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'Los Alamos National Laboratory
Los Alamos, NM 87545
*Scientific Research Laboratory, Ford Motor Company
Dearborn, MI 48121-2053

Abstract

The development of elastic lattice phase strains in a 15 vol. pct TiC particulate reinforced 2219-
T6 Al composite was modeled as a function of tensile uniaxial loading by finite element method
(FEM). In the relationship of applied stress vs. elastic lattice phase strain, the slopes vary with
the applied load even before the macroscopic yielding. The slopes for the phase-strain
perpendicuiar to loading follow nonmonotonic changes with loading, while, in the direction
parallel to loading, the slopes change monotonically with the applied load. In this investigation,
we have demonstrated via FEM that thermal residual stresses from thermal expansion mismatch
between phases affect initiation of matrix plasticity. And the differences in the matrix plasticity
initiation influence the internal stress distribution. The changes in the slope are dictated by the
internal stress transfer between phases. FEM models with and without thermal history show
significant differences in the response of elastic strain component, a mechanics equivalent of the
lattice elastic strain. Agreement with experiment can only be obtained by including the thermal
history. From a simple elasto-plastic spring model we are able to demonstrate that, with matrix
plasticity propagating as predicted by FEM, the elastic strain component responds similarly to the
more rigorous numerical predictions, suggesting that the morphology of elastic strain evolution is
dictated by the development of matrix plasticity.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark, =
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Introduction

Thermal residual stresses (TRS) due to thermal mismatch between phases have been under . e
investigation in a variety of composites for several years (¢.g. [1-3]). TRS and related material
microstructural changes have been found to influence the mechanical properties of metal matrix
composites (MMCs) [4]. Recent investigations suggested that matrix plastic flow in MMCs is
strongly influenced by the TRS [5-7], and that this influence is responsible for the observed
asymmetric composite constitutive behavior between tension and compression [6-10]. However,
many useful corollaries on the internal stress state were obtained numerically and have not been
independently verified by experiment. One important experimental technique is diffraction,
which provides phase-discriminative information on the state of average elastic strains. When
conducted under load [11], in situ diffraction strain measurement probes into load transfer
between phases, since elastic strain is proportional to the phase-stress.

In this investigation, the evolution of lattice phase-strains of a particle-reinforced Al/TiC
composite under uniaxial tensile loading was studied. A numerical analysis was performed using
the finite element method (FEM) to model the influence of TRS on the evolution of the lattice
elastic phase-strains both parallel and perpendicular to the loading direction. The results were
compared with the neutron diffraction measurements obtained using a compact stress rig at the
Manuel Lujan Jr. Neutron Scattering Center (MLNSC) of Los Alamos National Laboratory. A
simple spring-type model was developed to describe how the TRS affects the evolution of the
lattice strains.

Experimental Back

The material used in this study was a 2219 Al alloy reinforced with 15 vol. pet TiC particles.

The average diameter of the remforcement was about 3 um [12]. The compos1te was produced
in situ by Martin Marietta using the XD™ process. The as-received composite was first extruded
into plates, heat treated in T6 condition, then machined into a button-head cylindrical tensile
specimen with a gauge length and diameter of 12.27 and 1.0 cm, respectively. The gauge length
was arbitrarily selected for a free passage of the neutron beam without interference from the

grips.

During diffraction measurements, lattice strains were measured as a function of applied uniaxial
tensile load. A gauge length of 1 4 cm was illuminated by the neutron beam corresponding to a
total irradiated volume of 1.1 cm’®. Initially, a tensile load of 200 MPa was applied, followed by
unloading, to detect modifications of residual strain induced by a small load. Then, the specimen
was loaded incrementally to 327 MPa sufficient to induce 1 pct total strain as recorded by a strain
gauge attached to the specimen. The loading process was divided into intervals of approximately
50 MPa. Strains were measured at the end of each stress intervals. Average elastic lattice strain
was obtained by Rietveld profile refinement of the entire diffraction spectrum [13].

Numeri ion of Ex

sy

In this section, the results of three-dimensional (3-D) and two-dimensional (2-D) axisymmetric
thermo-elasto-plastic FEM analyses are described. These results were compared with neutron
diffraction data. To simplify the problem and obtain further understanding of the resuits, a
simple averaging model developed to account for the numerical resuits is presented.

