
Full Potential Multiple Scattering Theory 

J. MI MacLaren 

Y 

p. - 

October 20,1994 



DISCLAIMER 

This report was prepared as an account of work sponsored 
by an agency of the United States Government. Neither 
the United States Government nor any agency thereof, nor 
any of their employees, make any warranty, express or 
implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by 
the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



‘ 

Full Potential Multiple Scattering Theory 

J.M. MacLaren 

Department of Physics, Tulane University, New Orleans, LA 701 18. 

Abstract 

A practical method for performing self-consistent electronic structure calculations 
based upon full-potential multiple-scattering theory is presented. Solutions to the single 
site Schroedinger equation are obtained by solving coupled channel integral equations for a 
potential which is analytically continued out to the circumscribing sphere. This potential 
coincides with the full cell potential inside each atomic cell. Scattering matrices and 
wavefunctions for the full cell potential are obtained from surface Wronskian relations. 
The charge density is obtained from the single particle Green’s function. This Green’s 
function is computed using the cell scattering matrices and wavefunctions using the layer 
multiple scattering theory. Self consistent solutions require a solution at each itemtion to 
the Poisson equation. The Poisson equation is solved using a variational cellular method. 
In the approach a iacal solution to each cell is augmented by adding a series of regular 
harmonics (solutions to Laplace’s equation). Minimizing the coulomb energy, subject to 
continuity of the potential across all cell boundary provides an expression for the 
coefficients of the regular harmonics. This method is applied to BCC Nb. Calculated 
properties converge well in angular momentum and show comparable accuracy to full 
potential linearize muffin-tin orbital calculations. 

Introduction 

Electronic structure theory provides a b e w o r k  for accurately predicting many 
properties of condensed matter systems, including for example, ground state crystal 
structures, elastic constants, and formation energies. In order to be able to predict many of 
these properties in geometries in which the atoms are not close packed, then the electronic 
structure technique should be a full potential method. Electronic structure techniques based 
upon multiple scattering theory have a number of attractive features: the ability to treat 
defects such as interfaces, surfaces and point defects, and the ability to treat disorder 
through the use of the coherent potentid approximation. Unfortunately, these methods 
have been implemented almost exclusively within the muffin-tin approximation which is 
only suitable for a close packed atomic arrangement. There is a clear need to extend these 
techniques to a full potential treatment. In a self-consistent electronic structure calculation, 
one needs to solve both the Schroedinger and Poisson equations. These equations are 
rather similar and will be solved using similar methods. The aim of the work is to produce 
a self-consistent full-potential electronic structure program based upon multiple scattering 
theory and implemented within the layer Korringa-Kohn-Rostoker formalism. 

The central quantity in a self-consistent electronic structure calculation is the charge 
density. The charge density is obtained from the trace of the imaginary part of the single 
particle Green’s function. This Green’s function is calculated from multiple-scattering 
theory. 

Solution of the Schroedinger Equation 



Single Site Schroedinger Equation 

The first step in formulating a self-consistent multiple-scattering based theory is a 
solution of the single site Schroedinger equation for a fullcell potential. Two approaches 
were tried. The first used an angular momentum expansion of the step function to force the 
cell potential to vanish outside the cell. Coupled integraI equations were solved for this 
potential out to the bounding sphere. Scattering matrices were found by matching at the 
bounding sphere radius. This method, which has been suggested by other researchers, 
turned out to have such bad convergence as to be impractical. A second approach was 
therefore adopted. In this alternative method, the potential entering the coupled integral 
equations was not chopped by the step function, but rather was analytically continued out 
to the bounding sphere, and thus only represents the true crystal potential inside the cell. It 
can be shown that outwards integration of the Schroedinger equation with suitable choice 
of boundary conditions inside the muffin-tin radius yields solutions that are identical to 
converged solutions obtained for the chopped potential. Convergence and stability of these 
solutions was significantly better since the Gibbs oscillation caused by the step function 
was avoided. Numerical tests in two-dimensions showed that provided convergence was 
achieved the two solutions gave identical values inside the cell. Scattering matrices and 
wavefunctions were obtained through surface Wronskian integrals which were found 
numerically. A stable numerical algorithm using Romberg extrapolation appropriate for 
two-dimensional surface integration was developed to deal with numerical difficulties 
associated with the surface integrals. 

