UGS10

WINCO-1196

IN AN MSMPR CRYSTALLIZER

LATION
LLING THE TEADY GROWTH STATE POPU
MODEBAL&CE Fgll\{SA NONLINEAR GROWTH MODEL

uoo._oﬁ Kouade Lue 10 UAWUIAA0D) $9)B1G panupn)
941 Jo 9503 300501 J0 Agess Apuressasou oy Op urIdy possardxs sio 1oy
0D $91e1g paytun) oty £q Burtoaey o ¢ I
pus sy Aidun 10 aynyysuoo HESSIOU 10U s20p asimIsyio 10 ‘JeImjoenueur
‘“Yrewaper ‘ourey 3pel) £q 991AI9S 10 ‘ss0001d *©
19§39y 's1y8u paumo Apreaud a8uwjur jou Pnos asn sy jeyy syuasardar 1o ‘pasopasip ssaooxd
10 ‘pnpoid ‘snyeredde ‘votyeuniogur ue 3O ssoumjasn 1o ‘ssauayopduios *AovInooe oy Joy Aypiq
~Isuodsar 10 Aunqer 18321 Aue sownsse 1o ‘pariduir 10 ssaxdxa ‘Kyuerrem Kue Soyew ‘sookojduro
oY1 Jo Aue Jou Joozoyy Aousfe fue 10U JuwuIsA0D) sojeyg Pattun) ayy soyyraN “WOUWLISA00)
$3181S pajtuN) oy3 jo AsusBe ue £q pasosuods J20M Jo Junoode ue se posedord sem wodai siy .

dANIVIDSIA

—
I > &
€ > GH
= vl

e,p w

T Wy
h E Zlig
: 2 8 o9
2 g w T DTA
: of) i 2z T
m S na MEE
J - 9 w0
< %d EEO

o, ¢ u
zE= - m_.._nnuw
.DM

1Jioads ue o3 uraroy ous .

UNDER CONTRACT DE-AC07-841D12435

NT 1S UNLIMITED

, yﬂj‘i’;

7

£

t IAE
DISTRIBUTION OF THIS COCUM




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




THE UNSTEADY STATE POPULATION BALANCE
FOR A NONLINEAR GROWTH MODEL IN AN MSMPR CRYSTALLIZER

by

Christene Carver

- ldaho National Engineering Laboratory

- Westinghouse Idaho Nuclear Company
Idaho Falls, Idaho

, Nathan A. Chipman
Idaho National Engineering Laboratory
Westinghouse Idaho Nuclear Company
Idaho Falls, Idaho

Thomas E. Carleson
Department of Chemical Engineering
University of Idaho
Moscow, Idaho

ABSTRACT

The precipitation of zirconium and other metal species as hydroxides (hydrous
oxides) from simulated nuclear waste process solutions has been investigated as a
potential method to reduce radioactive waste volumes. The reaction of ammonium
hexaflourozirconate was used to simulate these waste streams. Studies were
conducted to investigate the unsteady state response of crystallization in mixed
suspension, mixed product removal (MSMPR) crystallizer. Size distributions below
40 um from laboratory batch and MSMPR data indicate size-dependent growth
may be occurring because they may fit the Abegg, Stevens and Larson (ASL)
model. However, these distributions also may fit a transient growth model based
on the Method of Lines numerical solution to the unsteady state population balance
equation. The development of the Method of Lines solution as well as
experimental agreement with both models were studied.




INTRODUCTION

The precipitation of zirconium and other metal species as hydroxides (hydrous
oxides) from simulated nuclear waste process solutions has been investigated as a
potential method to reduce radioactive waste volumes. Studies were conducted to
investigate the unsteady state response of crystallization in a mixed suspension,
mixed product removal (MSMPR) crystallizer. The unsteady state population
‘balance equation for a MSMPR crystallizer was manipulated to show the effects of
unsteady state behavior.

Since the population balance equation includes both growth rate and number
density as dependent variables, an auxiliary relationship between the two is
required for solution. By substituting an exponential relationship between the
number density, growth rate, and crystal size (corresponding to the steady state,
linear growth rate model), the number of dependent variables is reduced to one,
the growth rate. This unsteady state, nonlinear partial differential equation in
crystal size and time is then converted to a system of coupled ordinary differential
equations in time by the Method of Lines. The set of ordinary differential
equations was then solved by the Runge-Kutta method. The numerical resuits
indicate that unsteady state behavior may yield number density versus size plots
that exhibit "apparent” nonlinear growth rates. The numerical results also predict
trends that have been observed in experimental work.

DEVELOPMENT OF EQUATIONS

The Method of Lines allows the number of independent variables in a partial
differential equation to be reduced by one. For example, the population balance
partial differential equation is'"

—t et G=— +— = : (1)

The population balance equation has two unknowns, growth rate G and number
density n. There are also two independent variables: size, L and time, t. The
Method of Lines can reduce this equation from being dependent on growth rate
and number density to being dependent only on growth rate.

