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MODELING OF STATISTICAL TENSILE STRENGTH OF SHORT-FIBER
COMPOSITES

Y. T. Zhu, W. R. Blumenthal, M. G. Stout, and T. C. Lowe
Materials Science and Technology Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

This paper develops a statistical strength theory for three-dimensionally (3-D) oriented
short-fiber reinforced composites. Short-fiber composites are usually reinforced with
glass and ceramic short fibers and whiskers. These reinforcements are brittle and display
a range of strength values, which can be statistically characterized by a Weibull -
distribution. This statistical nature of fiber strength needs to be taken into account in the
prediction of composite strength. In this paper, the statistical naturé of fiber strength is
incorporated into the calculation of direct fiber strengthening, and a maximum-load
composite failure criterion is adopted to calculate the composite strength. Other
strengthening mechanisms such as residual thermal stress, matrix work hardening, and -

short-fiber dispersion hardening are also briefly discussed.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government, Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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INTRODUCTION

Short-fiber composites have several advantages over continuous fiber composites, . They
often have improved strength and stiffness over the unreinforced matrix. In addition,
they can be adapted to conventional manufacturing techniques, such as powder
metallurgy, casting, molding, drawing, extruding, machining, and welding [1-5]. As a
result, the part fabrication cost is relatively low [6], which is an important design criterion
[7]. Short-fiber composites also can be made with relatively isotropic -mechanical
properties and can be easily molded into complex shapes [1], as required in some
applications. These advantages have led to wide applications of these composites in

automobile, sporting goods and-cutting tools industries [8,11].

Strength is one of the most important properties of structural short-fiber composites and
its prediction is essential for composite design. In a real short-fiber composite, short-
fibers are usually three dimensionally (3-D) oriented [12], which makes it more difficult
to calculate the composite strength. In addition, ceramic or glass short fibers and
whiskers are usually used as reinforcements. These reinforcements are brittle and display
a range of strength values, which can be statistically characterized by a Weibull
distribution [13-16]. Therefore, both the 3-D fiber orientation and statistical nature of
fiber strength need to be taken into account in the prediction of composite strength.

Unfortunately, this cannot be handled by current available composite strength models.

The models of Chen [1] and Halpin and Kardos [17] approximate the composite as a
stack of unidirectional short-fiber reinforced lJaminae bonded together at different angles,
which does not represent the real situation. In addition, these two theories do not provide
any clear relationship between the composite strength and the properties of its

constituents since they rely on the experimental failure strength and strain data of the
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unidirectional Jaminae. Friend has [18, 19] proposed an empirical strength equation for
randomly-oriented short-fiber-reinforced metal matrix composites. Due to its empirical
nature, his equation can only be used in particular alloy matrix composites. For
example, it seems to agree with experimental data for some aluminum alloy matrix
composites, but it can not explain the high strength of composites with a pure aluminum

matrix.

Zhu et al [20-22] have developed models to predict the strength of composites reinforced
with randomly or 3-D oriented short fibers. However, the statistical nature of short-fiber
strength is not included in these models. Therefore, it is necessary to develop a new
* strength model to take into account both the 3-D fiber orientation and the statistical

nature of fiber strength in the prediction of composite strength.

The objective of this paper is to develop a strength model for composites reinforced with

3-D oriented short fibers. The statistical hature of short fiber strength will be included in .

the calculation of composite strength. The maximum total load is adopted as the
composite failure criterion. Special cases, such as the strengths of composites reinforced
with unidirectionally-oriented short fibers, with two dimensionally (2-D) randomly-

oriented short fibers, and with 3-D randomly-oriented short fibers, are also presented.

Modeling

The strengthening mechanisms in short-fiber reinforced metal- and polymer-matrix
composites include several or all of the followings: direct short-fiber strengthening[20-
22], residual thermal stress in fibers [22-24], and matrix work hardening induced by
short-fiber dispersion [20, 22] and by thermal stress-induced dislocations [22-27]. The
matrix work hardening has been worked out by Zhu et al [22], whose results will be used

in the present model. A new method to calculate the direct short-fiber strengthening is
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developed below to take into account both the 3-D fiber orientation and the statistical
nature of fiber strength, and the effect of residual thermal stress is also incorporated into

the strength calculation.