Multiple Scamring Theory 

Once 8 stable solution to the single-site Schroedinger equation has been fomd, the 
Green's function can be obtained using multiple scatterkg theory. I chose to implement a 
layer multiple scattering theory since one of the future objects is to have a theory applicable 
to interfaces and surfaces as well as to bulk materials. Possible basis-set and internal 
summation convergence issues do not seem to cause problems for the full-cell Green's 
function. The calculation of the non-spherical charge density posed no computational 
problems. Full use of available symmetq was used to save on CPU time and storage. 

Self Consistent Solutions and the Poisson Equation 

Self-consistent solutions to the Schroedinger equation require that the output charge 
density is used to construct a new potential. When input and output potentials are the same 
then a self-consistent solution has been achieved. A Broyden mixing scheme was adapted 
to speed up the rate of convergence, which was typically achieved in ten iterations. The 
construction of the new potential from the charge density involves two terms: (1) the 
exchmge correlation potential, and (2) the Coulomb potential. The former is obtained 
directly from the charge density. The angular momentum expansion of this potential was 
found using a Gaussian quadrature technique. The Coulomb potential is found from a 
solution of Poisson's equation. 

The Poisson equation has been solved using three different cellular approaches: the 
conventional multipole structure constant summation resulting from multiple-scattering 
theory; a Green's function cellular method; and a variational cellular method [ 11. The last of 
these techniques appears to have the best numerical convergence and has been implemented 
in the full potential electronic structure code. In the cellular treatment, space is divide up 
into a collection of cells, where a local solution to the Poisson equation is found be direct 
integration. This solution is only required to satisfy the Poisson equation within its cell. 
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The global solution can be found as a sum of this local solution plus a sum of regular 
solutions to Laplace's equation. In the multiple-scamring approach, the coefficients of the 
regular harmonics are given as the product of a structure constants and multipole moments. 
Slow convergence of internal sums in this method was observed, making it not as efficient 
computationally as the other two approaches that were tried. 

The Green's function cellular method uses the fact that the coefficients can also be 
expressed as surface integrals by use of Green's theorem. Now careful choice of origin of 
expansion allows all the surface contributions except those on the cell of interest to vanish. 
This leads to a nearest neighbor set of linear equations. The convergence of this approach 
is similar to that found from the multiple-scattering theory method provided the internal 
sums were converged. Thus, because of the lack of internal sums this approach is 
superior. 

The best approach numerically is the variational cellular method. This method chooses the 
unknown coefficients in such a way as to minimize the Coulomb energy of the system 
subject to a smooth continuous solution across the celi boundaries. Since it has been 
derived from the variational principle, the errors in the Coulomb energy are expected to be 
small, and at a given basis set size it is expected to be the '%est" solution. This was found 
to be the case. More details about these methods can be found in reference [l]. 

Total Energy Calculations 

The total energy was found in the usual way from the sum of kinetic, Coulomb and 
exchangecornlation. The volume integrals over the unit cell are found using the step 
function approach, though in future these will be replaced by the surface integration method 
since then only one integration technique will be required. 

Test Calculations 

The programs have been extensively tested on BCC Nb, a metal which has also 
been sCJdied using other full potential methods. Figure 1 shows the results of energy 
volume curves for different values of I-truncation. Convergence is seen to be excellent. 
The lattice constant while slightly smaller than experiment is very close to that found with a 
full potential linearized muffin-tin orbital method. The shorter lattice constant reflects the 
well known overbinding of the local density approximation. The calculated bulk modulus 
is 1.65 Ml3ar which is close to the experimental value of 1.70 mar. Agreement of 10% is 
usually regarded as excellent. 

Conclusions 

During the year at LLNL significant progress was made on the development of a 
full-potential electronic structure program. A code was completed and resides on athens at 
LLNL. This code is of course a beta version and it is expected to be improved over the 
coming year. In particular a better user interface and algorithmic efficiencies are expected. 
Testing on Nb showed that stable accurate algorithms have been developed and results 
appear comparable to those obtained from the full potential linearized muffin-tin orbital 
method. Much of the work has addressed the practical aspects in particular convergence 
and stability of algorithms. Full potential multiple scattering theory has had a long history 
without a true full-potential self-consistent implementation where numerical accuracy and 
stability have been addressed. 
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Figure Caption 

Figure 1 Energy volume curve for BCC Nb for 1=2 3 4 and 5. 
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