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Marshak Waves: Constant Flux vs. Constant T - a (slight) Paradigm Shift
Mordecai D. Rosen
ICF Target Physics Program
Lawrence Livermore National Laboratory
Livermore, CA 94550
ABSTRACT

We review the basic scaling laws for Marshak waves and point out the
differences in results for wall loss, albedo, and Marshak depth when a constant
absorbed flux is considered as opposed to a constant absorbed temperature.
Comparisons with LASNEX simulations and with data are presented that

imply that a constant absorbed flux is a more appropriate boundary
condition.(U)

1. Introduction

Understanding the radiation drive in laser heated hohlraums is a crucial first step in
building confidence in the predicted target performance for a National Ignition Facility (NIF)
ignition target. In this paper we will review the basic theory of hohlraum drivé. scaling, and
compare results for the wall loss due to radiation diffusion derived by assuming a constant
temperature boundary condition compared to a constant absorbed flux boundary condition. We
will also present temperature data and simulations from hohlraums driven by 1 nsec flat top
laser drives which will imply that the constant absorbed flux boundary condition is the more
appropriate one. In addition we will present simulations and measurements of the radiation
burn- through times through thin patches of Au on the sides of a hohlraum wall, which also

lead to the same conclusion.

In ICF hohlraums (mm scale gold cylinders), laser light enters the hohlraum interior
through laser entrance holes located in either end cap of the cylinder. The light is absorbed at

the cylinder walls, converting laser light into soft x-rays. These x-rays are rapidly absorbed

and reemitted by the walls setting up a radiation driven thermal wave! diffusing into the




walls (a so called "Marshak Wave"). Some of the x-rays escape out the laser entrance holes

while others are absorbed by the target capsule and drive its implosion. In Section II the basic
scaling of hohlraum wall loss due to the Marshak Wave will be derived. As an aside, basic
and useful concepts such as wall reflectivity (albedo) will be presented. In Section III methods
of measuring hohlraum drive will be described. Results from 1 nsec flat top laser drives will
also be presented there. Sophisticated LASNEX simulations will be presented there as well,
which show excellent detailed agreement with the drive measurements. Radiation burn-
through experiments dedicated to separately measuring wall loss will be described in Section
IV as well as LASNEX simulations that agree very well with the burn-through data. In
Section V we will summarize our findings ’that on the basis of the data and simulations of

Sections IlI and IV, the constant absorbed flux boundary condition is the appropriate one to use.

II. Marshak Wave Scaling

The theory will be presented here in steps, building up complexity so that the reader

can keep up with the understanding of the issues and results. The model system under

consideration is a heat wave driven by a radiant flux impinging on a material boundary at x=0
and at t=0, and penetrating into that material. Since the x-rays are constantly being reabsorbed
 and reemitted as they progress deeper into the material, a classical diffusive situation arises.
We seek to find an expression for the temperature profile T(x,t} within that material at any -
deeper position x and subsequent time t. To do so we must solve a basic diffusion equation, which

is always in the form:

d(energy) g (energy) g D J [ energy -
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where here the energy density on the lhs of the equation is the matter energy density, pe, where
p is the matter density and ¢ is the specific matter energy. The energy flux, however, is carried
by thermal radiation, hence the energy density on the rhs of the equation is radiant energy
density aT4, and the diffusion coefficient D is given, as always, by a free streaming velocity,
(in this case, c, the speed of light) times 1/3 of a mean free path, which for optically thick

systems is the Rosseland mean free path AR. Thus Eq. (1) becomes:
J d[crp 3/ a ] a[ or*
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where the Stephan Boltzman constant ¢ = ac/4. The second half of Eq. (2) serves as a reminder

to the reader that in radiation diffusion, as in any diffusion, diffusive flux is free streaming
flux reduced by the number of mean free paths in the system. Further progress can be made by
ﬁtfing powers of T into power laws for the key variables, € and AR. To simplify the problem for
the moment, we will.assume the density of the matter stays constant in time and space: p=p(Q ,
and that the temperature at the material boundary Tg is constant in time: T(x=0,t)= T()to . Thus
wesete= e()Tl .-We define the Rosseland mean opacity as kR = 1/pQAR, ;md set xR = xgT™. As
presented in Refs. (1), it is then a straightforward exercise to find a similarity solution to Eq.
(2), thus turning it from a P.D.E. into an O.D.E.and solving near the steep nonlinear heat front,

we find:

T(x,t)=T0[1— a ] 3
Xy ()

where xp2 o TH+0-1¢ / k(. For gold walls we find n=1 and 1=3/2 to be reasonable fits

(motivated shortly), thus Eq. (3) leads to:
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We see that the temperature profile is flat until very near the heat front where it nose-dives to
zero, and that the front position, xM(t), moves into the wall with the expected t1/2 diffusive
behavior. This heat front position is referred to as the Marshak depth., named after the late
Robert E. Marshak whose paper in Phys. Fluids 1, 24 (1958) was a landmark contribution to this

field.

