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Abstract

This report describes the results of a Sandia Laboratory Directed Research & Development project
to develop a technique that can identify atoms in atomically engineered nanostructures. The report
provides a detailed description of the experimental measurement techniques and subsequent image
analysis procedures used in the identification process, followed by examples of the technique’s successful
application to several atomic surface features. Use of this technique requires the experimental
measurement of both constant-current topographic and multi-bias conductance data from an atomic
surface with the scanning tunneling microscope. These measurements are rendered as a collection of
topographic and single-bias conductance images of the surface. Image pixels are then grouped into
classes by a computed grouping algorithm, according to the shared conductance characteristics exhibited
at each pixel. The image pixels are then color-coded by class to produce a false-color image of the
scanned surface that chemically distinguishes surface electronic features over the entire area of the
measured atomic surface.



A. Introduction

Scanning Tunneling Microscopy (STM) is routinely used to image the electronic wavefunctions of atomic
surfaces. Individual features are routinely characterized spectroscopically by measuring current-voltage
(IV) spectra [1], conductance (dI/dV) spectra [2], or normalized conductance (d/dV)/(I/V) spectra [3].
But the chemical identification of sutface electronic structures over an entire scanned image has not
generally been routinely performed, nor to our knowledge even actively pursued, due to the imposing task
of data reduction this entails, and perhaps a belief that suitably unique and reproducible conductance
features cannot be obtained.

In the simplest case, in order to determine whether two locations on an atomic surface possess the same
electronic structure, one would directly compare the measured bias-dependent conductance spectra from
each site. As additional sites were considered, the spectrum from each new site would be compared to
those of all previously measured sites. But, even dismissing the sizable task of comparing the
conductance spectra of each and every pair of pixels in an image, variations will exist in the spectra of
similar sites due to slight differences in neighboring atoms, experimental noise in measuring each
conductance spectrum, the presence of sites that are in transition regions from one electronic structure to
another, etc. What is needed is a well-defined, yet justifiably flexible definition of the properties of the
“conductance signature” for a given chemical species. Such a flexible definition is attained by examining
the spatial relationships between the image pixels in an n-dimensional, mathematical space whose axes
are the measured tunneling conductance for specific tip-sample biases. The image pixels are plotted in
this space according to their measured conductance characteristics and then grouped into clusters, or
classes, of similar conductance. The grouping of the data points into distinct classes can be automated
through application of a vision science grouping algorithm. The volume of each class distribution in this
mathematical space then defines a range of tunneling conductance values at each bias that identify the
class. This approach permits variations to exist in the exact structure of each pixel’s conductance

spectrum, while still requiring that the grouped conductance spectra be more similar to each other than to
any other classes of conductance spectra sampled from the atomic surface.

Multivariate image analysis has previously been applied to dual-polarity, constant-current, topographic
images by Bouchard, et al. to examine the Ge(111) surface [4]. In this work we use multibias
conductance images of the Si(001) surface in order to access the full electronic signature of each feature.
We show that surface features which are indistinguishable in a topographic image are resolved in a
classed image as separate and distinct electronic structures based upon their individual conductance
characteristics.

The first portion of this report describes the experimental technique used to record multibias conductance
images from atomic surfaces. An example of such images, measured from an atomic step on the Si(001)
surface, is shown in figure la. The procedures employed in the multivariate image analysis are then
introduced: (1) how an initial set of representative conductance spectra are selected from the multibias
data using the topograph as a guide, (2) how a discrete set of biases is chosen to discriminate between the
selected conductance spectra, and then used as the defining axes of an n-dimensional, mathematical
classification space in which the image pixels are plotted, (3) how the image pixels are then grouped
together in this mathematical space, either manually or using an automated grouping algorithm, and
finally (4) how the grouped image pixels are rendered again as a classed image in real space. The quality
of the resulting classification can be evaluated by comparing the computed grouping of the image pixels
in every other possible combination of dimensions for the mathematical classification space.



(b)

Fig. 1 (a) Multibias conductivity images of a kink in the A-step of Si(001). The first panel in the
upper left is a constant current topograph of the 75x75 Angstrom scanned region, recorded at -
2.5V. The subsequent 31 panels, (from left to right), are conductance images recorded over the
voltage range -3V to +3V in steps of approximately 0.2V. (b) The resulting classed image.

B. Measurement of Multispectral STM Images

1. Sample & Tip Preparation .
The data shown in figure 1 are from a 75 x 75 Angstrom scan of a Si(001)-2x1 reconstructed surface.
The scan is centered on a kink in a step edge of this 0.25° miscut surface. The 2x1 reconstructed surface

consists of dimerized rows of silicon atoms; the dimer bond orientation rotates 90° between adjacent

terraces. Consequently, two types of steps exist on the 2x1 surface, one in which the dimer rows on the
upper terrace run parallel to the step edge, (termed an A step), and one in which the rows in the upper
terrace are perpendicular to the step edge, (a B step) [5]. The scanned area of figure 1 includes both
orientations of dimer rows and an A-type step containing a kink.

