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LASER INDUCED DAMAGE IN MULTILAYER DIELECTRIC GRATINGS
DUE TO ULTRASHORT LASER PULSES

B. W. Shore, B. C. Stuart, M. D. Feit,
A. M. Rubenchik and M. D. Perry
“ Lawrence Livermore National Laboratory, Livermore, CA 94550

ABSTRACT

Chirped pulse amplification is increasingly used to produce intense ultrashort laser pulses.
When high-efficiency gratings are the dispersive element, as in the LLNL Petawatt laser,
their susceptibility to laser induced damage constitutes a limitation on the peak intensities
that can be reached. To obtain robust gratings, it is necessary to understand the causes of
short-pulse damage, and to recognize the range of design options for high efficiency
gratings. Metal gratings owe their high efficiency to their high conductivity. To avoid the
inevitable light absorption that accompanies conductivity, we have developed designs for
high efficiency reflection gratings that use only transparent dielectric materials. These
combine the reflectivity of a multilayer dielectric stack with a diffraction grating. We report
here our present understanding of short-pulse laser induced damage, as it applies to
dielectric gratings.

INTRODUCTION

The intensity available from a short pulse laser system is limited by a number of factors.
For chirped pulse amplification, using grating-pair pulse compression [1], an important
limitation is set by the ability of the gratings to withstand high fields. The conductivity of
metals acts to exclude electric fields from the interior, but because the conductivity is not
infinite, some field penetrates and is absorbed. This absorbed energy limits the allowable
fluence onto a metal grating. Our high efficiency multilayer dielectric gratings [2] offer an
attractive alternative to traditional metallic gratings. Here we report on theory and
experiments pertaining to their damage thresholds.

We follow tradition and quantify damage by the fluence (J/cm2) needed to produce any
change visible under a microscope. The morphology of the damage may take many forms,
including fracturing, melting and recrystallization, and ablation. The nature of the damage
can vary dramatically, depending on the pulse duration and the presence of surface or
subsurface damage-prone sites.

EXPERIMENTAL METHOD

For damage testing we used laser pulses generated by a 1053-nm Ti:sapphire CPA system
[3-5] in which seed pulses of 100 fs from a Kerr-lens mode-locked, Ti:sapphire oscillator
were stretched to 1 ns in a four-pass, single-grating (1740 line/mm) pulse stretcher and
then amplified by nearly 109 to the 6-mJ range, in the TEMgg stable cavity mode of a
linear regenerative amplifier. Further amplification to the 60-mJ level was achieved in a
Ti:sapphire ring regenerative amplifier. This system operated at 10 Hz.

After amplification, we compressed the pulses in a four-pass, single-grating compressor
By varying the dispersive path length of the compressor, we obtained pulses of



continuously adjustable duration from 0.4 to 1 ns (all reported pulsewidths are intensity
full-width at half-maximum). For these damage measurements, we compressed a near-
Gaussian spectral profile to obtain temporally smooth output pulses. This allowed us easily
to relate the time evolution of the pulse intensity to the measured fluence.

LASER INDUCED DAMAGE

Damage produced by pulsed lasers in transparent dielectrics begins with the conversion of
electromagnetic energy into kinetic energy of electrons. Although the damage is manifest in
lattice changes, the coupling with the laser pulse occurs through electrons. To produce
damage, energy deposited with electrons must be transformed into structural changes of the
lattice. Our recent experiments, supported by theoretical developments, have shown the
importance of pulse duration as a determining factor in laser induced damage [4-5].. Our
work shows that damage induced in dielectrics by ultrashort pulses (shorter than a few tens
of picoseconds) is fundamentally different from that occurring for longer pulses (see also

6]).