Most reasonable choices for n and | lead to similar flat-topped, steep ffonted T profiles.
The particular choices for 1 and n are derived from fits to LASNEX data. We find 1=3/2 a
reasonable result sincé g < ZT (where Z is the ion charge state) and Z « T1/2 by simple
arguments of températures being of order the ionization potential which scales as Z2. For the
average atom XSN opacity model in LASNEX, we find we can fit XSN's xR as varyingas1 /T,

thus, n=1.

We now investigate the wall loss scaling. The wall loss Eyw is given by the product of

the specific energy € with the heated mass, which is pxpg times the wall area Aw. Thus,
E, o< £-(pxy ) Ay o< T - T\t xy o< T*% \f1/x, (5)
from which we can derive the scaling of absorbed energy flux,

Ew < T*% [ \ftx, 6)

Note too that we could have derived this flux from a different but equivalent point of view.

Recall our discussion following Eq. (2):

T4 T4 T4 T3‘25
Flux oc oc oc oc (7)
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which gives the same result as Eq. (6). [Note that we have been a bit "sloppy” in ignoring the

difference between T(x,t) and the bdundary value T(x=0,t)=T(. This is because of the nearly flat




T profile, which makes T(x,t) nearly identical to To=T(x=0,t) for almost all of x < xM, namely

for all of x within the heat front.]

These results are rather well known in the field and I refer to them as the old
paradigm, in which the boundary value of T is constant in time. Note thaf with that constraint,
the absorbed flux required to maintain the T decreases in time. Conversely, if ;1 constant flux
(driven, say, by a flat top laser drive)were impinging on a wall, and there were no other sinks
for this flux, the wall would absorb this constant flux. Since the losses decrease in time at
constant T, this constant absorbed flux would result in a ‘temperature in the wall that would
rise. This is far more realistic a situation for flat top laser drive, and the implications of this

simple fact will be addressed shortly.

As a useful digression, let us now define a useful quantity, the wall reflectivity or

albedo a.
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Here we have assimed that a flux T4 is incident on a wall (a convenient system of units, to be
discussed later, has ¢ = 1) so that by definition, aT4 is the flix that is reflected. From Eq. (8)
we see that the albedo approaches 1 for long times, large T, or large opacity. In aﬂy of those
three cases, the number of mean free paths in the diffusive heat wave increases, presenting an
increasingly difficult barrier for the thermal wave to diffuse inward, thus decreasing the net
absorbed flux and correspondingly increasing the reflectivity to approach unity. Thus for the
NIF targets where the drive is on for a relatively long time, the wall loss will decrease
allowing better coupling to the capsule. There are other important implications of Eq. (8). If we

measure the albedo at a given T and t, we are essentially measuring the opacity coefficient, k(.

Any future wall loss in the NIF at a longer pulse but at the same T will follow from Eq. (8), thus




making the measurements performed on Nova (at the same T as the NIF) extremely relevant
and useful. These experiments and concommitant LASNEX simulations will be discussed in

Sections I and IV.

It may be instructive to consider albedo from a different but equivalent perspective. We
see from Eq. (4) that the temperature drops from its boundary value to zero at the heat front. A
detector looking into the wall will see 1 optical depth into that temperature profile and seea T
less than Tp. Effectively the wall will be "radiating” ata T lo.wer than Tg and that ratio to

the 4th power is the albedo.

1 1 1
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where 1 represents the optical depth, and T\ representsthe number of optical mean free paths

within the Marshak depth. Thus

’ 1\ 1.14
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which goes to the same limits as the formulation of Eq. (8) when o is near unity. In Eq. (10), tM=
XM /AR= xXMPKR is derived in the same way it is in the denominator of Eq. (7). More formally,
the albedo can be derived via this approach by solving the transfer equation:

M

J’T“e’fd't —z,
a= i) an

which for both large and small values of T)M. goes to the proper limits of (1-(1/1M)) and

(TM/2) respectively.




