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ABSTRACT

We show that the Kubo formula can be used to calculate the non-local electrical conduc-
tivity of layered systems from first principles. We use the Layer Korringa Kohn Rostoker
method to calculate the electronic structure and the Green function of Co|Cu|Co trilayers
within the local density approximation to density functional theory. This Green function is
used to calculate the conductivity through the Kubo formula for both majority and minority
spins and for alignment and anti-alignment of the Co moments on either side of the Cu
spacer layer. This allows us to determine the giant magnetoresistance from first principles.
We investigate three possibilities for the scattering in Co|Cu|Co: (1) equal electron lifetimes
for Cu, majority spin Co, and minority spin Co, (2) equal electron lifetimes for majority and
minority Co, weaker scattering in Cu and spin dependent interfacial scattering, (3) electron
lifetimes for majority and minority spin cobalt proportional to their Fermi energy densities
of states and spin dependent interfacial scattering.

Introduction

Recently there has been great interest in the transport properties of layered magnetic
materials because of the discovery of a new form of magnetoresistance[l, 2] called the giant
magnetoresistance (GMR). GMR is a change (generally a pronounced decrease) in the elec-
trical resistance of an inhomogeneous system that is observed when an applied magnetic field
causes an alignment of the magnetic moments in different parts of the material. GMR has
been observed in several geometries, but the most promising and interesting GMR systems
are composed of thin layers of ferromagnetic material separated by non-magnetic or very
weakly magnetic spacer layers.

The transport properties of layered materials have been the subject of several theoretical
investigations based on the model of free electrons with random point scatterers (FERPS).
Using this model, Fuchs[3] and later Sondheimer[4] obtained a solution to the semi-classical
Boltzmann equation with boundary conditions appropriate to free electrons in a thin film.
Barnis and coworkers[5] extended this approach to the case in which the film has several
layers with differing scattering rates. Levy and coworkers[6, 7, 8, 9, 10] applied the more
rigorous Kubo-Greenwood[11, 12] formula to the F ERPS model and developed two different
approximations for transport in magnetic multilayers. Zhang and Butler[13] have recently
evaluated the Kubo-Greenwood formula exactly for the FERPS model applied to multilayers.
Their results allow a comparison of the relative success of the various approximations in
representing the conductivity of the free electron model. They found that the semi-classical
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approximation works surprisingly well for the FERPS model applied to multilayers.

In addition to theoretical treatments of GMR based on the FERPS model there have been
a few previous applications of first principles techniques. Butler, et. al.[14] calculated the
GMR for periodic multilayers of copper and cobalt and of copper and permalloy (NisFe.).
They calculated the complex energy bands using the coherent potential approximation and
showed that the imaginary part of the crystal momentum can be interpreted as the inverse
of twice the electron mean free path. Their calculations showed that there is the potential
for a very large GMR due to spin dependent interfacial scattering because the Fermi energy
scattering amplitudes for majority spin cobalt, majority spin nickel and majority spin iron
(as an impurity in nickel) are all very similar. Nesbet[15] reached a similar conclusion in
studies of periodic CuzCo multilayers. Schep et. al.[16] have investigated a very different
form of GMR from that seen experimentally by assuming that electron transport is ballistic
rather than diffusive.

In this paper we report on first-principles calculations of the electronic structure of cobalt-
copper multilayers. Using this electronic structure we calculate the conductivity by evalu-
ating the Kubo-Greenwood linear response formula. We do not assume that the scattering
is weak or that the electron wave functions are those of free electrons nor do we make the
semi-classical approximations necessary to apply Boltzmann theory. It should also be noted
that our approach does not require periodicity perpendicular to the layers so that it can be
applied to spin valves and trilayers.

Conductivity of Inhomogeneous Systems

We define the nonlocal conductivity o},(r,r") as the linear response of the current of
electrons of spin s at point r in direction u to the local applied field at point r' in direction
V’

i) = [ d' S ot (r, v BL). (1)

Here “local applied field” means the change in the local electrostatic field that arises due to
the application of a potential difference across the sample. For an inhomogeneous system
this may differ from the average applied field and it may be different for different spins|8].