Before insertion into the STM chamber, the Si(001) sample was swiped with a methanol-dampened
cotton swab and blown dry. Once in the chamber, the surface was prepared by two 20 second, ~1250 °C

anneals with a chamber pressure of no greater than 1.3x10™ Torr during the anneals. The chamber
pressure during the multibias STM measurements was always less than 4.0x10™"! Torr.

It has been pointed out by Feenstra, et.al., [6] that relatively blunt tips are found to yield more consistent
and reproducible spectroscopic results than much “sharper” tips which exhibit higher spatial resolution.
We also find that owing to the requirement of tip stability over frequent and repeated changes of tip
polarity and many tens of minutes of continuous measurement for a single multibias conductance image,
our best results are obtained with broader tips that easily resolve atomic rows, but do not resolve, for
instance, individual dimers along a row. Since the tungsten tip does, at times, contact the silicon sample
during initial tip preparation, the presence of silicon atoms on the tunneling tip is very likely. In
preparing tips for multibias conductance imaging, we focus primarily on establishing the stability of the
atoms at the end of the tip through a series of field emission and tunneling-mode conditioning steps.
Though not necessarily the optimum procedure, we outline below the steps we routinely take to prepare a
tungsten tip for our multibias conductance imaging measurements.



After an initial tip preparation produces clean topographic images of terrace steps in a 200A scan, tip
stability is checked by retracting the tip to a point where it field emits approximately 10 PA of current at a
bias of 200V. Observing the field emission current on an oscilloscope, the tip is left in this condition
until 10 minutes elapse with no noticeable transient (i.e. > 0.1 LA) in the emission current trace. If tip
instabilities are repeatedly encountered with an otherwise suitable tip, we attempt to ‘gently’ dislodge the
instability by returning to tunneling mode and carefully extending the tip toward the surface until the
slightest disturbance in the tunneling current trace is observed. The tip is immediately retracted to the
normal tunneling distance. A topographic image is again measured to assure no loss in resolution, and the
stability is again checked via field emission. Once the tip proves stable at 10 LA for 10 minutes, the field
emission current is lowered to 1 HA and the same procedure is repeated. Once this has also been stable
for 10 minutes, we return to the tunneling configuration.
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Fig. 2 A plot of the relative tip-sample separation necessary to maintain a fixed tunneling
current over a range of tip biases is used to evaluate tip condition. The flatness of curve A
indicates a relatively dull tip. It is ‘sharpened’ through a series of near-approaches to the
surface, yielding the steeper slope at low biases shown in curve B. The ‘spikes’ in curve B,
however, indicate the presence of tip instabilities. Continued conditioning of the tip results in
curve C, which is stable and produces an image resolution shown in the inset topographic image.

As the last step in tip preparation, we evaluate the tip’s condition using a plot of the tip-sample separation
necessary to maintain a constant tunneling current (typically 0.1 nA) while the tip bias is ramped over a
pre-set voltage range (initially -1.0V to -6.0V); this results in curves such as shown in figure 2. Repeated
close-approaches to the surface, (which occur at low biases in this procedure), are found to improve tip
resolution. As the tip resolution improves, the slope of the curve at lower biases changes from a flatter
response, as in curve A, to a much steeper curve, as in curves B and C. Any tip instabilities induced as the
tip bias is changed are observed as spikes in the lineshape, shown in curve B. These instabilities are
eliminated either through: 1) continued repetition of the measurement, 2) a near-approach of the tip to the
surface, or 3) reverting to the previous field emission step. As the tip stability and sharpness improve, the
lower end of the tip bias scan range is gradually reduced, until a final scan range of -0.1V to -6.0V is
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achieved. Ultimately, it is upon obtaining a lineshape as displayed in curve C that we find the tip both
stable enough for multibias imaging and producing sufficient resolution to obtain a topographic image
such as the inset of figure 2. )

With this methodology we are able to repeatedly detect unstable atoms on the tip and either force these
atoms into some stable site or desorb them, before performing much longer multibias conductance
measurements. Though completely empirical, this procedure achieves good results, normally producing
multibias images with a day or two of tip preparation.

2. Multibias Conductance Measurement

Multibias conductance images are acquired by measuring the conductance of the tip-sample tunneling
junction over a range of biases at each point in a two-dimensional scan of an atomic surface. This
measurement technique is distinct from current-imaging tunneling spectroscopy (CITS), in which surface
images are measured with a fixed tunneling current at a specific bias by adjusting the tip-sample
separation, and then also recording a current-voltage (IV) spectrum at each point. As shown by Stroscio,
et al. [7, 8] the image contrast present in CITS images can reflect topographic as well as electronic
structure; the effects of topography are greatly reduced in a conductance, (dI/dV), measurement.