FEM Modeling

The composite was assumed to be an infinite cubic array of periodically distributed cubic

particles embedded in the matrix with volume fraction of 15 pct. A full 3-D and a 2-D

axisymmetric unit cell model with periodic boundary conditions was employed to study the L
development of average elastic phase strain and plastic strain distributions, respectively.
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To understand the impact of TRS two different loading histories were examined. In the first case
(History I), the composite was assumed to be stress-free at 200°C. A total temperature drop of
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* 180°C was uniformly applied in steps to all the nodal points in the mesh. After the cooling, a

tensile uniaxial load was applied incrementally in a sequence: 0=200=0=327=0 MPa. To
compare with a hypothetical composite devoid of the influence of TRS (designated as History IT)
cooling was not included before the same loading sequence.

henomenologics DOl attice Strain. The FEM results under the History
I are shown in F1g 1 along w1th the d1ffract10n profile refinement data. In Fig. 1 elastic lattice
strain in each phase was plotted against the applied traction. In the direction parallel to the
applied load as shown in Fig. 1(a) (in the remainder of the text, we refer this direction as the
parallel direction; and likewise, the direction perpendicular to the loading as the perpendicular
direction), the slope of the strain-traction curve for the matrix increased with the applied load
even below the nominal composite yield stress (~ 320 MPa), while that for the corresponding
particles decreased. Despite the differences in the sense of the slope changes, these changes
were monotonic as shown in Fig. 1(a).

Along the perpendicular direction in Fig 1(b), the slope for the particle strain decreased initially
with the load increase, and increased again at composite macro-yielding (above ~320 MPa). The
slope for the matrix strain increased initially before a final decrease upon the composite macro-
yielding, exhibiting “zigzag” slope changes. Based on the sense of slope changes, the
development of elastic phase-strains can be characterized in three stages as shown in Fig. 1(b).
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Figure 1: Comparisons of the evolution of the lattice phase-strains predicted by the FEM
under the History I and the Rietveld profile refinement of the diffraction data,

where data points with arrow (4) are from unloading. (a) Parallel strains are
shown. The changes of the slope are monotonic; (b) Perpendicular strains are
shown. The changes of slope are nonmonotonic (“zigzag™). The straight lines are
references to show the *zigzag.” Three stages are defined based on the changes of

slope.

Figure 2 displays the predicted increases of elastic lattice strains as a function of the applied
stress under History II (no TRS). While the change of the slope was nonmonotonic (i.e.,
“zigzag” behavior) parallel to the loading direction [Fig. 2(a)], the slope of the lattice phase-strain
evolution in the perpendicular direction in both phases changed monotonically [Fig. 2(b)].

gy

matrix predicted by the axisymmetric model under the prescribed History I (with TRS). Four
applied stress levels were selected (i.e., 0, 160, 270 and 327 MPa); the nonzero stress values
were selected within each of the three characteristic stages specified in Fig. 1(b).

Matrix Plastic Flow. Figure 3 shows the effective plastic strain contours (€7 = ,’-g-s" €’ )inthe

As the applied load increased to 160 MPa [Fig. 3(a)], the effective plastic strain developed
between the two adjacent particles perpendicular to loading direction near the particle-matrix
interface. Plasticity appeared in the matrix at 270 MPa between two particles aligned parallel to
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loading [upper-left corner of the unit cell in Fig. 3(b)]. When the applied load reached 327 MPa
as shown in Fig. 3(c), the two matrix regions with plastic flow interconnected.
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Figure 2: Lattice phase-strains predicted by the FEM following the History II where the
thermal history is not considered. (a) Parallel strains are shown. The changes of
slope are nonmonotonic (“zigzag™). This behavior is the same as that expected
from diffusion-controlled stress relaxation [11]. The straight lines are references
to show the “zigzag.” (b) Perpendicular strains are shown. The changes of slope
are monotonic.

Figure 4 displays the distributions of the matrix effective plastic strain under History II (no TRS)
at 270 and 327 Mpa (at 160 MPa no matrix plasticity was developed). At 270 MPa [Fig. 4(a)],
in contrast with the History I, plasticity appeared between particles aligned in the parallel
direction, and spread to the rest of matrix at higher loads [e.g., at 327 MPa in Fig. 4(b)].

From Figs. 3 and 4, it is evident that the initial TRS determines the location of the plastic flow
initiation. In the three stages characterized by the slopes in Fig. 1(b), the evolution of matrix
plastic flow goes through three different stages: (1) elastic matrix; (2) plastic flow initiation; and
(3) continuous plastic matrix. In the next section, we will investigate the influence on the
response of the average lattice phase-strains by the shift of the plastic flow initiation site.