The concept of albedo is useful in that we can parameterize the wall loss in terms of it,
and with that, systematize hohlraum energy balance. Since a is reflectivity, (1-0)T4 is the
flux not reflected, namely the wall loss {per unit area). Thinking globally then, a laser power
PL, absorbed within a hohlraum is converted to soft x-rays with an efficiency nCg. This source
flux goes into the walls at a rate (1-0)T4 Aw and out the laser entrance holes at a rate AT4,
where Aw H are the wall and hole areas respectively. Of course if there is a capsule in the
hohiraum that would be an additional sink of energy. In summary, in an empty hohlraum, this

simple source=sink model yields:

NesPy =[(1- 0)A, + AT (12)

Later in this paper we will use this formulation to systematize a wide variety of observations

of T vs. PL, thereby coming to some conclusions as to the values of nCE and a.

It should be noted that we have introduced a significant simplification here. The x-
rays emitted from the laser illuminated spot have, in general, a hotter spectrum than the
reemission from the majority of the hohlraum wall which is unilluminated by direct laser
light. A more sophisticated two temperature hohlraum model is conceivable, but we believe
that the simple one temperature model presented here is sufficient for putting a large body of
hohlraum drive results into a simple systematics. This conclusion is demonstrated later in this
paper ‘by the agreement of the simple model systematics with LASNEX simulations (which
provide a far more detailed description of the hohlraums than any two temperature model).
Part of the reason for the success of the simple model is that the harder spectrum from the laser

produced x-rays are quickly absorbed by the walls and reemitted as softer x-rays.

Another simplification introduced here is the neglect of convergent geometry. We have

assumed planar expansions. In a hohlraum it is possible that later in time the radiation driven

blowoff will stagnate and create a new source of x-ray emission and possibly send a pressure




wave back toward the high density region near the Marshak wave front. For the "scale 1"

hohlraum sizes and the nsec timescales of interest in the bulk of the data base discussed later in
this paper, we do not believe stagnation plays a major role in the enegy balance and is therefore

ignored.

With these fundamentals as a base, we can now build up a more realistic picture of the
wall loss in a real system. The first extra element to add to our picture is time dependence of Tg
(t) = T(x=0,t), which up to this point has been held constant in time. As we have seen from Eq.
(6) or (7), the absorbed flux required to maintain such a constant T decreases with time as t"1/2,
As mentioned above, in a hohlraum driven by a laser pulse with a "flat-top" temporal power
profile, a flux of x-rays that is either constant or slightly increasing with time will be
produced. As this incident flux is absorbed by the walls, it is more tﬁan sufficient to maintain a
constant T, so in fact T will rise. A short cut at deriving the time dependence of that rise, is to
set the flux of Eq. (6) or (7} equal to a constant in time. That requires T to scale as t1/6:5 As we
shall see, this weak but noticeable rise with time is in good agreement with experimental
observations. What also follows from this behavior is that the Marshak depth, xM, no longer
scales as t1/2 (see Eq. (4)), because of the time dependence of T. Inserting that t1/6:5 dependence
of T into Eq. (4) we find xf scaling as t9-77, much closer to the nearly linear dependence of burn-
through times with sample thickness that is observed in albedo experiments to be discussed
later. Another quantity of interest that does not chage too dramatically is the time dependence
of 1-o.. When o is near 1 (which is typical) Egs. (8) or (10} or (11) predict a scaling of 1-o. as
1/T75¢1/2, 55 the previously predicted t1/2 pehavior for that quantity (when T was constant

in time) is now, with T scaling as t! /65, slightly modified to be t0-61,

The next level of complication necessary for a more accurate description of our

experiments, is to account for the change in density of the wall material. As the Marshak wave

soaks into the solid wall, the heated portion blows back outward into near vacuum, thus




producing a density profile that must self consistently be accounted for in the solution to Eq. (2).
Up to this point in our presentation we have artificially set the density p to be constant in time

and space. A way to still obtain similarity solutions is to set p equal to pgxp/Cst (where Cg is
the sound speed of the heated material at temperature T and scales as £9-3). This formula for p
represents the idea that an amount of solid material (originally at solid density pg ) heated to
a depth x)\j, is now spread out over a distance Cgt after a time t, and is thus at the lower density
p. Along with this necessary complication we must generalize the power law dependencies of £
and xR to include p in addition to T, namely € =g Tlp'Q and xR = K'R()T'npR. For Auwe find Q =
0.2 and R = 1/3. The sign of the dependence of € on p can be understood from the LTE notion that
higher density drives recombinaton of the free electrons back down into the ions, lowering the
ionic charge Z and lowering the specific heat due to the free electrons. Redoing the similarity

solutions with these more complicated scalings, (again, details can be found in Refs (1)) yields:
For T constant in time: Ew o« 1301063 y-0.37

g o« TL7 053 047 (13)