For a homogeneous system, the current and applied field can be assumed to be uniform
so that one can define a single conductivity which is also uniform, J; = 3°, o5, E,. This is
the conductivity which is given by the Kubo-Greenwood formula[11, 12],
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where j, is the current operator, j, = (—ike/m.)3/0r,,  is the volume per atom and N is
the number of atoms. The quantum states |a) in Eq. (2) represent the exact eigenfunctions
of a particular configuration of the random potential, and the large angle brackets indicate
an average over configurations.

In order to define a non-local site dependent conductivity, aff;',', we define the current
density at site i for spin s as the average of the current density over the atomic cell at that
site, Ji* = Q7! [ drJi(r). We also assume that the local field, EX(r), is constant over each
atomic cell. Thus we write Ohm’s law in a discrete form in which the current at site z is



related to the local electric field at site j through the two point conductivity function, o™,
']"a E 0-’.713E.713 (3)

The superscript s on the local field indicates that it can be spin dependent. The local field
will be determined after the non-local conductivity is determined by the requirement of
current continuity in the steady state, Z# aJ5(x)/0r, = 0.

The intersite conductivity, o ;{,; , is given by Eq.(2) with the matrix element integrals
(aljule’) and (/|jy|a) restricted to sites ¢ and j respectively and can be seen to depend on
the imaginary part of the Green function, 3, |a){a|6(er — €x). It can be written in terms of

the Green function, G(r,r’; ep) by writing,
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where 7 is infinitesimal and where
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Following[17] we can write the Green function in terms of the scattering path operator
of multiple scattering theory, and the local solutions to the Schrodinger equation. These are
determined by the atomic potentials which are obtained self-consistently by using the local
spin density approximation to density functional theory. For the case in which the only scat-
tering is due to impurities or to alloying one can use the Coherent Potential Approximation
to average the two particle Green function[18]. In this paper we shall take a simpler and
more general approach. In realistic GMR systems the scattering usually comes from several
sources: impurities, grain boundaries, vacancies, voids, static displacements, phonons, static
moment misalignment and magnons. The proper first principles treatment of any one of
these scattering mechanisms is quite tedious and the simultaneous treatment of all of them
would be difficult and probably pointless since we do not have a sufficiently detailed char-
acterization of experimental GMR systems to know the strengths, concentrations and other
relevant parameters of these defects. In this paper we approximate the scattering processes
by a phenomenological local scattering rate. Thus we average the two Green functions inde-
pendently and assume that the effect of this averaging is that each atomic potential acquires
an imaginary term which describes the scattering rate in its vicinity.

Application to Layered Systems

We now consider the special case of layered systems. We assume that the system has a
two dimensional periodicity, but that its properties may vary in the third dimension. Thus
different atomic layers may consist of different types of atoms and have different concentra-
tions of impurities, but there is a common periodicity to all of the layers after averaging
over impurity configurations. We use a notation in which a site labeled by 2 in the preceding
section and representing any lattice site in the three dimensional crystal acquires two labels
i — Ii, where the upper case I distinguishes different atomic layers and the lower case ¢
labels a site within layer I. The interlayer conductivity can then be written in the form
&l = N;! >i; &' where Ny is the number of atoms per layer.




Because of the two dimensional periodicity we can relate the Green function which con-
nects any two sites GP*J7 to a Green function which connects layers through an integral over
the two dimensional Brillouin zone, of area 2,.

GIi = ot / £q GV(q) T ®-Ry), (6)
a:

These layer Green functions G¥ can be calculated using the layer KKR formalism(19]. The
final expression for the conductivity is expressed in terms of matrices indexed by the layer
numbers,
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where M, ‘{ represents a dipole matrix element in direction y evaluated for a site in layer I.
Details of the conductivity formalism will be given elsewhere[20].

The local fields can be determined after o77* is obtained by using J* = Y x o'¥*EX®
and the condition that the current for each spin must be continuous in the steady state.
Two geometries are commonly discussed. If the field is applied parallel to the layers, a
geometry sometimes referred to as “CIP” for “current in the plane”, the local fields will be
uniform by symmetry and equal to the average applied field. Thus the overall conductivity
will be given by o = d~! ¥k, d;o’** where d is the thickness of layer I, and d is the total
film thickness. If the field is applied perpendicular to the layers, a geometry referred to as
“CPP” for current perpendicular to the planes, then J!*, will be independent of I for each
spin. Thus J* = Y o'X*EXS and the local fields can be obtained (at least in principle) by

IKs
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Non-Local Conductivity of Free Electrons, Copper, and Cobalt

It is important to understand the non-local conductivity if one wants to understand GMR
because it is the non-local nature of the conductivity that leads to GMR. We shall see that
the form of the non-local conductivity is a fairly sensitive function of the electronic structure.

