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ABSTRACT

One possible design for a fourth-generation light source is tﬁe high-gain harmonic
generation (HGHG) free-electron laser (FEL). Here, a coherent seed with a wavelength at
a subharmonic of the desired output radiation interacts with the electron beam in an
energy-modulating section. This energy modulation is then converted into spatial
bunching while traversing a dispersive section (a three-dipole chicane). The final step is
passage through a radiative section, an undulator tuned to the desired higher harmonic
output wavelength. The coherent seed serves to remove noise and can be at a much lower
subharmonic of the output radiation, thus eliminating the concerns found in self-
amplified spontaneous emission (SASE) and seeded FELs, respectively. Recently, a 3D
code that includes multiple frequencies, multiple undulators (both in quantity and/or
type), quadrupole magnets, and dipole magnets was developed to easily simulate HGHG.

Here, a brief review of the HGHG theory, the code development, the Accelerator Test
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| Facility’s (ATF) HGHG FEL experimental parameters, and the parérheteff;énélyéié from o

simulations of this specific experiment will be discussed. ’
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L Introduction
With the interest in creating a single-pass FEL in the x-ray wavelengths, a few
configurations to achieve this have been discussed. One method is high-gain harmonic -
generation (HGHG) [1,2]. Here, a brief overview of the HGHG theory, the evolution 6f a
code to easily simulate HGHG, a sét of parameters for the Brookhaven National
Laboratory/Accelerator Test Facility/Advanced Photon \Source (BNL/ATF/APS) high-

gain harmonic generation (HGHG) [3] experiment, and the results of simulations with

this new code are discussed.

II. - HGHG Theory

A possible mode of FEL operation capable of providing a very desirable output light
beam is HGHG. Here, a coherent radiation source, at a subharmonic of the desired output
radiation wavelength, enters a first undulator (the modulative section), which is tuned to
the resonance of the electron beam with this subharmonic, for energy modulation. Next, a
dispersive section (a three-dipole chicane) is traversed, where spatial bunching is induced
imposing a strong higher harmonic content on the electron beam distribution. The beam
then enters a second undulator, the radiative section, tuned in resonance to the desired
harmonic output wavelength. Coherent radiation and ultimately saturation at this higher
harmonic is then achieved within a reasonable number of undulator periods and with an
excellent beam quality, as compared to the SASE process. This better beam quality is
defined by the coherent seed source, and yet the seed can be at a much lower
subharmonic of the radiation. This method could quite possibly be extended to higher

energies, where the radiator is tuned to a much higher harmonic, to achieve saturation in




the UV, VUV, or x-ray regime. A schematic of the HGHG process is provided in Figure

1.

OI.  The Multiple-Purpose Simulation Code: MEDUSA
Previously, HGHG simulations were performed in a three-step process [1]. First, the

electron beam and seed laser were propagated through the modulative section in a

monochromatic FEL simulation code. Second, the electron beam distribution at the exit
of the modulative section was mapped into a particle code that tracks the partiéles
through three horizontal dipole magnets. Third, this output was then mapped back into
the FEL simulation with only one variation imposed in the code—that the integration
over the phase bucket is opened to nr instead of =, since the interest is shifted to the n"
harmonic. The simulations were performed in this way, since there was no code that -

could model the dispersive section, the quadrupoles, and simultaneous multiple

harmonics.

MEDUSA [4] is a 3D simulation code that represents the electromagnetic field as a
superposition of Gauss-Hermite modes, and a source-dependent expansion is used to
determine the evolution of the optical mode radius. The field equations are integrated
simultaneously with the 3D Lorentz force equations. As such, MEDUSA differs from
other nonlinear simulation codes in that no undulator-period average is imposed on the
electron dynamics. To simulate HGHG more easily, MEDUSA was extended to simulate
the following: 1) multiple-segmented undulators both in quantity and/or type, 2) dipoles

to serve in dispersive sections and/or as corrector magnets, 3) quadrupoles for proper




matching, and 4) simultaneous multiple frequencies in the form of harmonics and/or

closely related sidebands.

IV. The BNL/ATF/APS HGHG Experimental Parameters

There are two distinct project phases of the BNL/ATF/APS HGHG experiment: SASE
and HGHG at 5.3 pm. The existing ATF photocathode rf gun, linac, and coherent seed
radiation source, a CO; laser, define the electron and seed beam parameter base found in
Tables 1 and 2, respectively [5]. The magnetic component parameters are found in Table

3.