Direct short-fiber strengthening
For simplicity, we assume an isotropic Poisson's ratio v for the composite, and perfect
bonding between fibers and the matrix. The short fiber strength can be characterized with

a Weibull distribution function:
B
f (G'f) = odfio; exp(—alcj’f ), ¢))

where o and f3 are parameters of Weibull distribution, [ is fiber length and ¢ is fiber

strength. The cumulative strength distribution function can be expressed as
Flog)=]; (oo, =1-exp(-ciof). @

Fibers with lower strength will start to break first during tensile loading. In
addition,. fibers with smaller inclination angles from the loading direction (see Fig. 1 for
the definition of inclination angle) bear larger stresses and break first than fibers with the .
same strength, but larger inclination angles. Shown in Fig. 1 is a fiber with an inclination
angle 0 <60 < 7x/2 in a composite sample. Under a total load P¢ on a composite sample

along the x3 direction, the composite strain, €, is produced in the loading direction:
e =&, 3)

and strains in x1 and x directions can be calculated as:
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€ =&y =—VE;5;3. “4)

To calculate the strain in a fiber with an inclination angle 0, let us rotate the coordination
system around x axis clockwise by an angle of 0 (see Fig. 1). The transformation matrix
Ais

ay G O 10 0

A=|a, a, a,|=|0 cosf -—sinb|, )
a; a;, G| |0 sin@ cos6

where aj; =cosaijj, and oy; is the angle between y; and xj. The strain in y3 direction

(along the fiber) can be calculated as

3 3
5,(0) =Y a;, Y a;;€; = £55(cos® 6 — vsin® §). (6)

=1 j=I
Substituting Eq. 3 into Eq. 6 yields

£3,(0) = ,(cos” 6 — vsin® 6). )

€2,(0) calculated using Eq. 7 is the strain in a fiber with an inclination angle 6. The
33 g

stress in the fiber can be calculated as

o(6) = E,e3(6) = E,¢,(cos’ 6 — vsin® 6), (8)

where Ey is the fiber Young's modulus. Due to the Poisson contraction, fibers with
inclination angle close to ©/2 will be under compressive stress although the composite .
sample is under tensile load in the x; direction. The angle at which ¢(6) changes from

positive to negative can be found by setting 6(8) =0 and solving for 8, which yields
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7] = arcsm(

1
7o) e

From equation (8), it can be seen that ¢(0) is positive if 6 < 8¢, which means tensile
stress in the fiber. But, if 0 is larger than 0y, 6(0) will be negative due to the Poisson
contraction. Since fibers usually have higher Young's modulus than the matrix, fibers
should always have higher resistance to elastic deformation than the matrix. Therefore,

the absolute value of 6(08) should be used in the calculation of total load carried by fibers

toward the loading direction, i.e.

E,¢,(cos* 0 —vsin®6) 0<6<0,

a(6)= (10)

~E;g,(cos’@—vsin®0)  0,<0<m/2

Assuming that fibers with a strength 0, =0, = E£, and parallel to the loading direction

begin to break under a total load P, then

g, =0, /E;. (11)

Substituting Eq. 11 into Eq. 10 yields

0,(cos” 8- vsin® 6) 0<6<6,

()= (12)

~oy(cos’0—vsin®0)  6,<0<m/2

Fibers with a strength 0, < 0, and a small inclination angle will break. The critical

inclination angle, within which every fiber with a strength 0, < 0, is broken, can be

derived by setting
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o, = 0,(cos’ 0 - vsin®6),

and solving for 6, which yields

GC(O'f) = arcsin m .

(13)

The next step is to derive the total load, Pi(Gp), carried by all the remaining short fibers as
a function of Gy at a specimen cross-section, and to find the maximum value of the total
load. The maximum of P{(G,) can be considered as the total load that short fibers carry

at composite failure and can be used to calculate the direct fiber strengthening.

To obtain Pi(op) at a specimen cross-section perpendicular to the loading direction
(hereafter referred as cross-section A as indicated in Fig. 2), the effective orientation-
density distribution of fibers intercepted by the cross-section A, nc(8), is needed.
Defining the fiber orientation-density distribution in the volume of the specimen as ny(6),
we can obtain nc(0) from ny(0) by taking into account the following two factors: first,
the probability variation of a fiber being intercepted by the cross-section A with the
inclination angle of a fiber; second, the ineffective length of short fibers. ny(0) can be

expressed as
n,(6) = Ng(6), (14
where N is the total number of short fibers in the composite specimen and g(0) is the -

normalized fiber-orientation distribution, which can be determined using image analysis
[12, 28].

The effective load-carrying length of a short fiber can be expressed as
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IL=1-26, (15)

where [ is the average fiber length, which also can be obtained from image analysis [28],

and J is the equivalent non load-carrying length at each end of the short fiber, which can

be obtained by a shear-lag-type analysis [22, 29]:

5271,

12
?