We used Eq.(7) to calculate the non-local electrical conductivity for free electrons, for
copper and for cobalt using various values for the scattering rate, A = h/7. Figure 1
shows the non-local layer dependent conductivities for free electrons calculated using our first
principles codes compared with exact results from the analytic formulas obtained by Zhang
and Butler[13]. The atomic layers were taken to be perpendicular to the (111) direction.
These calculations assumed a scattering rate, A = /7 of 0.01 Hartree (0.272 eV), one
electron per atom, and a lattice constant appropriate to copper (6.8165 Bohr). They were
performed as a check of the first-principles code, the validity of approximating the atomic
cells by spheres, and the degree of convergence of the integration over the two dimensional
Fermi surface.

The agreement is quite satisfactory. We believe that most of the small discrepancy
between the analytic and first principles results actually arises from a small difference in
the way the spatial averages over layers I and J are performed in the two cases. The first-
principles o/’ involves volume averages of the microscopic non-local conductivity o(r,r’)
over the atomic cells (here approximated by spheres) in layers I and J. For the analytic free
electron results, however, the averages are over slabs with a thickness equal to the interlayer
spacing and bounded by planes perpendicular to the z axis.
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Figure 1: Non-local layer dependent conductivity for free electrons. Diamonds (<) and
squares (O) represent exact analytic results and results calculated using the first-principles
code, respectively for CIP. Pluses (+) and crosses (X) represent exact analytic and first-
principles results respectively for CPP. The analytic results are averaged over a slab with
the thickness of an atomic layer. The first principles results are averaged over the atomic
spheres in a plane. The Fermi Energy is 0.2595 Hartrees.

Figure 2 shows the calculated values of the non-local layer dependent conductivity, a',{;f,
for copper and for cobalt at their respective Fermi energies using a scattering rate of 0.005
Hartree (0.136 eV). The atomic planes were again taken to be perpendicular to the (111)
direction. In addition to the calculated non-local conductivities we show attempts to fit
these results with the free electron model. For copper, one can obtain a reasonable fit to
the non-local conductivity both parallel to the planes, 077, and perpendicular to them, o2
The fit shown assumes that the Fermi energy is appropriate to one electron per atom (0.26
Hartree) and the effective mass is 1.52 times the free electron mass.

Figure 2 also shows the non-local layer dependent conductivities for majority and minority
spin cobalt. The majority spin conductivity was fit to the free electron results using an
effective Fermi energy of 0.111 Hartree which agrees qualitatively with a model for majority
carriers in cobalt which assumes that the Fermi surface for the majority spins contains less
than 0.5 electrons. The scattering rate used in the fit was 0.0046 Hartree. The fit works
well for large values of |I — J| but significantly underestimates the conductivity for small
values. This can be interpreted as indicating the presence of two types of majority spin
cobalt electrons. One type has a relatively short mean free path. The other type has a
longer mean free path and fits reasonably well to the free electron model. Also shown is
the non-local conductivity of minority spin cobalt. Note that these data points have been
multiplied by 0.1 to shift them downwards on the plot. We were unable to obtain a good fit
to the free electron model for this data. The free electron model will need to be extended,
e.g. by having at least two kinds of carriers, in order to represent the calculated non-local
conductivity of minority spin cobalt. It should be noted that the current carried by the
minority electrons is not negligible.