(1-0) o 1/ T 037 15 0.37

For Absorbed Flux thatis constant in time: (T « t0-12)
Ew o 13.0 ¢ K0—0.37

poxpf o« TI7 074 047 (14)

(1-0) <1/ T (048 1y 0.37




We have tested these scalings by performing LASNEX simulations of test cases of
Marshak waves in gold. Before presenting those results, let us first introduce convenient
"hohlraum units' in which T is measured in hectovolts (hundreds of eV), area in mm2, time in
ns, mass in gm and energy (a bit clumsily) in hectojoules. With these units, as alluded to in the
discussion following Eq. (8), ¢ = 1, and normalized irradiance is 1013 W / em2 (=hJ/mm?2 ns = 102
J /102 em? 109 ) and similarly, normalized power is 1011 W (=hJ/ns = 102 J /109 s). In these
units, we find the LASNEX test problems, using XSN opacities whose xR in (cm2/gm), can be fit

as 3500 p(gm/cm3)0-33/ T(heV) yield:
For T const. in time: Eyy = 0.6 732 {0.67 K0’0-37 (hj/ mm?2)

poxM=1.8x10-3T17t0.57¢4-047 (g /cm?2) (15)

(1-o) =052 / T 1037 037

where x( represents a multiplier on the opacity. The XSN fit was based on XSN results taken
for 100eV < T < 300 eV and .01 gm/cc < p < 10. gm /cc. The LASNEX simulations were run for a
similar range in T, for 1 nsec pulses impinging onto initially solid gold, and for opacity

multipliers between 1 and 3.

Using Eq. (15) we find, for example, at 1 ns (t=1), a 260 eV source (T= 2.6), at nominal

opacity, (xg = 1) would yield a (1-a) of 0.2 or an albedo of 0.8. Comparing Egs. (15) with (13) we
see a fairly close agreement of power dependencies between our simplified approach to the
problem and the detailed, multigroup radiation transport answer from LASNEX. For test

problems with constant absorbed flux, we find:
For Tec t0.1: Ew = 044 T32¢ 037 (h}/mm2)

poxm=1.6x10-3T1.7t081-047(gm /cm?) (16)



(1-0) =057 / T 1042 10037

where we see the LASNEX opinion of how time dependence of T leads to changes between Egs.
(16) and (15) similar to those changes we predicted between Egs. (14) and (13). Note too the
coefficients for wall loss are lessened in Eqs. (16) vs. (15) because with (16), if we have arrived
at T at time t, it implies the system spent its prévious history at a temperature less than T, thus

there should be less loss.

More sophisticated opacity treatments are available to us, for example the STA (Super
Transition Arrays) code which has a far more detailed treatment of bound bound opaéity than
the average atom XSN code, but can only be run in LASNEX in LTE via a look up opacity table.
We are grateful to Bill Goldstein of LLNL for supplying us with the gold STA table. We find
we can fit STA's kR in (cm2/ gm) to 6000 p(gm/ em3)0:3/ T15  This gives opacities quite close to
XSN at T=3 heV, but at 100 eV (T=1) we see a difference of 2 between code predictions. The
formalism we have presented can be redone for this STA opacity model. Basically the stronger
power law for T in xR leads to a slightly higher power law dependence of Ew and poxyM on T,
namely an additional 0.2. Indeed, the LASNEX simulations with STA confirm that. For

example for STA we find:

For T const. in time:EW(STA)=0.5T34 t0-67 1-0-37 (hj/mm?) (17)

The fits of STA and LASNEX were done under the same range of variations as described
for the XSN results. In Eq. (17), note the change from T3-2 to T 34 as i)redicted. Note too the
coefficient for wall loss is smaller for STA than for XSN by 20%, and can be derived quite easily
by considering the respective opacity coefficients, and calculating (6000/ 3500)0-37 as pfedicted

by the xQ scaling. Of course the actual value of Eyy for either case at T=3 is quite close, as we

would expect given the two opacity models' agreement at T=3. For completeness, we quote:




ForTe t01 :Ew(sTAa)= 035 T34t 9037 (hj/mm2) (18)

Before embarking on a discussion of the experimental data base it may be instructive to
go throﬁgh a numerical exercise in using some of these equations to find the T of a given
‘hohlraum. Consider a cylindrical hohlraum of length 2.55 mm and diameter 1.6 mm, with laser
entrance holes on either endcap of 0.8 mm diameter, and a diagriostic hole of 0.5 mm diameter.