The conductance is measured by dithering the applied tip-sample bias while in tunneling range, and

Current [arb. units]

1.0
Tip Bias [V]

Fig. 3 The effect of varying the tunneling distance as a function of the applied tip-sample bias is
shown for IV curves measured using a linear ramp with slopes ranging from z = 0.0 to 2.0

reading the variation in tunneling current at the modulation frequency with a lock-in amplifier. However,
conductance measurements at small biases have less sensitivity than those at higher biases, thus masking
potentially important electronic features near the band gap. Since the tunneling current is exponentially
dependent on both the voltage and the tip-sample separation, the presence of lower tunneling current at
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smaller biases can be partially compensated for by employing a variable tunneling distance that decreases
the tip-sample separation as the magnitude of the bias is decreased [3, 9, 10]. The slope of this linear
compensation is typically between 1.0 and 2.0 Angstroms/Volt the selection of the precise value is
determined by examining the I/V curves produced over this range of slopes. A selection of I/V curves
measured for different slopes is shown in figure 3. An I/V curve measured with no.correction applied,
(zero slope) is plotted with individual points; a series of I/V curves measured with slopes varying from
1.0 to 2.0 Angstroms/Volt are plotted as solid lines. Given that this linear correction is somewhat
arbitrary, it should be noted that for the purposes of classification, we select the slope which best
produces distinguishing features among electronic structures, rather than that which best matches any
particular theoretical lineshape. In figure 3, slopes of 2.0 or 1.8 begin to smear out curve features at
biases less than 1.0V; thus a slope of 1.6 was chosen for the measurements to be classed below.

In recording a multibias conductance image, the tunneling conductance is measured for each pixel over
the full bias range, one point at a time. The sequence of events in the data collection process is: (1) the
tip is moved to the first pixel position, (2) the feedback position is read at the pre-selected reference
voltage and demanded tunneling current, and recorded for the topographic image, (3) the tip bias is set to
the lower bias limit of the conductance measurement range and with a dithered bias (= 200mV) on the tip,
the measured derivative current signal is averaged over N digitized samplings (typically N=100) and
stored in memory, (4) the bias is stepped to the next bias, (5) after a brief settling period (~milliseconds)
to accommodate the presence of capacitive coupling between tip and sample, the next derivative current
measurement is made. In this fashion, pixel-by-pixel, a sequence of conductance spectra is measured
over the entire scanned region. Bias-dependent conductance images are then constructed from these data,
as shown in figure la.

Since no height-correcting feedback is applied to the tip during the conductance measurements, it is
imperative that z-drift be near zero; furthermore, given the longer time duration required to measure,

average, and store the derivative current signal over the entire scanned area, it is also important that
lateral drift be minimized so that positional registry is maintained among the points in the two
dimensional image.

A set of multibias conductance images, measured from an A-step on Si(001), is presented in figure 1a.
The first panel in the upper left corner is the topographic image of the scanned area; it was measured in
coincidence with the conductance data at a constant current of 0.2 nA for a bias of -2.5V. Subsequent
panels (from left to right) display conductance images of the same area recorded over the bias range -3.0V
to +3.0 V; each successive conductance image reflects a bias increase of approximately 0.2V. The
classed image obtained after performing multivariate image analysis on these experimental data is shown
in figure 1b.

The ensemble of conductance images shown in figure 1a contains all the physical information that is used
in the image analysis. The multivariate image analysis imposes no physical assumptions onto the
conductance data, nor adds any additional data; it merely groups pixels of similar conductance. In simple
cases, differing surface features can often be identified directly from the raw conductance images. In the
present example, the feature-giving rise to the unique electronic states at the kink in the A-step is seen
directly in those conductance images near the band gap. In only slightly more complicated surfaces, the
number of biases that must be simultaneously correlated in “the mind’s eye” quickly becomes too large
for direct identification of many electronically unique features. It is under such conditions that the
computed classification is most useful.



C. Classification of Multispectral STM Images

1. Rendering Data in the Classification Space

The physical property that is used as the basis for grouping image pixels into discrete classes is tunneling
conductance. The individual steps in the classification process are shown in figure 4. First, conductance
spectra are sampled from sites whose similarity is suggested by the topographic image (figure 4a). Each
different type of feature is termed a class and the points that are selected to represent a class’s
conductance characteristics are called training points. The conductance spectra sampled from each class
are overlaid to determine if they are qualitatively similar. Spectra from different classes are contrasted to
assure that they are indeed different. The color-coded conductance curves from the training points of the
three proposed classes in this example are displayed in figure 4b. Each curve represents the measured
tunneling conductance as a function of tip-sample bias over the range -3.0 to +3.0 V.

(e)

Figure 4. Steps in the classification process: (a) An initial sampling of training points is selected to
represent each proposed class. (b) Dimensions are selected which distinguish between the representative
conductance curves. (c) A mathematical ‘classification’ space is constructed in which to group image
pixels into classes. (d) Each pixel is grouped, if possible, with one of the proposed classes. (e) The
‘classed’ pixels are rendered again in real space; black pixels failed to group with any of the proposed
training data.

Individual biases are then identified which can be used to distinguish each class’s conductance spectrum.
These biases are marked with vertical dashed lines in figure 4b. It is sometimes necessary to select three
or more biases in order to obtain differences in conductance between all classes in at least one bias. The
selected biases are then used as the dimensions for a mathematical, classification space, shown in figure
4c. It is within this mathematical space that the image pixels are grouped into classes according to their
measured conductance.