The results for cobalt illustrate the difficulty associated with applying free electron models
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Figure 2: Non-local layer dependent conductivity for copper and cobalt. Diamonds (<)
represent the non-local conductivity for copper, plusses (+) a free-electron fit. Squares
(O)represent the non-local conductivity for majority cobalt, crosses (x) a free-electron fit.
Triangles (A) represent cobalt minority.

to transition metals. The assumption of the same lifetime for both the majority and minority
spins yields, according to our calculations, very nearly the same conductivities for the two
channels, e.g. for a scattering rate /7 of 0.005 Hartrees we calculate a single channel
majority spin resistivity of 58.5 u§lcm and a minority spin resistivity of 60.8 uflcm. It is clear,
however, that the mean free paths are very different for the two channels and that for minority
spin cobalt one needs at least two mean free paths to represent the non-local conductivity.
This is consistent with our knowledge of d-band metals. The Fermi velocity can vary by
large factors over the Fermi surface. Typically the flat portions of the bands contribute
strongly to the density of states and they can also contribute moderately to the conductivity
but the contribution will be relatively local in nature. The more dispersive portions of the
Fermi surface contribute weakly to the density of states but contribute significantly to the
conductivity and especially to the non-local conductivity.

Electronic Structure of Copper layers embedded in Cobalt

As a model of the electronic structure of a Co|Cu|Co trilayer we calculated the seli-
consistent electronic structure of cobalt at its experimental lattice constant. Then we inserted
differing numbers of interface cobalt and copper layers into the bulk cobalt, and again solved
the electronic structure self-consistently holding the Fermi energy fixed at that of bulk cobalt.
We used the Green function technique so that we could treat an infinite system without
the need of assuming artificial periodicities. The largest system that we treated had 24
(111) atomic layers that were calculated self-consistently: 7 cobalt followed by 10 copper
followed by 7 cobalt. These 24 layers were embedded in an infinite matrix of self-consistently
determined cobalt (111) atomic layers.

The calculated charge on each of the layers is shown in Fig. 3. The net charge transfer
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Figure 3: Calculated charge on each layer.

between cobalt and copper is quite small. We calculate that approximately .01 electrons are
transferred to the copper, but this number might change slightly if the lattice were relaxed.
In these calculations the copper has the same lattice spacing as cobalt. We neglected the
small (2%) difference between the lattice constants of bulk cobalt and bulk copper. We also
calculated the self-consistent moments and charges for the anti-parallel arrangement of the
cobalt moments. The change in the charges and in the magnitude of the moments between
the parallel and anti-parallel alignments was less than .001 electrons for every layer.

Figure 4 shows how the valence electrons are divided between the majority and minority
spin channels. Note that there is a reasonably close match between the majority Co and the
Cu in terms of the number of electrons per atom. The number of valence electrons on the
Cu and Co sites differ by less than 0.2 electrons. For the minority spin electrons on the other
hand the difference is much larger, more than 1.8 electrons. To a good approximation the
electronic structure of ideal Co|Cu interfaces can be understood in terms of a very simple
picture. First, there is very little charge transfer between the Co and the Cu. Second, the
moment changes are relatively small near the interfaces so that Co moments are all around
1.7 Bohr magnetons. The consequence of this is that the number of valence electrons per
atom per spin channel is 5.5 for Cu and approximately 5.35 for majority spin Co and 3.65
for minority spin cobalt.

This approximate “matching” of the number of valence electrons per atom in the majority
spin channel means that the atomic cobalt and copper potentials appear very similar to
majority spin electrons. This can be verified by considering the scattering phase shifts for
electrons at the Fermi energy. These are very similar for copper majority cobalt, but differ
greatly for copper and cobalt minority, particularly for the d-phase shifts which because
of the large d Fermi energy density of states and the large magnitude of the phase shifts
are the primary determinants of the scattering. Another important qualitative difference
between the majority and minority spin channels is a large difference in the Fermi energy
density of states on the cobalt layers. The Fermi Energy DOS for the minority spin channel
is approximately 7.34 times as large as for the majority channel for the cobalt layers.
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layer.

Non-Local Conductivities Near Interfaces

Figure 5 shows calculated non-local layer dependent conductivities for 10 layers of copper
embedded in cobalt. This figure shows the conductivity for currents in the plane of the
layers, the usual experimental geometry. For this calculation, we assumed the same lifetime,
h/T = 0.005 Hartrees, for the copper layers as for the cobalt layers. Because the majority spin
cobalt potential “matches” that of the copper, the non-local layer dependent conductivity
for the Co|CulCo trilayer in the majority spin channel (Fig. 5a) is very similar to that
of pure cobalt (majority spin) or pure copper. The major difference being that the local
conductivity is reduced for the copper layer at the interface.