Elasto-Plastic Sorine Model

With the assumption that material becomes a viscous continuum when plastically deforming,
elastic strain (and therefore stresses) cannot further develop in the flow region in a non-hardening
material. This necessitates stress redistribution in the composite when far-field load continues to
increase. To model this phenomenon, a three-component 2-D unit cell (ABCD)was constructed
as shown in Fig. 5, each with two springs oriented perpendicular and parallel to loading,
providing stiffness in these directions. The matrix components were simplified as elasto-plastic
springs, with tangential moduli K (K = E™, the matrix young’s modulus; and after yielding K =
E,, the work hardening rate), while the particle remains elastic. The cell boundary remains
straight and the springs are connected either in series or in parallel accordingly as dictated by the
arrangement shown in Fig. 5. As an example to show the zigzag behavior, we simulate the
development of internal perpendicular elastic strains in the unit cell in different stages as indicated
in the previous section, and follow the sequence of plastic initiation accordingly.

The perpendicular internal stresses are caused by the differential Poisson’s contractions from
different components under the applied stress, Ac*:

1) A
v Ao
AES) =- K(l) > 1
0 @
v , v
AP = - AP JF - g Ac® (1-4F), 2)
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Figure 3: Matrix-effective plastic strain contours under the History I when the applied stress
is (a) 160 MPa; (b) 270 MPa; and (c) 327 MPa. Matrix plastic flow first
developed near parallel interface and propagated to matrix above the particle.

PEMAG

VALUE
+3.00E-10
+3.00E-04
+6.00E-04
+3.00E-04
+1.20E-03
+1.50E-03
+1.80E-03
+2.10E-03
+2.40E-03
+2.70E-03
+3.00E-03

OO ONO U AW N~

iy

(@
(overleaf)

/il i 4

O/.




PEMAG

VALUE
+2.00E-09
+2.00E-03
+4,00E-03
+6.00E-03
+8.00E-03
+1.00E-02
+1.20E-02
+1.40E-02
+1.80E-02
+1.80E-02
+2.00E-G2

-~ 0D WM NGO U W N -

=

q

S8

1
(b)

’

NG

Figure 4: Matrix-effective plastic strain contours under the History II when the applied stress
is (a) 270 MPa; (b) 327 MPa. Matrix plastic flow first developed above the
particle and propagated to the side of the particle. At or below 160 MPa, no matrix
plasticity was developed. ‘
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Figure 5: Partitions of the unit cell into different components for the spring model. The
shaded area is the particle.
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2
where f = (ll/l) is the reinforcement volume fraction. The A&} and Ae>® are the strain

increment in region 1 and the total strain increment from regions 2 and 3 connected in series,

respectively. E™ represents the Young's modulus of the reinforcement. The v is the
Poisson's ratio, where the superscripts (1), (2), and (3) [or ()] stand for the regions 1, 2, and 3
[or the reinforcement]. The superscnpts (i./), where i,j=1, 2, or 3, denote average collectlve
response from the regions i and j when they are considered as one combined domain.

The regions 2 and 3 may be approximated to follow isostrain condition when deforming along
x,, and we obtain:

Ac* =[fAcy) +(1-f)Ac®; 3)
(r 2)

Ao, Aoy _Aoy, Ao, . @)

E(r) K(2)

By considering, along the parallel boundary CD, the conditions of equilibrium and inter-cell
compatibility, the following equations may be obtained:

Ao f +AciP(1-f)=0 (5
Aol J_
Agy +—1L K‘{; —A£‘23’+( K(\z/’— 20 }Aa‘“’. (6)

By solving Egs. 1 to 6, the increments of four stresses and the two strains can be obtained. The

changes of elastic strain component in each region, Ae}, can then be expressed as a function of
that of the stresses from the Hooke’s law. With an area-average of these strain increments, the

average increment of matrix elastic strain component, <Ae(""> is given by

(M) = ——(Ae® + T Ae)

1+
— K (2’1/ Ac?
AGS) + Aa(z 3) V(M)[K(Z) + (E(r)f_ K(Z)) {f ]}’ : (7)

<

1
- E""’(l+¢7){

where

(2.3) 1)
Ag)” — Agy;

, (8)
1, ﬁ o f 1
KV K@ 1__\/7 E®

Ao =

and Ac?” may be obtained from Eq. 5.