Each axis of the classification space represents the tunneling conductance measured at a specific tip-
sample bias; measurements at each bias are equalized and scaled from O to 255. The mathematical
classification space can, in principle, have any number of dimensions. In this example, three dimensions
are sufficient to discriminate between the classes. The initial set of color-coded training points are plotted
in this space in figure 4c. The remaining pixels in the image, which have not been assigned a class
identity, are called test points; these are plotted as gray dots in figure 4c.

The process of determining whether each test point groups with one or more training points is termed
‘classifying’ the image. We have used a computational grouping algorithm to perform this task, yielding
the results in classification space shown in figure 4d. (The explicit operation of the grouping algorithm is
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explained in further detail below). The grouping of a test point with a training point conveys the class
identity of the training point onto the test point. This procedure is the sole means of ‘coloring’ (i.e.
assigning a class identity to) pixels in the classed image. It should be pointed out that the groupings could
alternatively be assigned manually if the topology of the point distribution in the classification space is
suggestive enough, (i.e. if clusters of points became apparent when plotted in the conductance-based
classification space.) However, manual grouping of the data does introduce a greater degree of
subjectivity into the classification.

As a final step in the classification, the grouped data are rendered again as a real-space image, as in figure
4e. Each pixel is colored according to the conductance class into which it has grouped,; it is colored black
if it has not grouped with any existing class, or white if it has grouped with multiple classes. Based upon
these results, the class-defining regions of the classification space are then refined in order to try to
incorporate the remaining unclassed image pixels into one of the classes and to minimize the number of
pixels which have grouped into more than one class. When using the computed grouping algorithm, the
boundaries of the class-defining region are governed by the selection of training points; including
additional training points, or removing questionable points, permits the class-defining region to be
refined. New classes may be created to represent features, which did not group into any of the existing
classes. Existing classes can be discarded if found to be not unique. Thus, the initial creation of classes
using features suggested by the topograph serves only as a starting point, and decreases in importance as
the classification process proceeds. In this iterative manner, features that may appear similar or indistinct
from their surroundings in the topographic image are resolved in the classification space and

discriminated in the classed image.

In the measurements presented here, the conductance spectra consist of 31 measured biases ranging from
-3.0 to +3.0 V. The recorded value for the tunneling conductance at each bias is obtained by averaging
100 individual measurements. In the context of the mathematical classification space, each of the 31 tip-
sample biases can be thought of as a separate dimension in which to resolve the conductance spectra
associated with each surface feature. It has been demonstrated that the use of the fewest possible
dimensions actually produces the best classification [11]. It is important to emphasize again that the term
“dimension” refers to the particular selection of tip-sample biases, which are used to discriminate between
the already-measured conductance spectra. The spectra, themselves, are measured with the maximum
feasible number of samplings at each bias, (in this example, we averaged 100 conductance measurements
at each bias); but the separate, subsequent task of distinguishing between, and grouping, these spectra is
found to be optimized by minimizing the number of individual biases used to compare the spectra. The
purpose of re-casting the data into a new, mathematical space is to separate it out into resolvable regions.
Some minimum number of useful dimensions is clearly needed to separate the distinguishable classes.
However, including additional dimensions may not provide further separation of these class volumes, and
may in fact add “noise,” i.e. the classes may actually move closer to each other in this new space. Thus,
minimizing the number of dimensions typically makes the classification procedure more robust against
measurement noise and variability of the class spectra.

Any quantifiable feature of the conductance spectra can be used as a dimension. Such properties as the
slope of the conductance spectra at a given bias or the intensity gradient of the conductance in a given
real-space direction are equally valid dimensions. In this example, the conductance at three specific
biases proved sufficient to differentiate between the various spectra. However, dimensions can be
changed, deleted or augmented with other discriminating dimensions as the classification results warrant.

2. Grouping Data in the Classification Space
In simple cases where the conductance classes can be distinguished with only a few biases, the grouping
of points in classification space can be achieved by human inspection. Though prone to an undesirable
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degree of subjectivity, manual grouping can be employed for distributions exhibiting obvious clustering.
Whether performed manually or with a computed algorithm, the primary criterion for accepting a pixel’s

grouping with a specific class is that its class identity is consistent with the class identities of surrounding

pixels in both real-space and classification space. Regions of transition from one representative
conductance class to another may be reliably left unclassed when these pixels, in a real space image,
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Figure 5. Examples of the use of the VERI-template: Panel (a) shows the VERI template and its
two scaling ‘foci’. Two different distributions of points to be grouped with the VERI template are

shown in panels (b) and (c). In panels (d) and (e) two separate applications of the VERI-template
are shown. The template is scaled to the size of separation between two points being tested

(points 1 & 2 and 4 & 5, in this example); in both panels both sets of points are seen to group
since no other points fall within the scaled VERI-template’s boundary. However, in panel (f),
when scaled to the separation of points 3 and 4, these points do not group since point 2 (and also
5) fall within the boundary of the VERI template. In panel (g) however, no other point is present

within the boundary of the VERI-template, so points 3 and 4 do group. Thus, when applied to
each possible pair of points in the distributions shown in panels (f) and (g), the VERI template
groups the points in panel (g) as a single class, but finds the distribution of points in panel (f) to be
two separate classes - just as the human eye does.

pairs of points exist to be tested.