This means AW is 15.8 mm?2 and AH is 1.2 mm2. A flat top laser power of 30 TW, on for 1 ns

(therefore 30 KJ) irradiates the hohlraum. LASNEX calculations, to be described below, find a
conversion efficiency into soft x-rays of about 70% by the end of the pulse. It also finds an
albedo then of about 0.8. Thus the lhs of Eq. (12) would yield (0.7 x 300 =) 210 in normalized
power units of 1011 W (= hJ/ns recall the discussion of units following Eq. (14)). The rhs would
be (0.2 .x 156 +1.2) x TtheV)4, or 210= 4.3 T4, or T=2.65, (namely 265 eV) quite close to what

turns out to be LASNEX predictions (and the data!). A different approach would be an energy

balance rather than power balance consideration:

NEL=Ew +EH (19)

where Ew is given by Eq. (16) and EH can be found by:

(7] Jamnenf) '
E,=A T.| — dr=A, —T;| — 0)
H HO 0 1, H1.4 0 t0'4

0
Thus, for our problem we have (at t=tg=1) :
0.7 (300) ¢h]) = (0.44 x T3-2 (h]/mm2) x 15.6 (mm?2)) +

(0.71 x T4 (h]/mm2) x 1.2 (mm32))

or: 210=69T32+09 T4




whose solution, T=2.7, is quite close to the previous result and to the data.

III Experiments and LASNEX Simulations on Drive :

The hohlraum temperature is measured in two independent ways. An aluminum wedge
witness plate is plaéed on the hohlraum wall. The radiation ablates away at the Al that faces
the hohlraum interior, launching a shock wave that propagates through the aluminum, .
eventually to break-out to the wedge shaped backside that faces the outside world. An optical
pyrometer, streaked in time, records the optical emission that ensues upon shock breakout. The
wedge shape allows us to measure the shock speed continuously throughout time. The shock
speed is indicative of the drive, which is derived via comparison with LASNEX simulations.
The EOS of aluminum is sufficiently well known to make this a very powerful and accurate
technique. These experiments have been carried out by Chris Darrow and Don Phillion of

LLNL.

A second method to measure drive involves the Dante sub-keV broadband spectrometer.
Approximately 10 broadband filtered channels cover the entire sub keV spectrum in which the
bulk of the emission occurs. The Dante looks at a laser-unilluminated portion of the wall, and
thus sees a radiation heated wall reemitting as oT4. Thus, Dante must be corrected for albedo
if it is to be directly compared with a measurement of drive such as would drive a capsule or the
Al wedge witness plate. The Dante is time resolved with about 100 psec resolution. These

experiments have been carried out by Harry Komnblum of LLNL.

We use the 2-D hydrodynamic simulation code LASNEX to model the drive in

hohlraums. These simulations were carried out by Ron Thiessen of LLNL, and the details of the

simulation technique as well as extensive comparisons with a large data base, will be




published elsewhere.2 Nominal gold opacities, as calculated by the XSN average atom
package in LASNEX are used. The problems are run either non LTE or LTE with very little

difference in results.

The problems, once run to completion are post processed in a variety of ways to mimic
the measurements. The TDG post processor can, for instance, look into a wall just as the Dante
channels do, and the time evolution of the spectrum (which is roughly Planckian) and its
frequency integral, the drive, characterized by a TR derived from the fourth root of the energy
flux, can be directly compared with the measurement. Moreover, the drive derived from the
calculation can be applied, in a subsidiary calculation, to a wedge of aluminum, and the
predicted trajectory of the radiation ablation driven shock can be compared with the

measurement as well.

In Fig 1 we compare the two measurements along with the respective LASNEX
predictions for a 1 nsec flat top, 30 TW, scale 1 Au hohlraum. We see excellent agreement of
LASNEX with both independent measurements. (Equally excellent agreement is seen in for a
lower power irradiance of 10 TW.) It is irﬁportant to note the slight rise with time of TR
despite the laser power being flat in time. This behavior was predicted in Secfion IT when the
constant absorbed flux boundary condition is used. Quantitatively, we expected a T = ¢ 0-1
behavior, and we observe in the data and in the simulation something closer to a T o< £ 0.15
behavior instead. This is probably due to the fact the flux is not constant, despite the laser
power being flat topped, due to the conversion efficiency having a slight dependence on time.
Thus the x-ray source flux increases slightly in time, leading to a slightly larger power depence
of T on t. The implication of this on the burnthru time, to be discussed in the next section, can be
anticipated by inspecting the second line of Eq. (16). The expected X o< t 9-8 will increase to
about an Xp o< t 0-9 since the power law of T with t is slightly higher than assumed. As we

shall see presently, this is precisely what is observed!