V. Simulations

For the simulations, we constrain the radiation wavelengths of the seed and output
radiation to exactly 10.6 and 5.3 um, respectively, and assume that the electron beam
parameters, strength of the magnetic components, and seed laser power may be adjusted.
Also, we have chosen a Gaussian electron beam distribution. First, using the radiative
section in a purely monochromatic configuration at 5.3 um, scans in energy were
performed to find the maximum saturated power about the well-known 1D resonance
condition. This is illustrated in Figure 2. This electron beam energy was then used to find
the best magnetic field in the modulative section for maximum saturated power in the
shortest distance, when it was run in a purely monochromatic mode at 10.6 pm, as seen in
Figure 3. The electron beam energy and magnetic field of the modulative section were
therefore chosen as 40.672 MeV and 1.60 kG, respectively. No energy spread was

imposed in these cases. Both of these cases are illustrated in Figure 2.




Next, simulations were performed with the actual HGHG arrangement, in which the seed
laser, modulative section, two quadrupoles, the dispersive section, and the radiative
section were included. Note that in these simulations, the radiative section begins at 2.65
m. Two types of scans were then performed about the opﬁmum design parameters:
varying the dispersion section strength between 1.85 to 2.15 kG and the seed laser power

from 0.1 MW to 1.6 MW.

In Figure 3 (a) and (b), the results of the output power (W) and radiation waist versus z
(m), reépectively, are shown. The power drops off quickly as the dispersive section
strength moves away from optirhurﬁ. This is made apparent in the related reduction in
guiding in (b). In Figure'4 (a) - (e), the phase-space (p/mc versus y) plots are shown at
the exit of the dispersive section for five cases of varying the dispersive section strength:

1.85, 1.90, 2.00, 2.05, and 2.15 kG, respectively.

Next,. seed laser power scans from 0.1 MW to 1.6 MW at three separate dispersive
section strengths (1.85, 2.00, and 2.05 kG) were performed. In Figure 5 (a) and (b), the
output power (W) and radiation waist versus z (m), respectively, for the six laser power
scans are shown. As with the dispersive section strength scans, both the power and
guiding drop off readily as the seed laser power moves away from optimum. In Figure 6
(a) — (), the phase-space plots are shown at the exit of the dispersive section. Clearly the

energy modulation imposed on the beam changes rapidly with slight variations with the




input radiation. Although not shown here, the 1.85 and 2.05 kG cases exhibit similar

results.

VL.  Conclusions and Future Plans

A 3D code, MEDUSA, was developed to treat segmented undulators, dipole magnets,
and quadrupole magnets, as well as the interaction of the beam with multiple frequencies.
MEDUSA has been used to simulate the HGHG experiment at the Accelerator Test
Facilty at Brookhaven National Laboratory, where the multiple frequencies were the
input seed laser at 10.6 pm and the output radiation at 5.3 um. The output power is very
sensitive to the choice of seed laser power and the magnetic field strength in the
dispersive section. Previously, using the three-step simulation method with TDA3D [6]
and a particle tracking code, the HGHG simulations predict a saturatéd power at 5;3 pm -
of 37 MW after 1.8 m. The theory also predicts similar results (~35 MW at ~1.8 m). We
found a maximum of ~29 MW after ~2 m and plan to further optimize this performance.
Future plans also include examining the nonlinear harmonic growth in the radiative

section since the entering modulated beam is rich in harmonic content.
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Figure 1: HGHG schematic.

Figure 2: (a) Energy écans in the radiative section; power (W) versus z (m) at 5.3 pm, (b)
Wiggler field scans in the modulative section; power (W) versus z (m) 10.6 pm.

Figure 3: (a) Power versus z (m) and (b) Radiation waist (cm) versus z (m) at 5.3 pm for
the dispersive section strength scans. |

Figure 4: Phase space (p/mc, ) plots at the exit of the dispersive section for the scans in
magnetic field strength.

Figure 5: (a) Power versus z (m) and (b) Radiation waist-' (cm) versus z (m) at 5.3 |.Lm for
the seed laser scans.

Figure 6: Phase space (p/mc, ) plots at the exit of the dispersive section for the seed

laser scans.
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Table 1: Electron beam parameters for HGHG

v 82
Normalized Emittance 4 t mm mrad
Peak Current 110 A
Micropulse Length- ' 4 ps

Energy Spread 0.043%




Table 2: CO, seed laser beam parameters

Wavelength 10.6 yum
Input Seed Power 0.7 MW
Pulse Length 100 ns

Sliced Pulse Length 10-100 ps
Rayleigh Range 0.76 m




Table 3: Magnet parameters

Modulative Section

Length 0.76 m
Undulator Period 7.2cm
Number of Periods -9
Peak Magnetic Field 0.158 T
Dispersive Section

Length 0.30 m
Induced Dispersion 1.5 (dy/dy)
Radiative Section _
Length 1.98 m
Undulator Period 33cm
Number of Periods 60
Peak Magnetic Field 047T
Betatron Wavelength 3.75m