Since any number of dimensions can be used to distinguish the conductance spectra of each class, the
mathematical classification space in which the grouping of image pixels occurs is an n-dimensional
hyperspace, where n is the number of dimensions (biases) selected. However, because the VERI template
acts only on three points at a time, the relative orientation and separation of any combination of three
points in this n-dimensional space is always defined in a plane and the VERI-grouping proceeds as
depicted in figure 5 - no matter how numerous the number of descriptive dimensions.



Because the dimensions of the hyperspace correspond to those biases, which discriminate between
characteristic features of the sampled conductance spectra, the spectral lineshape associated with each
pixel of the real space image can be accurately represented by a single, unclassed, test point in this space.
The VERI template can then be applied to determine possible groupings between each unclassed test
point (i.e. unknown conductance spectrum) and each classed training point (known conductance
spectrum). If grouping is not inhibited by another training point, the test point is assigned the class of the
training point it has grouped with. If all groupings of a given test point occur with training data of a
single class, the class assignment is to that single class. If no groupings occur between a test point and
any existing training data, the test point remains unclassed and is colored black in the real space, classed
image. If groupings occur with multiple classes of training data, the class identity of the test point is
unclear and the pixel is colored white in the classed image.

Owing to the grouping ‘behavior’ of the VERI template, pixels that are grouped into a class need not have
exactly the same conductance line shape as any other points already in the class. In fact, if added to a
class’s training data, the newly admitted class point can act to extend the definition of the class volume in
the classification space. This “growth” behavior allows iterative applications of the classification
algorithm to refine the classed image. In the next iteration, the newly extended class definition may now
group yet more pixels into the class. However, a point that has already been grouped with one class will
still be tested against every other training point to see if it also groups with other classes. As the
definition of a class becomes too encompassing, the effect is immediately visible in the classification
result as more and more pixels become multiply-classed. In that case, the training data of the classes is
adjusted to eliminate the multiple definition.

As the classification is refined through repeated applications, with successively more accurate and
inclusive class training points, the number of image pixels that are multiply-classed or not classed is
gradually reduced, until no further improvement is observed. Pixels that group with no defined class, or
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Fig. 6 After successive refinements to the initial training data, a final classed
image is produced. (a) The classification space rendering of the final pixel
groupings; white pixels have grouped with two or more classes. (b) The real
space rendering of the final pixel groupings. (c) Conductance spectra are shown
for the classed, unclassed, and multiply classed pixels circled in yellow in the
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with multiple classes, can still occur in the classed images, especially at locations where transitions occur
between well-defined electronic states. This is seen in figure 6b where the multiply-classed white pixels
and unclassed black pixels all fall at the real-space boundaries between conductance classes representing
the rows, troughs, and step edge kink in this dimerized Si(001) surface.

The classification process is an iterative one that depends upon repeated application to produce a classed
image that: (1) assigns nearly all the pixels in the image to one of the defined classes, (2) does not
contradict the presence of surface features indisputably suggested by the topograph, and (3) produces
class volumes in the classification space that are well localized and/or resolved. These features can be
seen in the rendering of the classification space and classed real-space image in figure 6a and 6b.

Some measure of the discriminating power of this classification process can be seen in figure 6¢, where
four conductance curves are plotted from nearly adjacent pixels in the real-space image (circled in yellow
in fig. 6b). It is clear that the shapes of the conductance spectra sampled from pixels representing classes
1 and 2, an unclassed pixel, and a multiply classed pixel, are not distinctly unique. Yet the clarity of the
overall classed image supports the classification of each.

D. Evaluating the Quality of the Classification Space

In examining the classification with a critical eye, it is important to remember that the training points that
initially define the classes are selected from surface features suggested by the topograph; there is no
guarantee that these points will form natural clusters when plotted in the classification space. Thus,
examination of the positioning of the training points in the classification space is a first check on
erroneous class definitions.

The objective grouping of test points with the training points by the computed grouping algorithm serves
as a second check on subjective interpretations. However, since the dimensions of the classification space
in which these groupings are made, (and in which the VERI template operates), are manually selected by
comparing conductance spectra from all classes, the chosen dimensions may not necessarily be the most
discriminating ones. The selection of classification space dimensions must therefore also be examined for

its validity.

To evaluate the selection of dimensions used to create the classification space, the final sets of training
data are themselves grouped in a series of different classification spaces which represent every possible
combination of the available dimensions. If the user-selected training data do indeed accurately represent
the different classes of conductance present at the surface, and the selected dimensions of the
classification space accurately resolve the different conductance spectra, then the VERI template should
impartially group the training points together into the same sets of classes as was initially proposed. If the
impartial VERI-based grouping does not group a training data point with its user-assigned class, then this
is an indication that either the dimensions of this classification space are not resolving the different
classes, or that the training point has been incorrectly assigned to represent a class and should not be used

as a training point.