Another relationship between the growth rate and nucleation must be assumed in

order for the population balance equation to be solved. One relationship, often
used to express the number density, is the McCabe linear growth model which
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assumes that the growth rate is independent of particle size. Thus at steady state,
the number density can be expressed by

n=n °exp(——6€;) ()

If the McCabe number density is substituted into the population balance equation
and the assumption is made that the growth rate is the only unknown, then two
partial differential equations are produced. One partial differential equation is
expressed with time as the independent variable

QL’:_”.{_I:..‘?_Qq} (3)

The other partial differential equation is expressed with particle size as the
independent variable

on_n|LoG_, (4)
aL Gr|GaL

Substituting these two equations into the population balance equation leads to

3G | G* +G]aG_ Gz=0 (5)
at | L JoL L

rearranging the equation results in:




26_[a% oG, 6* (6)
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A simple first order approximation to the derivative of growth rate with respect to
particle size was used to convert the equations from a partial differential equation
to a series of ordinary differential equations. The differential of the growth rate
with respect to crystal size is

3G _Gi-G (7)
aL  h

where h is the step size. The differential of the growth rate with respect to crystal
size is substituted into the reduced form of the population balance equation which
converts the equation to a series of ordinary differential equations:

aG,__
ot

GFe e,+,-e,}+ ch (8)
Ll | L

In order to solve this series of equations an initial condition and a boundary
condition (growth rate at a given size and time) are required. Two possibilities
were explored batch data was used to calculate the initial growth rates; and the
initial growth rates of unity were used for all particle sizes.'?

DEVELOPMENT OF COMPUTER MODEL

One of the purposes of the computer model was to determine how accurate the
numerical methods predicted the crystal behavior of Zr(OH),. Experimental runs
were conducted by (NH,),ZrF, being precipitated with NH,OH in a MSMPR
crystallizer. The data from these runs was plotted by In (N), where N is the
cumulative nhumber greater than at a given particle size, versus particle size L.
Most of the experimental data indicated that the crystals were behaving in a
nonlinear manner. The computer model was designed to determine if the crystal
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behavior was nonlinear or if another phenomena was causing the behavior.

A computer program was designed applying the Method of Lines theory to the
differential equation software package, TK Solver®. Short routines were written in
conjunction with existing numerical functions from TK Solver’s library to solve
these equations. Four short routines were developed for the Method of Lines
theory. A fourth order Runge Kutta numerical method from the TK Solver library
was used to solve the differential equations. The other three routines were to
store the differential equations, to set the boundary conditions, and to converted
the n, the number density, to the In (N).

The initial growth rates were difficult to determine because determination wouid
require knowing the growth rate at time zero. Since the batch data was taken
after 1 to 5 minutes in the reactor, determining the initial growth rates from batch
data appeared to be the most accurate method. The growth of the crystal seed is
given by :

G=(6—L) )
at)

This show that, the growth rate is the rate of change of size at a constant value of
the crystal size distribution function F. Thus, if the cumulative size distribution is
known at two time intervals, t apart, the growth rate can be evaluated from the
displacement of L between the curves at a given value of F.

Size analysis methods are limited to a minimum crystal size below which accurate
counts cannot be made. This means that the number of particles per unit volume,
n, is also unknown. However, the analysis will easily give N, the cumulative
number of crystals of all sizes with a size greater than any specified size L. Thus,
the growth rate can then be evaluated as a function of time and crystal size.

Figure 1 presents data from batch crystallization runs having 0.1 M (NH,),ZrFg
precipitated with 0.048 M NH,OH. Data is reported for samples taken at one
minute intervals from one minute to five minutes. From this data it is observed
that the number of particles within the crystallizer at any time is approximately
constant.

The initial growth rates were determined using batch experimental data. Figure 1
plots the Ln (N) verses particle size, L. If the Ln (N) is held constant between
samples taken, the difference in length and time are determined, then equation 9 is
used to calculate the initial growth rate.




One problem was that the particle size distribution for batch data did not match
the distribution for the MSMPR experimental data. The particle size for the batch
data ranged from 0-15 microns, while the experimental MSMPR data ranged from
0-40 microns. In order to conduct effective modeling, a parameter fit for the
Abegg, Stevens and Larson (ASL) model of growth rate was conducted to expand
the particle size distribution. The statistical software package TableCurve'¥ was
used to fit the parameters to the batch data. The ASL model is

G=G (1 +yL)® (10)

The parameters G,, v, and b were determined by fitting the ASL model to a batch
data plot of Ln (N) verses particle size, L. Once the parameters G, y, and b were
determined, the initial growth rate for any particle size could be calculated.

