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Abst Overview "
We describe initial experiments with a large (307) plasma Goals
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area Inductivel Lo P (ce) 1o prod high « Develop untform large-area ICP plasma source for potential 12" to
density plasmas useful for processing 400 mm semiconductor 167 wafer and FPD applications.
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tlort for syner

Arand N2 over the pressure range 3-50 mtorr. R.F. inductive it ge ynergy.
power was run up to 2000W, but typically data were taken over : ;:?:ci?;em':ﬂ‘r?gféf‘ cltta':nber ‘r';’e are now constructing a
the range 100-1000W. Diagnostics Include optical emission etch experiments.

spectroscopy, Langmuir probes, and B-dot probes as well as
electrical clrcult measurements. The B-dotand E-M

are compared with models based on commerclat Features Diagnostics
E-M codes. Initla! Indications are thzt uniform plasmas suitable « 30" diameter chamber
for 40‘1‘:1V mmp ing are attai . « 25" diameter ICP coll . ::gmulr probes
ep a parison b, deling an " - ot probes
experimental results for this source. Computer simulations * 20 2-1/4" thick dielectric window . Electﬂ‘;l measurement
using the fluld code INDUCT94 are used to explain variations in « Rf drive: 13.56 MHz to 5kW S
the plasma density profile ts as a function of Qy or N, at 3 to 50 mtorr + Optical spectroscopy
Iinductive power, gas pressure and gas composition. Both Argon !
and Nitrogen discharges are modeled. INDUCTS4 solves the 2D
time-d dent fluid equations for el , fons and
Inc(uding effects of both inductive and capacitlve eoupling
Detailed volume and surface chemi: are
We discuss the effects of pressure and power on plasma
uniormity. .
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Density profiles in Ar plasmas

These figures show the ion density profiles in Ar
plasmas determined from Langmuir probe
measurements. The density profiles are plotted as a
function of both input rf power and background gas
pressure. Normalized ion density profiles are shown at
different elevations within the plasma chamber as
functions of these same parameters.

Electron densities are also determined from the
Langmuir probe -V curve. The radial electron density
profiles exhibit a shape similar to that of the ion
%:)ﬁles, but the magnitudes do not always agree.

ese differences are presently being investigated.

The plasma density increases as the input rf
power is raised, but the shape of the profile is
unaffected by the rf power level (except perhaps at the
lowest rf powers). The density profiles are not peaked
on axis, due to the presence of localized heating under
the rf coils and the mean free pathin Arat 10 mTor,
which is short enough to limit the ability of diffusion to
flatten the profiles.

The plasma density also increases as the
background gas pressure is raised. In addition, raising
the background gas pressure increases the off axis
densily faster than the central density, thereby making
the density profile more hollow. This is a direct result of
the decrease in the mean free path as the gas pressure
is raised, which slows down diffusion.
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Langmuir probe radial density profiles
N: plasmas, 10 mTorr, 2 ~ 2.125°

Density profiles in No plasmas

These figures show the ion density profiles in No
plasmas determined from Langmuir probe
measurements. The density profiles are plotted as a
function of both input rf power and background gas
pressure. Normalized ion density profiles are shown at
different elevations within the plasma chamber as
functions of these same parameters.

Electron densities are also determined from the
Langmuir probe I-V curve. The radial electron density
profiles exhibit a shape similar to that of the ion
%oﬁles, but the magnitudes do not always agree.

ese differences are presently being investigated.

As in Ar plasmas, the plasma density increases as
the input rf power is raised. In contrast to the Ar results,
the shape of the profile in N plasmas is strongly
affected by the rf power level. The density profiles are
peaked on axis at the lowest rf powers and become
peaked off axis at higher powers. The reason for this
change in the shape of the density profile is believed to
be due to the low value of the denstty in these plasmas,
leading to a large skin depth and non-localized heating.
The same effect should be seen in Ar plasmas, but
experimentally we cannot operate the machine under

these conditions. .

The plasma density also increases as the
background gas pressure is raised. In addition, raising
the background gas pressure increases the off axis
density faster than the central density, thereby making
the density profile more hollow. This is a direct result of
the decrease in both the mean free path as the gas
pressure is raised, which limits the ability of diffusion to
flatten the profiles, and the skin depth of the plasma,
which gives rise to localized heating.
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Electric Field and Plasma Conductivity from B-dot Data

Startweh Earadays equaton. ¥ X Ex -B= -joB

sssume  B= By{r,2)z + BAr.2)r = (By{r) 2 + Bfr} r) exp(-2/3)
E= Eg(r)8 ’