For the minority spin electrons, however, the interfaces greatly modify the conductivities
as is shown in Fig. 5b. The conductivities of the copper layers near the interface are
greatly reduced. Those on the cobalt layers near the interface are also affected. The local
conductivity (peak at I = J) is enhanced but the non-local contributions drop off much
faster as a function of distance.

The calculated conductivity for anti-parallel alignment for the majority spin channel
(relative to the left hand side of the film) is shown in Fig. Sc. These calculations were based
on electronic structures calculated self-consistently for the anti-parallel alignment. As might
be expected the conductivities on the left hand side appear similar to those of the majority
channel for parallel alignment and those on the right hand side appear similar to those of the
minority spin for parallel alignment. The conductivity for the other spin channel is identical
except reversed left to right.

The difference between the total conductivities for the two alignments is the GMR or
more precisely the giant magnetoconductance and is shown in Fig. 5d. The contributions to
the giant magnetoconductance are seen to arise from completely different regions than the
major contributions to the conductivity. The highest peaks correspond to currents flowing
in cobalt layers (I) at one interface which sense the field in the cobalt layer (J) at the other
interface. There is also a “ridge” of contributions running through the copper, i.e. currents
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Figure 6: Layer dependent conductivities corresponding to the non-local layer dependent
conductivities of Figure 5.

flowing in one copper layer due to fields sensed in its mirror image layer on the other side of
the interface. There is also a region of slightly negative magnetoconductance for I = J in
the cobalt layers.

Figure 6 shows layer dependent conductivities, i.e. the sum over I or J of (I, J). It can
be seen that the assumption of equal lifetimes for all layers leads to a small GMR and that
the magnetoconductance flows mainly in the cobalt layers adjacent to the interface. One
can also gain an insight into the origin of the GMR by noting how the anti-parallel (AP)
conductivity varies with layer number. Note that we have plotted the conductivity of only
one of AP channels because the other is its mirror image. On the left hand side of the figure
for which the plotted AP spin channel is locally the minority, the AP conductivity is almost
identical to the minority conductivity. On the right hand side, however, where the plotted
AP channel is locally the majority, the AP conductivity is less than the majority. It is this
difference that causes the GMR. The majority and AP currents on the right hand side of
the plot can sense the regions of mean free path on the other side of the interface.

Our calculations contain any effects that arise from potential steps at the interfaces or
from quantum well states. It is clear that there are discontinuities in all of the conductivities;
majority, minority, and AP at the interfaces between cobalt and copper. Model calculations
which we have performed using the free electron model and steps of various sizes indicate
that they may have large effects on the conductivities but the effects on the GMR are usually
quite small. We believe that the origin of the GMR in figure 6 is not the step but the fact
that although the scattering rates are the same for all layers and spin channels, the mean
free path for minority cobalt is significantly smaller than for majority cobalt.

Interfacial Scattering

In order to evaluate the effect of strong interfacial scattering we calculated the non-local
layer dependent conductivities for 10 copper (111) planes embedded in cobalt. We attempted
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Figure 7: Layer dependent conductivities for strong interfacial scattering.

to model a system in which the copper resistivity is 2.8 ) cm and the cobalt resistivity
is 14.8 p) cm. These values seem to be typical of sputtered films[21]. We assumed that
the electron lifetimes in the majority and minority spin channels were the same in cobalt
(-0025 Hartrees). This would lead to very nearly the same conductivities in the two channels
for a system that is entirely cobalt. In addition we assumed that due to intermixing at the
interface, the scattering rate for majority spin cobalt at the interfacial layer is twice that in
the bulk and for the minority spin it is 24 times that of the bulk. This factor of 12 between
the scattering rates of minority and majority spin electrons is based on coherent potential
approximation calculations that we performed of the resistivity due to copper impurities in
cobalt and (spin aligned) cobalt impurities in copper. The scattering rates for the copper
interfacial layer were chosen to be 3.4 and 6.8 times that in bulk copper (.0006 Hartree)
respectively for the majority and minority spins. The calculated GMR (AR/R,) for the
assumed geometry and scattering rates is 0.035.