LONG PULSE DAMAGE

Damage produced in transparent dielectrics by laser pulses with duration 1 longer than a
few tens of picoseconds may take many forms, including

» Fracturing, caused by stresses due to heating
« Melting, possibly followed by recrystallization
» Ablation or evaporation
Long pulse damage has the following general characteristics:

» The damage is very strongly dependent on the presence of defects and
irregularities

+ The damage has a statistical nature: measured thresholds show fluctuations

» The damage fluence is proportional roughly to the square root of the pulse
duration. :

SHORT PULSE DAMAGE

Whereas long pulse damage can take many forms, short pulse damage is more sharply
defined and has less varied morphology:

« Short pulse damage has the appearance of ablation

« The ablation is not accompanied by collateral damage to surrounding regions
Damage by short pulses has the following general characteristics

« The damage has a very sharply defined threshold. We found that 10,000

subpicosecond pulses produced no damage when the fluence was reduced by only

2% below our experimentally determined threshold

* The damage fluence deviates markedly from the square-root dependence on pulse
duration. -




The damage threshold becomes increasingly well defined for short pulses, ie. it becomes
independent of probabilistic factors such as distribution and concentration of defects. We
have found that the short-pulse damage threshold is independent of laser spot size; others\
have found that femtosecond ablation rates in dielectrics are independent of laser spot size.

BASIC CONCEPTS OF SHORT PULSE DAMAGE

When the pulse duration becomes sufficiently short (less than 20 ps), there is insufficient
time for electron energy to be converted into lattice energy. Energy absorbed by electrons
remains as electron energy. The onset of damage from short pules in pure transparent
materials is simpler than that from long pulses, for the following reasons.

1. At the intensities for which short pulse damage occurs, multiphoton ionization is
capable of supplying conduction electrons. These photoelectrons outnumber any
electrons initially present in the conduction band or in defect sites. The number of
photoelectrons is intrinsic to the material and pulse intensity, and is not subject to
statistical fluctuation.

2. Conduction electrons, once formed, will be accelerated by the pulsed electric
field. Their motion will become thermalized by electron-phonon collisions.

3. Heated electrons will, through impact ionization, release other electrons. The
result is an exponentially growing "electron avalanche" leading to high
concentration of free electrons and the formation of a plasma.

Because the pulse is short, the electronic energy increases much faster than it can be
transferred from electrons to lattice. Therefore lattice thermal conductivity is
unimportant until after the pulse is over.

4. Eventually, after the short pulse has ceased, the energy stored with the electrons
is transferred to the solid as a whole. It then appears in visible forms as heat-related
damage or (if the critical density of electrons was achieved) as plasma blowoff .

These observations are consistent with detailed calculations [4,5] which show that
subpicosecond pulses allow insufficient time for a conventional electron avalanche -- one
in which a very few seed electrons due to defects eventually collisionally ionize a large
number of atoms. Instead, a large number of seed electrons are provided by the faster (at
high intensities) multiphoton ionization. Thus, the energy deposition process is
independent of defect concentration. The high power law dependence of multiphoton
ionization rate on laser intensity explains the much sharper definition of damage threshold
for shorter pulses. Finally, significant energy transfer from the electrons to the lattice does
not occur during the ultrashort pulse. The actual damage occurs after laser energy
deposition, ie. after the pulse. In this sense, the physics of damage induced by ultrashort
pulses is simpler than that of long pulses where a complicated balance between electron
energy absorption and loss to various thermal processes causes sensitivity to details of
structure and defect concentration.

Although the breakdown plasma is formed in a thin layer at the surface on the order of a
wavelength thick, electron mean free paths are only on the order of 10-7 ¢cm. Since the
plasma is many electron free paths thick, measured thresholds for surface damage are
characteristic of bulk properties.



The fact that mechanical damage occurs well after energy deposition suggests independence
of threshold determination from multiple pulse effects. The fact that the ablation rate per
above threshold subpicosecond pulse is independent of the number of pulses [5] indicates
that multiple pulse measurements merely serve to amplify the damage to easily observable
levels.

THEORY OF SHORT PULSE DAMAGE

We have implemented these basic ideas into a consistent theory for short-pulse damage in
homogeneous material. The theory consists of partial differential equations describing the
changes in electron density and electron temperature during the pulse. The solutions to
these equations reproduce the experimental results.