By substituting into Eq. 7 the spring constants according to the predicted pattern of plastic flow
propagation at different stages, the slope changes under TRS can be obtained. Table 1 shows the
slopes (s = Ao / (Ae("")) and the corresponding materials constants. The slopes follow the
order of s, > Is,| > Is,l, consistent with the FEM results [Fig. 1(b)].
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Table 1: Change of slope predicted by Eq. 7

g2 A’
Loading stage Region 1 Region 2 - < Ae,(;"))
(x10° MPa)
K¥= E™, y=03 | K¥= E™; y?=0.3
Stage 1 (Elastic) (Elastic) -4.5
K{1)= E(m); V(”=0.3 K(2) E(m)
Stage 2 (Elastic) v®=0.5 (Plastic) -3.4
K(1)= E (m); V(1)=O.5 K(2)= E (m);
Stage 3 (Plastic) v®@=0.5 (Plastic) -36

In this analysis, many assumptions are made to make the model simple. However, by correctly
representing the pattern of the matrix plastic flow and that the matrix tangential stiffness, X,
decreases at the place where plastic flow starts (elasto-plastic spring), the analysis predicts the
same trends as those from both diffraction and FEM.

Discussion

In this investigation, we have achieved good agreement between FEM modeling and the profile
refinement of the neutron diffraction measurements. FEM analysis indicated that the plastic-flow
initiation site in the matrix is altered by the inclusion of TRS. When considered this influence, a
simple spring model can predict the “zigzag™ lattice strain increases in the perpendicular direction.
The changes of slope at a relatively low load level imply that changes of load-sharing between the
two phases occur before macro yielding and that the initial load-sharing is affected by the TRS.

It is also interesting to note that the results from this investigation reveal some significant
differences with a previous work. In a particulate-reinforced Al/SiC composite, Allen et al. [11]
observed that the slope changes of the lattice phase-strains under applied loading were
nonmonotonic in both parallel and perpendicular directions. Withers suggested that diffusion-
controlled stress relaxation during loading led to this phenomenological response. Based on their
modeling, they argued that TRS had no influence on the lattice phase-strain response. However,
with little evidence of creep stress relaxation during our measurements, both diffraction and FEM
results (with TRS) (Fig. 1) show that, while similar nonmonotonic slope changes are observed
for lattice phase-strain along the perpendicular direction, the changes of slope are monotonic
parallel to the load (Fig. 1). On the other hand, the relaxation-controlled response in the parallel
direction [11] has a similar morphology with that when TRS is not considered [Fig. 2(a)).
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To have an insight into the correlation between the two mechanisms (i.e., diffusion vs. TRS),
we need to compare their influences on the matrix deformation. For diffusion stress relaxation,
as the sample is pulled, the atoms diffuse from the side to the top of the particle. This type of
stress relaxation is partially promoted by a large gradient of matrix dilatational stress, which is
more tensile at the top of the particle. From the perspective of unrecoverable deformation, the
diffusion flux along the interfaces leads to permanent contraction along the “side” in the -
perpendicular direction, which is equivalent to plastic flow between the two perpendicular
adjacent partlcles [Fig. 1(b)]; diffusion also induces permanent matrix elongatxon between AN
particles aligned in the parallel direction, which is equivalent to plastic flow initiation without the
influence of TRS [Fig. 2(a)]. Therefore, the strain response under diffusion stress relaxation
shares similarities with that affected by TRS in the perpendicular direction, and that without TRS
in the parallel direction. FEM can capture the effects of TRS because it accounts for localized
flow, which is overlooked by the mean field approach.
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Conclusions
The following conclusions can be drawn from this investigation:

(1) Goed agreement has been achieved between FEM modeling and the average phase-strain
obtained from neutron diffraction during in situ loading. Slope changes in the load-induced _
lattice strain response are nonmonotonic in the perpendicular direction, and monotonic in the
_parallel direction.

(2) FEM results indicate that the aforementioned lattice phase-strain response can best be
predicted by considering the effects of TRS. TRS helps plastic flow in the matrix between
perpendicular-aligned particles. Without TRS, matrix plastic flow initiates between parallel-
aligned particles in the particle array. .

(3) Results from the elasto-plastic spring model show that this unique morphology of plastic
flow initiation induced by TRS is responsible for the observed response of matrix lattice strain.
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