Figure 7 shows the layer dependent conductivities. The effect of the interfacial scattering
is to strongly depress the minority conductivity in the vicinity of the interface where the
strong scattering was assumed. The GMR is seen to be greater for the case with interfacial
scattering than for the case in which it was ignored.

Bulk and Interfacial Scattering

The calculations presented in the previous section assumed that the majority and minor-
ity lifetimes are the same in the cobalt layers. The scattering rates that occur in practice
will depend on the scattering mechanism. For each spin channel, the probability of a scat-
tering event is proportional to the number of final states. For most scattering mechanisms
such as nonmagnetic impurities or phonon scattering it means that the scattering rate is
proportional to the density of states of the given spin channel at the Fermi energy. Because
the density of states is usually much higher at the Fermi energy for the minority spin, the
lifetime of minority electrons is usually much shorter than that of majority electrons. Figure

— — . T e e e —— e e
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Figure 8: Layer dependent conductivity in the presence of both interfacial and bulk scatter-
ing.

8 shows the calculated layer dependent conductivity assuming that the electron lifetime for
majority carriers in the cobalt layers is seven times that in the minority layers due to the
difference in Fermi Energy density of states, A /T = .0014,.01008 for majority and minority,
respectively. The GMR in this case is AR/R, = .024.

It is interesting that the introduction of an asymmetry in the bulk scattering rates ac-
tually decreased the GMR compared to the result of figure 7. The GMR actually increases
substantially in the cobalt but this is more than offset by the decrease in the copper. The
decrease in the copper can be traced to the fact that decreasing the scattering rate for the
majority electrons in the cobalt lowers the conductivity of these electrons in the copper. The
overall conductivity is however increased as expected and the GMR would probably have
increased if the bulk cobalt layers had been thicker.

Conclusions

We have shown that the Kubo formalism can be evaluated with the Layer-KKR formalism
to calculate the non-local layer dependent conductivities and GMR from first principles. We
have shown that GMR in the CIP geometry is an inherently non-local phenomenon and that
the largest contributions to the GMR come from currents carried near one interface arising
from fields sensed near the other interface. Our results also demonstrate that the effects of
electronic structure and scattering rates on the conductivity and GMR can be quite subtle.
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ABSTRACT

We show that the Kubo formula can be used to calculate the non-local electrical conduc- °
tivity of layered systems from first principles. We use the Layer Korringa Kohn Rostoker
method to calculate the electronic structure and the Green function of Co|Cu|Co trilayers
within the local density approximation to density functional theory. This Green function is
used to calculate the conductivity through the Kubo formula for both majority and minority
spins and for alignment and anti-alignment of the Co moments on either side of the Cu
spacer layer. This allows us to determine the giant magnetoresistance from first principles.
We investigate three possibilities for the scattering in Co|Cu|Co: (1) equal electron lifetimes
for Cu, majority spin Co, and minority spin Co, (2) equal electron lifetimes for majority and
minority Co, weaker scattering in Cu and spin dependent interfacial scattering, (3) electron
lifetimes for majority and minority spin cobalt proportional to their Fermi energy densities
of states and spin dependent interfacial scattering.

Introduction

Recently there has been great interest in the transport properties of layered magnetic
materials because of the discovery of a new form of magnetoresistance[l, 2] called the giant
magnetoresistance (GMR). GMR is a change (generally a pronounced decrease) in the elec-
trical resistance of an inhomogeneous system that is observed when an applied magnetic field
causes an alignment of the magnetic moments in difierent parts of the material. GMR has
been observed in several geometries, but the most promising and interesting GMR systems
are composed of thin layers of ferromagnetic material separated by non-magnetic or very
weakly magnetic spacer layers. '

The transport properties of layered materials have been the sub ject of several theoretical
investigations based on the model of free electrons with random point scatterers (FERPS).
Using this model, Fuchs[3] and later Sondheimer[4] obtained a solution to the semi-classical
Boltzmann equation with boundary conditions appropriate to free electrons in a thin film.
Barnis and coworkers[5] extended this approach to the case in which the film has several
layers with differing scattering rates. Levy and coworkers[6, 7, 8, 9, 10] applied the more
rigorous Kubo-Greenwood(11, 12] formula to the FERPS model and developed two different
approximations for transport in magnetic multilayers. Zhang and Butler[13] have recently
evaluated the Kubo-Greenwood formula exactly for the FERPS model] applied to multilayers.
Their results allow a comparison of the relative success of the various approximations in
representing the conductivity of the free electron model. They found that the semi-classical
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approximation works surprisingly well for the FERPS model applied to multilayers.