Then Farsday's equaton becomes®

-dEy/ dz= -joBr = 1/8 Eg . where 3 s skan desth = (oop f 2) 2

-td/dr(rEg)= -jwB;

the Z of the mag;

Then { get the electric fiek] in the plasma by

3
Ee=-io>lrJ-Bzfdr‘
[
The conauctivity of the plasma can be had by diding the electric fieid by the Br component

6= (ByiEg)2wite
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Electromagnetic Code Modeling

20 Model (Ansoft Maxwell)
Quasi-magnetostatic (eddy current) solver
Solved flux lines and induced current shown
RF frequency, fo= 13.56 MHz

Plasma conductivity = 30 mho/m
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3D Model (Ansoft Eminence)

Full wave solver

Simplified geometry
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Spectroscopy Goals

- Spectroscopy is a truly non-nvasive diagnostic. It
r;gutresonlyasmaﬂwewpoﬂforwemngme

-Wehope(ofndtemperawreanddensdysensmve
kneraho&Thsswouldpmmdendependen
verification of Langmuir probe measurements. In
addition, it would allow measurements to be made in
sysiemswhefep(obe mea.surements are not

! (e.g., process

Pt e e
emunal o Il nal
most of the knes observed thus far have been
emitted by the neutral background gas rather than a
plasma constituent {except for emissions from No*).
We need to verify that these neutral emissions
ce’mbl;tyﬂ\e same spatial dependence as the plasma
lens|

- Real time analys: ion sp
may prove useful in process contml

Spallal resolved spectrometer
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Inductively Coupled Plasma

INDUCT94- source Model ' Electron Model Equations

& ©

* 2D time-dependent fluid model. Model Geomatry

o ! * Density, n_, solved from continuity equation:
« Electrons, muitiple ions and neutrals. wemazoo | e
+"Single frequency RF coils. ¢ e | an ot = —VeTut Riguzston
* RF bias on wafer holder. : _
- Complex intemal structures. TR : « Flux, Ts = neVe, calculated from “drift-diffusion”

approximation:

. and electron temperatures. - -

* Neutral flow. F,=—n_p,E - (n kT)/Im v,

« Electronegative and electro-
positive plasmas.

L- lon Denslty

* Temperature, T,, solved from energy equation:

* Optimized for high efficiency. 0Te/ 3t = —VeQe— €NeTa® E + Pia = A 1058

lon Model Equations

Poisson's Equation
» Density, n,, solved from continuity equation: E

an,/at = —V+I,+ R
n ! lonization « The potential, ¢, is solved from from a time-

* Flux, T, =n,7V, solved from momentum eqution: advanced form of Poisson’s equation:
/et = -V, V,+enk/m,— (Vn kT,) I m, VeeVp = —e(n —n,—dtane/at)
RN

« Use of the electron continuity equation:

* Temperature, T, solved from energy equation: + Enforces strong Implicit coupling between the electric

— —_ = fleld and the electron density.
T /ot = ~V-Q,—en, ;- E

4 Avolds the Dlefectric rel 4 e 1

4+ Provides for quasl-neutrality, and near ambl-polar flow.

Basic trends in the Ar simulations

® Plasma density increases with Increasing rf power
at fixed pressure due to power balance. (densityec
power, temperature Independent of power)

e Plasma density increases with increasing pressure
at fixed power due to particle balance. (temperature
decreases with pressure leading to a larger density
required for power batance)

® At high power, the large electron density leads to
small rf skin depths and thus localized heating. At
fow power, the skin depth is large and more
uniform heating results in on axis peaking of the
density profile.

e For small skin depths, increasing pressure reduces
the electron mean-free-path, decreasing the ability
of thermal conductivity to spread the rf power
throughout the plasma. This resuits in enhanced
off axis peaking in the ionization rate and the
density.



Model radial profiles in Ar as a function of pressure
1200 w rf power, z ~ 2.125"

Electron Density (em =3)

Model radial profiles in Ar as a function of rf
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Ar plasma density and temperature in the small
skin depth regime (50 mTorr, 1200 w rf power)

Ar plasma power and ionization in the small
skin depth regime (50 mTorr, 1200 w rf power)




Ar plasma density and temperature in the large
skin depth regime (10 mTorr, 10 w rf power)

[ 4
(/1)) unzuadmﬁ

Ar plasma power and ionization in the large
skin depth regime (10 mTorr, 10 w rf power)




Conclusions

e We show good uniformity over a 40 cm diameter In
the experimental Ar and N2 data of our large area
chamber system.

e The radial profiles of plasma density however show
large variations with pressure and rf power.

e Mode! simulations of Ar duplicate very well the
experimental data, allowing us to explore design
modifications to regulate the uniformity.