Our description of electron avalanche development is based on the solution of a kinetic
equation for the electron distribution function. For insulators or other materials having a

large bandgap energy Uy (hv << Uj), the number density f(g,t)de of electrons with kinetic
energy between € and e+de at time t is described by a Fokker-Planck equation3:9,
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where the Joule heating and loss to the lattice is
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the energy diffusion coefficient is

D(e,t) =% o(e)E(t) e (3)
and the conductivity per electron is
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Here ¢ is the electron energy, E(t) is the electric field oscillating at frequency ®, Uphon is
the characteristic phonon energy, Ry accounts for Joule heating of electrons and Y(€) is the
rate at which electron energy is transferred to the lattice. The quantity 1/tm(€) is the
transport (momentum) scattering rate. Both 1, (€) and Y(€) are energy dependent. For
energies in the conduction band of fused silica they vary by two orders of magnitude. The
current J(g,t) represents direct heating and loss as well as an energy diffusion with
coefficient D(g,t) which is proportional to both the conductivity and the laser intensity. The
final term S(g,t) in Eq. (1) includes sources and sinks of electrons,

SEt) =R imp(e’t) +R p,-(e,t). 5)




Impact ionization at rate Rimp was included assuming that excess kinetic energy is equally
divided between the two resultant electrons,

Rimp(&,8) = —v;(6) f(€) +4v;2e+U)) f2e + Up). ()]

The source term S(g,t) also includes photoionization at rate Rpi(e,t). The boundary
conditions for Eq. (1) require the vanishing of the distribution at e=ec and the current at

€=0. The important physical quantities n (electron number density) and <e> (average
kinetic energy per electron) are defined by the moments,

n(t)=] f(&,1r) de, n(t) < e(t)>=:f.e f(e,t) de. ()]
1] o

At high laser intensity, the energy absorbed from the laser field cannot be transferred to the
lattice as fast as it is deposited in the electrons. In this case, the absorbed energy is used to
feed the avalanche, and the average energy per electron is high, but remains fixed.

Numerical solution of the kinetic equation at constant laser intensity and without
photoionization shows that an avalanche is established within a few femtoseconds for an
intensity of 1 TW/cm2 . The transient period before establishment of the avalanche
decreases with  increasing intensity since the energy diffusion increases. During the
avalanche, the electron distribution grows in magnitude without changing shape,
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Figure 6. Measured (dots) and calculated (solid lines) damage fluence for fused silica
at 1053 and 526 nm. Dashed line indicates calculated damage limit due to multiphoton
ionization alone.

DIELECTRIC DAMAGE

Laser induced damage to transparent optical elements is sensitive to surface properties and
to the presence of structural imperfections that can enhance the electric field. It is important
that all layers be prepared with care, to avoid introduction of damage sites. In our tests we
are careful to select, by examination through a microscope, surface areas where visible
irregularities are present. With this selectivity we obtam upper bound on the damage
threshold for larger samples.

Our designs for multilayer dielectric gratings require materials with two contrasting
refractive indices, termed high (H) and low (L). The requirement for high damage
threshold eliminates many materials, and favors the use of metallic oxides as the high index
layer. Silica has excellent qualities for the low index layer.

The following measurements indicate the range of damage threshold values occurring for
oxides that we consider for use in dielectric gratings. These are the damage thresholds, in
J/cm?2, for normal incidence 1053 nm radiation, 600 shots of 0.3 ps pulses with 500 tm
diameter spots

Dielectric: Threshold ,J/cm?2 Index
Tantala, TayOs 0.70

Hafnia, HfO, -~ 0.83 1.9
Scandia, Scy O3 1.23 1.8
Fused Silica, SiOy 2.06 1.4

Because silica has a significantly higher damage threshold than do other oxides, it would be
desirable to place it as the topmost layer, into which the grating is etched. Unfortunately the
relatively low refractive index of silica requires that the grooves be much deeper than with
higher index materials. Thus from manufacturing considerations it would be desirable, if
possible, to use a high index material for the grating.

