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Abstract

Magnetic susceptibility studies of the U,Pd,In single crystal show that in
the paramagnetic state larger %-values are found for field along the basal

plane than along the c-axis. However, below Ty = 37 K, where U-moments

form a non-collinear magnetic structure within the basal plane, a cross-over

of the two y-branches occurs. The single crystal results may explain the

origin of the exotic magnetization results obtained on powder samples.
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I. Introduction

U,Pd,In is member of a large isostructural group of uranium compounds with the
stoichiometry 2:2:1 crystallising in the tetragonal UsSi;-type structure [1,2]. The results
of electrical-resistivity, specific-heat and magnetic-susceptibility experiments on U;Pd;In
polycrystalline samples point to an antiferromagnetic transition at 7y = 37 K [3]. The
antiferromagnetic order was confirmed by neutron powder diffraction, which reveal that
8] magnetic moments of | about 1.6 ug/U (at T =
10 K) confined to basal plane form a non-collinear magnetic structure [3].

Here additional data obtained on a single crystal are presented and the type and

strength of magnetic anisotropy are discussed in the framework of the hybridization-

induced anisotropy model.

IL. Results and discussion

Polycrystallihe U.Pd.In has been prepared by arc-melting appropriate amounts of
the constituting elements with 5% excess of In. The structure, the lattice parameters and
the atomic positions were determined on a small single crystal using an Enraf-Nonius
four-circle diffractometer [1]. Single crystals with the typical mass of about 100 mg have
been synthesised by the mineralization method and checked and oriented using X-rays.
DC magnetic susceptibility of a U,Pd;In single crystal was studied using a SQUID
magnetometer with the sample oriented with the principal directions along magnetic
field. These results are given in the context of high-field magnetization measurements,
which were performed in quasi-static fields at 7= 4.2 K on two types of fine powder
samples: one consisting of powder particles fixed in random orientations and the other

with particles free to rotate in magnetic field [3]. In the latter case the magnetization



)
usually reaches larger values (representing the easy-axis magnetization) and the ratio to

the fixed-powder mgneﬁzaﬁon (representing an ideal polycrystal) is influenced by the
type and strength of magnetic anisotropy. .

In the case of U,Pd;In, the magnetization curve for the fixed powder shows a
pronounced metamagnetic transition, which sets on around 25 T, followed by a gradual
saturation in higher fields (Fig. 1). For the free-powder sample, the initial susceptibility
dM/dB is larger than in the fixed powder, but the metamagnetic transition is much less
pronounced. Thus we encounter a rather curious case, because the magnetization
measured on a random powder is in high fields larger than the free-powder
magnetization.

The magnetic susceptibility % on a single crystal was measured with field both
parallel (Bllc) and perpendicular (BLc) to the c-axis. Above 70 K, %(7) curves for both
field orientations (Fig.2) can be described by the modified Curie-Weiss law. The
respective fits yield parameters peg = 3.0 p /U, ©, = -125 K and o = 0.9%10°8
m>/mol fu. for Bllc and pegr=2.5 pp/U, ©,=-23 K and % = 2.0+10"8 m3/mol fu. for
the perpendicular field. Thus the susceptibility above T reaches higher values for field
along the basal plane. The anisotropy energy in the paramagnetic state, which can be
estimated as the difference of both @p-values, is about 100 K, which is a rather modest
value comparing to other U-intermetallics. Below 7y, the x (D) curve drops significantly
as usual in antiferromagnets. On the other hand, ¥} increases even faster than would be
expected from the high temperature MCW behaviour. In the low temperature limit x! (7)
» 3D

The temperature dependences of the magnetic susceptibilities may imply a
scenario which could account for the unusual magnetization behaviour of powders

mentioned above.



Due to a much higher susceptibility for field along the c-axis at 4.2 K, we can
expect that the powder grains are oriented in moderate fields with c || B. However, the
spin reorientation transition can be reached at B = 25 T apparently only with B 1 ¢, and
thus the grains oriented with ¢ // B pertain their low-field alignment. For the fixed-
powder sample, on the other hand, there is a large fraction of grains with the ab-plane
not inclined much from the field direction, and thus magnetization can reach higher
values in this case. There remains only to check this conclusion by high-field
magnetization measurements on the single crystal.

The point which is less clear is the crossover of the two branches of x(7)
dependencies. In antiferromagnets with weak anisotropy, the configuration of magnetic
moments perpendicular to applied field has naturally a lower energy (higher
susceptibility) than that with moments along the field direction. Such situation is,
however, not typical for actinide intermetallics with strong anisotropy. Thus what we
observe here is in fact an exceptional situation. Since a more general evidence of
anisotropy in U,72X compounds for various transition metals 7 is up to now missing, we
can deduce only speculative conclusions about the reasons for weaker anisotropy. The
magnetic anisotropy in U-intermetallics can be often understood as due to the anisotropic
Sf-hybridization, which forces U magnetic moments perpendicular to strong 5/~bonding
directions [4]. Apparently, the 5/-5f coordination is an important parameter in such
approach.

In U,PdIn, each U atom has 7 U neighbours (5 within the basal plane and two
along the c-axis). The U nearest-neighbour links are found along the tetragonal c-axis,

but the distance between the U neighbours within the basal plane is only slightly larger.

Thus one expects the U magnetic moments oriented within the basal plane, but the

anisotropy energy can be rather small.
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Figure Captions

Fig.1: High-field magnetization results obtained on the two forms
of powder samples described in the text. Full lines represent
measurements with field swept continuously up and down.
Magnetization obtained on the single crystal in B=35 T is shown
as large open symbols, and the corresponding field dependence is

extrapolated by dotted lines.

Fig.2: Temperature dependence of magnetic susceptibility of the
single crystal U,Pd,In compared with the original polycrystalline
data (full line). The experiment on single crystal was done in B =
1,3 and 5 T. A slight field dependence was observed only by the
low temperature end of the B || ¢ curve, where the higher field
tend to suppress the susceptibility values (see the inset - (A) -
1T,(@)-3T, .(O) -5 T). Dash-dotted lines represent the

respective modified Curie-Weiss fits.
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