(16)

where d is the average fiber diameter, which is known before the fabrication of a
composite, or can be determined from image analysis [28], G, is the shear modulus of

the matrix, and V¢ is the fiber volume fraction.
The projected effective fiber length on the loading direction can be calculated as
1,(8)=1,cos6 =[] —25]cos 8. 17

The total number of fibers in a composite specimen, N, can be calculated by the following

equation

N=—Z=L, (18)

where A is the sample cross-section area and @, = #d*/4. n(6) can be calculated from

ny(6) and L,(6) as

n (6) =n,(6)L,(6)/L, (19)

where L is the composite specimen length. Substituting Egs. 14 and 16-18 into Eq. 19

yields
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7.(6) —E[ (ll;\/(Vf"’ *_1)E, /G, ]g(@)cos@. (20)
ay

Knowing n¢(0), we are ready to calculate P{(Gy), which consists of two parts:
P,(0,) = F;(0,) + P/ (00), 21)

where P;(0,) is the total load carried by all unbroken short fibers with b'f < 0y, and

P}(a,) is the total load carried by all unbroken short fibers with ¢, 2 ¢,. P}(0,) can

be calculated as

o) = J'%f”/(z ) n (0) f o, afa(e)cosededcf, (22)

and P?(0,) can be calculated as

P0,)=[1~F(0,)][}" n.(6)a,0(0)cos6d6. (23)

Substituting Eqgs. 22 and 23 into Eq. 21 yields

P(0,)= J: E/(i,)”‘(e) (o, )a,0(6)cosbdbdo,
(24)
+{[1=F(o,)|[" n.(6)2,0(6)cos6ap

Substituting Eqs. 12 and 20 into Eq. 24, integrating and rearranging yields -

P,(o,) = VfAno-o{ J: flo,)do, jZ’(al)h(e)de + [1-F(o,)] j:’ h(0)do + j;h(e)de},

(25)
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where

1=1-L e o o5

and
h(6) = g(6)[(1+ v)cos® 6 — v]cos® 6. (27)

Substituting Eqgs. 1 and 2 into Eq. 25 yields

P,(0,)= V}AT]O‘O[ " aapo’t™ exp(~oic?t)do, j: ’(G,)h(e)de

(28)
/4 9
+exp(—oto?)[” ne)d6 + jmh(e)de]
The direct short-fiber strengthening can be calculated as
P (0' )] O ]
s _[ SN0 dmax o B1 o B s
of =i = fn[oofo oifo? exp(—alaf)dafjac(af)h(e)de
(29)

+0,exp(~0iat) [ H6)d6 + o, j:;h(e)de]

For composites reinforced with unidirectional short fibers, g(0) is a delta function at 6 =

0:

1 6=0
g(9)={ : (30)

10
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Substituting Eq. 30 into Eq. 28 and integrating yields
P(0,)=V,Anc, exp(~0dc}). (31)

Setting dP,(0,)/do, =0 and solve it for oo, which is the value at which P,(c,) reaches

its maximum, yields:
o =(cap)™. (32)
Substituting Eq. 32 into Eq. 31 yields

[B(00)]_ = AV,n(opre)™. (33)

The total direct short-fiber strengthening can be calculated by substituting Eq. 33 into
Eq. 29, which yields

of =Vyn(ofle) ™ (34)

where e is the base of the natural logarithm.

For composites reinforced with 2-D randomly-oriented short fibers, the fiber-orientation
distribution can be expressed as

2

g(6)= -

(35)

11
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Substituting Eq. 35 into Eq. 29, integrating and rearranging yield the total direct short-

fiber strengthening as

V.n Oo
o’ =-£{7[B(v)oo—160'0j0 flo,)c(os, O'f)dO‘f]m, (36)
where
4(3v +v) 1
B(v)=—————+(3-V) 4arcsin——-7 |, 3
(v) oy ( V)( arcsin — 71:) 37
and

_3-v_ ,GO_Gf J(ao—af)(vao+of)[(3+v)ao+26f]
C(O‘o, O'f)— 3 arcsin )0, + 8(1+v)0'§ . (38

For composites reinforced with 3-D randomly-oriented short fibers, the fiber-

orientation distribution can be expressed as [20]:

g(60)=sin@. (39)

Substituting Eq. 39 into Eq. 29, integrating and rearranging yield the total direct short-

fiber strengthening as

vV, 5/2
ol = —{—517-[(3 -2v)o, exp(—alo{,’ ) + H;
(40)
oo (VO'0 +0, )3/2 (30 e 2v0'0)
+00,L f (Gf ) (1 + V)3/2 0'3/2 Oy

12
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Effect of residual thermal stress

Metal-matrix and some polymer-matrix composites are generally synthesized at high or
intermediate temperatures, which result in residual thermal stress in fibers during the
cooling from the composite synthesis temperature. Assuming that the residual thermal
stress in short fibers is oy, this stress changes the apparent fiber strength, and makes
positive contribution to the tensile strength of a composite if 6¢ < 0 (compressive stress)
but negative contribution if o; > O (tensile stress). The effect of residual thermal stress is
equivalent to changing the average fiber stress by -o; without changing the scattering of
the fiber strength. Among the two Weibull parameters of fiber strength, o is related to
the average fiber strength and f is related to the strength scattering. Therefore, we can

take into account the effect of residual thermal stress in fibers on composite strength by

incorporating it into o.