The values presented in the table are for normal incidence, whereas our gratings will be
used at 52°. Simple arguments suggest that the damage threshold for incidence at angle ¢

on pristine surfaces should scale as the inverse of cosine .. Our measurements on hafnia
(see Figure 8) suggest that this scaling is reasonable.
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Figure 8. Damage threshold for 350 fs pulses on hafnia coating.
MODIFICATIONS OF BASIC THEORY FOR STRUCTURED SOLIDS

The above picture refers to an infinite planar surface and a large laser spot size. In the
theory, coupling of radiation energy into the material (and ultimately damage) occurs
through the local electric field. It is the instantaneous local value of the electric field that
drives damage.

- In the multilayer grating, a complicated distribution of electric field occurs for an incident
plane wave. The constructive interference that is responsible for the diffractive behavior of
a grating or the reflective properties of a multilayer dielectric stack can enhance the electric
field above values that would occur in unstructured homogeneous material. A more
elaborate treatment is necessary to understand this situation.

In particular, local "hot spots" in the grating proper, or in the multi-layer, can increase the
intrinsic susceptibility to damage. We have calculated the occurrence of such "hot spots"
- for practical grating designs, and have seen how their location is affected by design
parameters. Although the "hot spots” due to constructive interference amplify the incident
intensity, the effect may be somewhat ameliorated by the fact that the spots are small (sub
wavelength) and thus electron diffusion and thermal conduction will begin to play a role.
The inter-layer boundaries are prime sides for defects that can be easily damaged. Thus
there may be an incentive to design multilayers with maxima away from these boundaries.

ELECTRIC FIELD DISTRIBUTION IN MLD GRATING

The distribution of electric fields around this structure shows a pattern of standing waves
above the surface, as is to be expected from the combination of nearly equal amplitudes of
incident and reflected light. Within the grating structure itself, the strength of the electric
field exhibits a succession of nodes and of antinodes of diminishing magnitude. These are
the result of the interference between upward and downward traveling waves.




There are two regions in which constructive interference is as large as the twofold
enhancement of a mirror: at one corner of the (rectangular) grating, and at the first interface
where a high-index material overlays a low index material. The high reflectivity of a quarter
wave stack accompanies a standing wave pattern whose nodes align with the low-high
index interfaces, and whose antinodes align with the high-low index interfaces.
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Figure 9. Electric field magnitude in a quarter wave HL stack surmounted by a
lamellar etched grating.(Left): the refractive index vs. height above surface. (Center)
contours of the electric field. An outline of the grating is superpsed. (Right).The

electric field magnitude on a vertical slice through the regions of highest field.

MULTILAYER GRATING DAMAGE

We have examined examples of multilayer dielectric gratings based on hafnia/silica layer
pairs. The surfaces were observed to have many visible microscopic defects. On defect free

areas we found a damage threshold (at the usage angle of 52 degrees) of 0.76 J/cm?2. The
threshold on defects was somewhat smaller, 0.65 J/cm?2-

The morphology of the damage, as shown in Figure 10, is particularly striking. Our
modeling predicts that there should occur regions of enhanced electric field strength along
one edge of the ridges of dielectric gratings. Examination of SEM photographs of damage
produced in multilayer gratings shows a consistent pattern of damage along and edge of the
grating ridges. The damage appears first as a series of notches, roughly 0.1 micron apart.
In regions of the grating exposed to relatively weak fields, the notches are short; in regions
of high field the notches extend across the grating ridges.

~
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Figure 10. View of damaged grating surface, showing pattern of damage notches on edges
of grating. _

CONCLUSIONS

We have measured the threshold for short pulse damage to dielectric material and to
multilayer dielectric gratings. Our observations of damage morphology are consistent with
the expected field enhancement within the grating structure.
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