In addition to theoretical treatments of GMR based on the FERPS model there have been
a few previous applications of first principles techniques. Butler, et. al.[14] calculated the
GMR for periodic multilayers of copper and cobalt and of copper and permalloy (NigFey).
They calculated the complex energy bands using the coherent potential approximation and
showed that the imaginary part of the crystal momentum can be interpreted as the inverse
of twice the electron mean free path. Their calculations showed that there is the potential
for a very large GMR due to spin dependent interfacial scattering because the Fermi energy
scattering amplitudes for majority spin cobalt, majority spin nickel and majority spin iron
(as an impurity in nickel) are all very similar. Nesbet[15] reached a similar conclusion in
studies of periodic CuzCo multilayers. Schep et. al.[16] have investigated a very different
form of GMR from that seen experimentally by assuming that electron transport is ballistic
rather than diffusive. :

In this paper we report on first-principles calculations of the electronic structure of cobalt-
copper multilayers. Using this electronic structure we calculate the conductivity by evalu-
ating the Kubo-Greenwood linear response formula. We do not assume that the scattering
is weak or that the electron wave functions are those of free electrons nor do we make the
semi-classical approximations necessary to apply Boltzmann theory. It should also be noted
that our approach does not require periodicity perpendicular to the layers so that it can be
applied to spin valves and trilayers.

Conductivity of Inhomogeneous Systems

We define the nonlocal conductivity o73,(r,r’) as the linear response of the current of
electrons of spin s at point r in direction g to the local applied field at point r’ in direction

v,

Ji(r) = /dr'za,’w(r, r')E3(r'). (1)

Here “local applied field” means the change in the local electrostatic field that arises due to
the application of a potential difference across the sample. For an inhomogeneous system
this may differ from the average applied field and it may be different for different spins|8].

For a homogeneous system, the current and applied field can be assumed to be uniform
so that one can define a single conductivity which is also uniform, J; = 3°, o5, E,. This is
the conductivity which is given by the Kubo-Greenwood formula[ll, 12},

ot = 2o (S laliula)alia)ler - eo)er - ) @)

a,a’

where j, is the current operator, j, = (—the/m.)3/0r,, 1 is the volume per atom and N is
the number of atoms. The quantum states |a) in Eq. (2) represent the exact eigenfunctions
of a particular configuration of the random potential, and the large angle brackets indicate
an average over configurations.

In order to define a non-local site dependent conductivity, af{;;', we define the current
density at site 7 for spin s as the average of the current density over the atomic cell at that
site, Ji* = Q7! [ drJi(r). We also assume that the local field, E}(r), is constant over each
atomic cell. Thus we write Ohm’s law in a discrete form in which the current at site ¢ is
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lifetimes for majority and minority spin cobalt proportional to their Fermi energy densities
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Recently there has been great interest in the transport properties of layered magnetic
materials because of the discovery of a new form of magnetoresistancel, 2] called the giant -
magnetoresistance (GMR). GMR is a change (generally a pronounced decrease) in the elec- .
trical resistance of an inhomogeneous system that is observed when an applied magnetic field
causes an alignment of the magnetic moments in different parts of the material. GMR has
been observed in several geometries, but the most promising and interesting GMR systems -
are composed of thin layers of ferromagnetic material separated by non-magnetic or very
weakly magnetic spacer layers. ‘ ‘ ’ 4

The transport properties of layered materials have been the subject of several theoretical
investigations based on the model of free electrons with random point scatterers (F ERPS).
Using this model, Fuchs[3] and later Sondheimer[4] obtained a solution to the semi-classical
Boltzmann equation with boundary conditions appropriate to free electrons in a thin film.
Barnds and coworkers[5] extended this approach to the case in which the film has several
layers with differing scattering rates. Levy and coworkers[6, 7, 8, 9, 10] applied the more
rigorous Kubo-Greenwood|11, 12] formula to the FERPS model and developed two different
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