Performing such a series of classifications using every possible combination of dimensions is, of course, a
computationally intensive undertaking. As such, it is executed on a SunHypersparc workstation with
four, 90 MHz processors. For the 64x64 pixel images used in this work, we examined all possible
combinations of dimensions in three, four and five-dimensional classification spaces. Including the
topographic image as one of the possible dimensions, a total of 4,960 possible combinations exists for a
3-dimensional classification space; 35,960 combinations exist for a 4-dimensional space, and 201,376
different combinations exist for a 5-dimensional classification space. The Sun platform computed the
classification results at a rate of approximately 29 combinations/minute/processor. The classifications for
all 3-dimension combinations required 43 minutes to compute; all possible combinations in 4-dimensions
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required 316 minutes (~5% hours), and the 5-dimension combinations required 1,715 minutes (~28%
hours). Comparing the rate of computation for individual processors on PC platforms - a 200 MHz

Pentium Pro is approximately 1.5 times as fast, and a 200 MHz Pentium is approximately 0.9 times as
fast, as a single processor in the Hypersparc.

The grouping results from each different classification space are collated and used to evaluate how well
each selection of dimensions grouped the training data into the pre-assigned classes. For each
combination of dimensions, a list is generated which indicates the number of training points which have
grouped into either, (a) their original user-assigned class, (b) a single, different class, (c) more than one
class, or (d) no class at all. This list is then examined to determine how well the initial selection of
dimensions and training data performed, and if there exists a better set of dimensions for classing the
experimental data.

In the present classification, the use of the three dimensions 13, 21 and 23 (biases -0.6, +1.0, and +1.4V),
produced a result in which a total of 96.8% of the training points grouped with their initial class.
Classifications performed in every other combination of three dimensions revealed that a slightly better
grouping result could have been attained using dimensions 1, 21, and 25 which would have resulted in an
agreement of 98.4% between the grouped training data and their pre-assigned classes. If the number of
dimensions used in the classification space is expanded to include four or five dimensions, there exist 176
different combinations of four and five dimension classification spaces which would have done
marginally better than any three dimension classification, exhibiting 100% agreement between the initial
class assignments and the grouping results.

E. Example: A-Step of Si(001) Surface

The Si(001)-2x1 reconstructed surface consists of dimerized rows of silicon atoms; the dimer bond

orientation rotates 90° between adjacent terraces. Consequently, two types of steps exist on the 2x1
surface, one in which the dimer rows on the upper terrace run parallel to the step edge, an A-step, and one
in which the rows in the upper terrace are perpendicular to the step edge, a B-step [14]. Both images
presented in figure 7 cover a 75x75 A area centered on an A-type step containing a kink. The classed
images display the expected periodicity of the dimer row structure in both domains, in agreement with
models of the dimerized surface. Three features are common to both images: the dimer row (light gray
class), dimer trough (dark gray class), and kink in the A-step (red class). Several other anomalous
features also appear in the classed images.

In figure 7a, the topograph contains an irregular feature in the middle of the lower terrace; it lies along the
center of a dimer row in this empty states image. In the classed image, however, this defect does not
exhibit an electronic structure uniquely different from that of the surrounding dimer trough and row
structures. Electronically, it appears simply as a break or gap in the dimer trough (dark gray in the
classed image). Thus, although this technique cannot image subsurface causes of surface irregularities,
(unless its electronic structure extends to the surface), comparison of the resulting topographic and
conductance-based images, (e.g. figure 7a), can reveal whether a given surface irregularity in a
topographic image is electronically unique.

An example of a defect which exhibits both topographic and electronic uniqueness is seen adjacent to the
kink in figure 7b. Visible both in the topograph and as the cluster of blue pixels in the classed image, the
conductance spectrum of this feature is seen to differ markedly from those of the other conductance
classes, especially at biases less than -2.0V. In this case, the topographic irregularity does indicate the
presence of an associated electronic defect.
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Fig. 7 A-step: Topographic and classed, conductance-based images of kinks in the A-step of a Si(001)-

2x1 surface. Common class colors are used in both classed images. Representative conductance spectra of
each color-coded, conductance class are shown in the lower plot.

The images in figure 7 were measured using the same STM tip during the same experiment session.
Conductance spectra measured from similar features in different regions of the surface are seen to be
consistent and reproducible. The tip preparation recipe that is described in the earlier in this report
emphasizes tip stability over resolution. In spite of repeated £3V swings in tip-sample bias during the
measurements, spectra from a given tip are consistent. However, we do not yet control the structure of

the STM tip sufficiently to achieve reproducible conductance spectra from similar features measured with
different tips.