IV Experiments and LASNEX Simulations on Wall Loss :

To study wall loss more fundamentally we have performed a series of measurements,
looking at the burn-through times of thin patches of gold (1 to 3 pum) stretched across a hole in
the hohlraum wall (which is typically 25 pm thick). The shorter the measured burn-through
time (at a given thickness and drive) the lower is the inferred Rosseland averaged gold
opacity. The observations have been made with the 10 channels of Dante at a given drive and
thickness, and also with a spatially reéoved, single channel detector, which allows, for the
same shot (and drive) a measure of the burn-through times through several different thickness
patches, all aligned along the side of the hohlraum. These experiments were designed by Ron

Thiessen of LLNL, and carried out by John Porter of LLNL, and will be published short]y.3

Burn-through time is defined as the time when the signal rises to half its peak value.
In Fig. 2 we plot the results of burn-through time vs, thickness for two energy channels.
LASNEX simulations used the measured drive and via TDG post processing simulated the burn-
through signal for the appropriate channels, and defined burn-through time the same way the
experiment did. The LASNEX curves are also plotted in Figure (2). Note the excellent
agreement between LASNEX and the data, and how a choice of opacity mulﬁplier of 25 is
clearly discriminated against by the data. The errors due to drive uncertainty etc lead to a
tight 30% uncertainty in opacity. Note too the nearly linear relationship between burn-through
time and thickness, a consequence of a TR rising in time (recall our discussion at the end of the
previous section). These experiments were originally motivated under the old paradigm of
Eq.(4) in which we expected the burn-through times to scale as thickness squared, and to be

sensitive linearly with opacity. As the new paradigm (Eq. (16)), and the data, and LASNEX,

indicate, the experimental burnthrough isn't quite that optimistically sensitive to thickness




and opacity- it scales linearly with thickness, and as the square root of opacity. Nonetheless,

that is good enough to tie down the opacity to 30%.

As an additional check on the XSN opacity we reran the calculations using the LTE
STA opacity package, available to be run in LASNEX via a look-up tabular opacity. The STA
code is far more sophisticated than the average atom XSN code, and cannot be run non-LTE in
line with LASNEX. Note that STA results, also in Fig. 2 give nearly identical results as the
XSN, another comfirmation of XSN's veracity. When we compare the detailed opacity of the
two codes and see that indeed at 260 eV they give the same Rosseland mean opacity. As
mentioned in Section II, the two codes give different predictions at 100 eV, and burnthrough
experiments such as these, redone at 100 eV would be most illuminating. For the record we note
that the good agreement between LASNEX and data persist for all the other Dante channels as

well. Also for the record we note that independent experiments, in which the shock breakout of

a radiation ablation driven shock is monitored through thick samples of gold are also

consistent with nominal opacities.



V Summary

We have seen that the constant absorbed flux boundary condition leads to several
qualitative differences in predicted scaling when compared with the old paradigm of constant
temperature. In particular the rise -of T with time is predicted, and is observed in both
simulation and measurement of hohlraums driven by flat top pulses. Moreover, with this slight
rise of T with time, due to the non linear dependence of the Marshak depth with T, the
paradigmatic, diffusive xp = t1/2 behavior now changes to one nearly linear with time, an

effect‘indeed observed by experiment and simulation.

We gratefully acknowledge useful conversations with our LLNL colleagues R. Thiessen,
C. Darrow, H. Kornblum, J. Porter, B. Goldstein, and L. Suter, as well as with our AWE
colleagues B. Thomas and P. Thompson. This work was performed under the auspices of the U.S.

Department of Energy, by the Lawrence Livermore National Laboratory under contract W-

7405-ENG-48.
Figure captions

Figure 1. a) T vs. time as measured by Dante and as simulated by LASNEX. b) The data
is confirmed by the Aluminum wedge witness plate shock breakout vs. time that is also

matched by the LASNEX simulations.

Figure 2. Burn through time of thin Au vs. Au thickness for two Dante-like broad band

channels at 250 and 500 eV.
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