The average fiber strength for the fiber strength distribution shown in Eq. 1 can be

expressed as:

G= a""’l"’”l‘(l+%). (41)

where I'(1+1/f) is a gamma function. Taking into account the effect of residual thermal

stress in fibers, Eq. 41 can be written as:

-o,=a," l“”’l‘(l + %) (42)

where o.c is the modified .. 0. can be obtained by substituting Eq. 41 into Eq. 42 and

rearranging:

13
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o, =[a7" - 15, [T(1+1/B)] . (43)

Taking into account the effect of residual thermal stress in fibers, the total direct fiber

strengthening, 6/, can be calculated by substituting o0 in Eq. 29 with o defined in Eq.

43, which yields

[Pf(o"o )]

f max . % B-1 — B 9’
of === fn[dojo oot exp( “cl"f)d"ch(a,)h(e)de
(44)
B\ (% %
+0,exp(~1?)[" (6)d6 + o, jmh(e)de]mx
Correspondingly, o7, for unidirectional short-fiber composites can be expressed as
! = V(e ple) ™, 45)

o’ for 2-D randomly-oriented short-fiber composites can be expressed as

V To i
ol = gfg[B(v)ao ——160‘0_[O o lfo?™ exp(—aclof)c(ao, O'f)dO'f] , (46)

where B(v) and C(cg, ©f) are same as defined in Eqgs. 37 and 38, and o’ for 3-D

randomly oriented short-fiber composites can be expressed as

V.n 4vlc
f =3 - By =Y ~0
ol = 13 [(3 2v)o, exp( OcclO'o)'l' a +V)3/2
( )" ) -
o ~ VO, +0 30,—-2v0
+0'0I0 OlclﬁO' ; lexp(—acld ? ) (1:_ V)s/z 0{5/2 - do-f
0

14
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Matrix work hardening
For metal-matrix/short-fiber composites, the matrix may be strengthened by high density

thermal stress-induced dislocations, which can be calculated as [22]:

Ac,, =20G, bp,", 8)

where or=0.3 - 0.5 is a constant, Gy, is the shear modulus of the matrix, b is the Burgers
vector and p; is the density of thermal stress-induced dislocations. Another matrix

strengthening mechanism is short-fiber dispersion hardening, which can be calculated as
[20, 22]

-1

16 173
=l T T
Ac,, =4Gp d(—) (——J -6 . (49)
) |\

Composite strength calculation

All the strengthening mechanisms discussed above can be incorporated into the

calculation of composite strength:

o, =(1-V,)(o,+Ac, +Ac,,) + o, (50)

where o, is the calculated matrix stress at composite failure without the consideration of

matrix strengthening by thermal stress-induced dislocations and by dispersion hardening.

15
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Summary and Conclusions

Although comparison of the present composite strength model with experimental results
has not been made due to the lack of data, we believe that it is superior to previous
models because it takes into account more physical parameters, such as the statistical
nature of fiber strength, in the calculation of short-fiber composite strength. Some of the
data needed for calculating composite strength, such as the fiber orientation-distribution
function g(0), average fiber length [, average fiber diameter d and fiber volume fraction
Vs, can either be obtained by image analysis [12], or is known before the fabrication of a
composite; some other data, such as metal matrix dispersion hardening AGp,, matrix
shear modulus G, residual thermal stress oy, dislocation density p , and the Weibull
distribution parameters for short-fiber strength may be estimated or experimentally
determined. However, 6; and p might often need to be estimated because of the

experimental difficulty in their determination.

The statistical model developed in this paper for calculating the tensile strength of 3-D
oriented short-fiber composites improves upon previous strength models. A maximum
load criterion is used for composite failure, which is straight forward and easy to use.
The present model can take into account the statistical nature of fiber strength in the
calculation of composite strength. The residual thermal stress in fibers is also taken into
account in the calculation of composite strength by incorporating it into the Weibull
distribution parameter o.. We believe that the present model can give a more accurate and

realistic estimate of short-fiber composite strength.

16
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Figure captions

Fig. 1. Definition of off-axis angle 6.

Fig. 2. A composite sample and its cross-section.
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