F. Example: B-Step of Si(001) Surface

In the case of the B-step, in which the dimer rows in the upper terrace are perpendicular to the step edge,
the classed image reveals several distinct electronic structures along the step. Representative conductance
spectra for each class in this example are displayed in figure 8a. A section (outlined in red) of the 75x75
A topograph shown in figure 8c has been classed and enlarged for display in figure 8b. The
corresponding model has been scaled and oriented to the classed image at its lower right.
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The classed image contains five classes of conductance. The light and dark gray classes represent the
electronic structure of the dimer rows and troughs, respectively; these are labeled A and B, and E and F,
in the model. The periodicity of the dimer row structure again agrees with the published model [14]. At
the step edge in the classed image, the light gray dimer rows transition abruptly into the blue class of the
lower terrace. However, at the termination of the dark gray dimer troughs, a unique, well-localized

electronic structure is visible in figure 8b as a cluster of violet pixels at the end of each dimer trough in
the upper terrace..

The abrupt termination of the dimer rows in the upper terrace, (corresponding to feature ‘E’ in the model),
is consistent with the fact that the electronic wavefunctions of the dimer bonds can be expected to be
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(b)

Fig.8 B-step: (a) representative conductance spectra of each color-coded, conductance class, (b) classed
image, (c) topographic image - the region outlined in red has been analyzed to generate the classed image.
A model of the surface has been scaled and oriented to the classed image at its lower right
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much more localized than those of the undimerized, ‘dangling’ bonds. The fact that the violet class
occurs only at the end of the dimer troughs (feature ‘F’ in the model) may suggest that the dangling
bonds which would otherwise ‘tie together’ dimers along the same row, have been imaged here in the
absence of these surrounding dimers.

On the lower terrace, at the base of the B-step, two other electronic structures, not suggested by the
topograph, are seen in the classed image. In the region of transition extending from the dimer row
structure of the lower terrace (‘A’ and ‘B’ of the model) to the step edge, two distinct rows of differing
conductance are seen, (‘C’ and ‘D’ in the model). The existence of these two electronic structures is fully
supported by examination of the conductance spectra displayed in figure 8a. The differences between the
spectra of the blue and yellow classes of the step region, and the light and dark gray classes of the terrace,
are most obvious at the bias of -0.6V where the measured conductance of the two pairs of classes differ
by almost a factor of 2. Within the step region, the spectra of the blue and yellow classes are resolved
most distinctly at positive tip-sample biases where the conductance peak of the blue class occurs
approximately 0.6V lower than that of the yellow class.

The existence of the electronic structures depicted in the classed image is supported by both the
localization of these classes in the real space image and by the uniqueness of their respective conductance
spectra. The position of the two classes with respect to the step edge corresponds well with the region of
“rebonded” atoms in the model of the single B-step proposed by Chadi [14].

G. Exarr;ple: 2+1 Vacancy & C-defect on Si(001) Surface

As demonstrated in the previous examples, conductance-based images can discriminate between features
whose appearance is indistinct or misleading in a topographic image. A more pointed example of this is
displayed in figure 9. In this 150x150 A scan, a feature is observed that topographically resembles
several nearby 2+1 vacancies, but in the conductance-based image, exhibits the electronic properties of a
c-defect.

The topographic image shown in figure 9a was recorded just prior to a multispectral conductance
measurement of the same region; this ‘preview’ image was measured with a tip-sample bias of +2.0V and
required approximately three seconds to collect. The topograph shown in figure 9b was measured
concurrently with the conductance data, also at +2.0V; it required approximately six minutes to collect.

() (b)
Fig. 9 2+1 Vacancy & C-defect: (a) +2V topograph recorded in 3 seconds just prior to conductance

measurements, (b) +2V topograph recorded concurrently with conductance measurements over a 6 minute
period, (c) classed image.



Figure Oc is the false-color classed image resulting from the multispectral image analysis of the
conductance data.

As stated previously, images produced from the prolonged, multispectral conductance measurements can
exhibit distortions due to uncompensated drift during the measurement; the fast, ‘preview’ topograph is
generally immune to this. The difference in the angle of the dimer rows in figures 9a and 9b is evidence
of uncompensated drift. By recording a fast ‘preview’ topograph just prior to the full multispectral
measurement, the presence of this drift is documented and then used in the interpretation of the classed
image. It is important to note that because a full conductance spectrum and topographic measurement are
recorded at each position of the scan, before proceeding to the next location, the occurrence of a small
drift during the multispectral measurement does not affect the accuracy of the measured conductance
spectra on which the classification relies. The complete spectral measurement at each pixel requires less
than 90 milliseconds, and any slow, long term drift is effectively ‘frozen out’ during each pixel’s
multispectral conductance measurement.

A second notable difference between the two topographic images in figure 9 is the presence of a very
high-contrast feature in 9b. In the corresponding classed image, this feature is shown in red.
Conductance spectra sampled from this feature prove to be consistent across each scan line and are well
within the limits of the measurement electronics. Since the feature’s conductance at +2.0V is no greater
than that measured elsewhere in this surface, the necessity to retract the tip as it scanned over this feature
indicates that it is on, rather than in, the surface. Moreover, because the registry of the underlying dimer
row structure does not change in the image after the feature is first encountered, and since the measured
conductance spectra and tunneling current across the feature in the three ensuing horizontal scan lines

remain consistent, it is concluded that the red feature is a metastable adsorbate originating from a non-
tunneling portion of the STM tip. We further note that because the topographic image is not used in
generating the classed image, it remains an independent comparison of the scanned surface.