With the batch data, it was assumed that growth rate is dependent upon particle
size. Another assumption is that the growth rate is independent of particle size.
Under this assumption the initial growth rates were set at an equal value for all
particle sizes.

Other parameters which could be varied in the model were residence time and
elapsed time. The different residence times of 10, 60 and 135 minutes were
examined. Elapsed time was also varied between 5 - 300 minutes. These
parameters were taken from experimental data in order to make the model as
accurate as possible.

ASSESSMENT OF THE MODEL

Figures 2 through 4 are plots of the In (N) versus particle size L for the computer
model using the batch data as the initial growth rate. Figure 2 has a residence
time of 10 minutes and an elapsed time of 5.5 minutes. There is no linear
behavior present in Figure 2. The top line represents time zero and the bottom line
is for 5.5 minutes elapsed. The effect of residence time is seen in the difference
between Figures 2 and 3. The same initial growth rates were used for both runs
but the residence time was change to 60 minutes in figure 3 with an elapsed time
of 8 minutes. Figure 2 at time zero is linear and for the other times it appears to
be linear with slight deviations around 5 microns. Figure 4 is similar to Figure 3.
The same initial growth rates were used in both figures, only the residence time
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was changed to 135 minutes with elapsed time of 4 minutes in Figure 4. The
behavior of the crystals appears to be linear with deviations in the small particle
sizes.

Although the batch data should be the most accurate, a problem was noted in
using this data since the model will only converge at small elapsed times, less than
about 8 minutes. This is not representative of the experimental data which had
elapsed times ranging from 85 - 300 minutes. '

One reason why the model would not converge for longer elapsed times is that the
batch initial growth rates were comparatively large. Several plots of the growth
rates from the experimental MSMPR runs vs. particle sizes were fitted to the ASL
model. The initial growth rates from the continuous data ranged from 0.02 - 0.42
microns/minute which did not correspond with the batch data of 0.75 - 2.45
microns/minute. The growth rates from the batch data were much higher than for
the MSMPR data. One reason could be the difference in elapsed time. For the
batch data the elapsed time was O - 5 minutes but for the MSMPR runs the
elapsed times would range from 80 - 200 minutes.

In an attempt to allow the model to converge, for Figures 5 through 13 the initial
growth rates of all particles sizes were set to a constant value. These growth rate
were determined by examining the experimental data and choosing three
representative growth rates for each residence time.

Figures 5 through 7 have a residence time of 10 minutes and an elapsed time of
144 minutes. Figures 5 through 7 look similar to Figure 2, which is the batch data
- at a residence time of 10 minutes. The growth rate for Figure 5 is 0.3
microns/minute; Figure 6 is 0.4 microns/minute; and Figure 7 is 0.5 micron/minute.
Figures 5 through 7 follow the same trend of small particle sizes showing nonlinear
behavior but the large particle sizes converge to very small values which are below
detectable limits. For Figures 8 through 10 the residence time is 60 minutes and
the elapsed time is 320 minutes. Figure 8 has an initial growth rate of 0.03
microns/minute; Figure 9 an initial growth rate of 0.06 microns/minute; and Figure
10 an initial growth rate of 0.09 microns/minute. These graphs have the same
trends as the previous graph of nonlinear behavior in the small particles sizes and
the larger particles are converging to a value which is too small to determine from
the graph. As the growth rate increased, so did the growth of the larger particles
sizes. For the Figures 11 through 13 the residence time was 135 minutes and the
elapsed time is 80 minutes. Figure 11 had an initial growth rate of 0.3
microns/minute; Figure 12 had an initial growth rate of 0.4 microns/minute; and
Figure 13 had an initial growth rate of 0.5 microns/minute. Figures 12-13 are the
most similar to experimental data. Both figures have a definite nonlinear curve
which is steeper at the smaller particle sizes and which levels out as particle size
increases.




CONCLUSIONS

In conclusion, the Method of Lines model matched the experimental data better
when the initial growth rates were independent of particle size and set at a an
equal value for all particle sizes. There was definite nonlinear behavior displayed in
Figures 5 through 13. Figures 11 through 13 were representative of the nonlinear
behavior demonstrated with the experimental data.

The batch data was expected to be the most accurate method of determining the
initial growth rates, but when it was used in the model the results were not
representative of the experimental data. Two reasons why the batch data did not
produce representative resuits are (1) that the initial growth rates were much larger
than the experimental data and (2) that the elapsed time of the batch data was
much shorter compared to the experimental data.

The Method of Lines model predicted the crystal behavior to be nonlinear which
matched the behavior of the experimental data. The nonlinear behavior could be
caused by unsteady state behavior or by transient growth. It is possible that the
nonlinear crystal distribution is caused by unsteady state behavior. Since most
studies invoive crystals at larger particle sizes, it is difficult to determine if the
behavior seen in this study is true unsteady state behavior or a combination of
several factors working together.
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