly
for all numbers of processors. Looking at the profile
data in more detail, it is clear that the problem is primar-
ily in the MPLALLREDUCE command, which is three
to five times slower than the SHMEM implementation,
and scales poorly. Note that improvement is also pos-
sible in MPLALLTOTALLY, which is always slower than
the SHMEM implementation, Using the processor ordering
generated by MPL.CART_CREATE improves performance
somewhat over using the default mapping, and the gain ap-
pears to increase slightly with the number of processors, but
the qualitative performance behavior does not change.

4. Conclusions

As with any benchmarking exercise, performance will
undoubtedly change with time, hopefully for the better. We
expect the vendor-supplied implementations of MPI to con-
tinue to improve and hope that our results will be useful in
accelerating this process.

In summary, we found all three vendor-supplied imple-
mentations of MPI to be robust, at least with respect to the
standard point-to-point communication routines and to the
two collective communication routines used in PSTSWM.

The three machines showed different sensitivities to
communication protocol optimization and different optimal
communication protocols. This result is unlikely to disap-
pear in the future, and users may want to consider writ-
ing wrappers around the communication routines to make it
simpler to “retune” codes when porting between platforms.

Overall, MPI performance was reasonable compared to
the alternative proprietary message-passing layers, and per-
formance should continue to improve over time. MPI
on the T3D should probably be implemented on top of
SHMEM_PUT for performance reasons. MPICH [5] is im-
plemented in this fashion, but it does not work currently
for this code on the T3D (due to a known problem in the
implementation of MPICH) so it is unclear how difficult a
SHMEM_PUT implementation will be.

The MPI collective communication routine performance
was disappointing on all platforms. While we consider our
codes to contain good implementations of these collective
functions, we would hope that the vendor-supplied collect-
ive routines could be optimized far more than our “generic”
Fortran routines. The results on the Paragon may simply in-
dicate that the underlying iCC library [1] needs to be retuned
for the ORNL Paragon.
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