The classed image, shown in figure 9c, was computed using conductance images at the biases of +0.6V,
+1.6V, and +2.8V; these correspond to 20®, 25%, and 31 panels in figure 10 counting from left to right
and top to bottom. A total of six separate conductance classes are detected in the surface.

The dimer rows are again rendered as light and dark gray pixels, respectively. The conductance class
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Figure 10. Multispectral conductance images used in the image classification of fig. 9.
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corresponding to the 2+1 vacancies is rendered in green. The cluster of c-defects in the lower right
consist predominantly of the yellow class, but do exhibit the presence of a small cluster of blue-class
pixels. The vacancy-like feature to the left of the 2+1 vacancies corresponds spatially with the outlines of
the blue-class at that location in the classed image, though pixels of the yellow conductance class bracket
this feature.

Since the classed image is so counter to the suggestion of the topographic image, we present in detail, the
spectroscopic data which support the classification. The full set of raw, multispectral, conductance
images, which are the sole input to the image classification algorithm, are rendered as an array of 32
images in figure 10. The panel in the upper left is the line-stripped, topographic image recorded at +2.0V.
Each subsequent panel, from left to right, displays the intensity of the tunneling conductance measured at
successively higher tip-sample biases, over the range -3V to +3V. The conductance data is measured with
12-bit resolution and then scaled into 0-255 gray scale images; brighter pixels represent higher
conductance. The presence of distinct features within the various conductance images is easily seen.

The clustering which occurs in the mathematical classification space in this example is portrayed in figure
11. This mathematical space is defined by a y-axis that represents the digitized conductance at a tip-
sample bias of +2.8V and an x-axis that represents the conductance measured at +0.6V. A third
dimension of +1.6V (not shown) serves to separate the red and green classes from the light gray class. In
this plot, each pixel is color-coded according to the results of the computed grouping algorithm’s analysis
using all three biases.
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Figure 11. Two-dimensional projection of the mathematical, classification space used to group the pixels in

fig. 3c. Bach pixel is color-coded according to its assigned class. A third dimension (bias) was used to
resolve the overlap of the red and green classes with the gray classes
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Comparison of topographic and conductance-based images has shown that surface irregularities in a
topographic image do not necessarily indicate the presence of unique electronic structures. Conversely,
features which appear topographically similar can in fact exhibit distinctly different electronic behavior.
The use of multispectral image analysis techniques in the reduction of multibias STM conductance data
provides a quantitative means of examining atomic surfaces, while still maintaining the rich information
content inherent in an imaging technique. The use of a computed grouping algorithm greatly streamlines
the data reduction process, and provides a rigorous, reproducible means of discriminating features based
upon their conductance spectra.

The data presented in this paper were measured with a single STM tip. Multibias conductance images
measured with other tips and analyzed with this multivariate classification technique have consistently
produced classed images which discriminate between different chemical species and even different
bonding states of the same species. However, the exact shape of the conductance spectra defining a
specific surface feature differ between tips. This is predominantly due to the variability in both the atom
configuration and composition (silicon and tungsten atoms) on the tip side of the tunneling junction.
Thus, at present, our classed images only discriminate between surface electronic features, but do not
identify them absolutely. We believe that the ability to absolutely identify atoms based upon their
conductance spectra can be achieved through strict control or characterization of the STM tip, so that
reproducible conductance spectra are measured from surface to surface. This may require utilizing field
ion microscopy of the tip before multibias measurements. However, it may also be possible to devise
post-measurement transformations of the measured conductance spectra that will factor out variations in
tip structure. This latter approach holds some promise since such data transformation techniques are
already used in other multivariate classification analyses, e.g. chemical sensing, where similar problems
with variability of sensor response and uneven signal attenuation is compensated for by sensor re-
calibration and re-normalization of sensor response.

Using a single STM tip, classed images of simple features in Si(001)-2x1 surfaces have been shown to
correlate well with obvious features suggested by the corresponding topographic images. The periodicity
of the 2x1 dimer row structure, A- and B-step edges, kinks in step edges, 2+1 vacancies and c-defects
have all been resolved in conductance-based images of this atomic surface. The classed, conductance-
based images have also revealed surface electronic structures not suggested by the topographic images.
Classed images of the B-step in the Si(001)-2x1 surface indicate the presence of two electronically
distinct rows at the base of the B-step; these features correlate well with the position of “rebonded” atoms
proposed in models of the single B-step. Furthermore, the termination of the dimer trough of the upper
terrace at the B-step is seen to exhibit unique conductance characteristics, while the termination of the
dimer row does not. This may reflect the presence of exposed, undimerized dangling bonds at the step
edge. This interdisciplinary approach to the data analysis of multivariate STM data has proven to add
significant value to the interpretation of the images of atomic surfaces.
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