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THE DESIGN OF A STANDARD MESSAGE PASSING INTERFACE FOR

DISTRIBUTED MEMORY CONCURRENT COMPUTERS

David W, Walker

Abstract

This paper presentsan overviewofMPI,& proposedstandardmessagepassinginterface

forMIMD distributedmemory concurrentcomputers.The designofMPI has been a collec-

tiveeITor_involvingresearchersintheUnitedStatesand Europe from many organizations

and institutions.MP! includespoint-to-pointand collectivecommunication routines,a_s

wellas supportforprocessgroups,communication contexts,and applicationtopologies.

While making use ofnew ideaswhere appropria.te,theMPI standardisbasedlargelyoll

currentpractice.
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1. Introduction

This paper gives an overview of MPI, a proposed standard message passing interface for dis-

, tributed memory concurrent computers. The main advantages of establishing a message pa&,:-

ing interface for such machines are portability and ease-of-use, and a standard message passing

interface is a key component in building a concurrent, computing environment in which appli-

cations, software libraries, and tools can be transparently ported between different machines,

Furthermore, the: definition of a message passing standard provides vendors with a clearly de-

fined set, of routines that they can implement efficiently, or in some cases provide hardware or

low-level system support for, thereby enhancing scalability.

The functionality that MPl iS designed to provide is based on current common practice,

and is similar to that provided by widely-used message passing systems such as Express [12],

NX/2 [13], Vertex, [11], PAKMACS[8,9], and P4 [10]. In addition, the flexibility and usefulness

of MP! has been broadened by incorporating ideas from more recent and innovative message

passing systems such as CitlMP [4,5], Zipcode [14,15], and the IBM External User Interface

[7]. The general design philosophy followed by MPI is that while it, would be imprudent to

include new and untested features in the standard, concepts that have been tested in a research

environment should be considered for inclusion. Many of the features in MPI related to process

• groups and communication contexts have been investigated within research groups for several

years, but not in commercial or production environments. However, their incorporation into

MP! is justified by the expressive power they bring to the standard.

The MPI standardization effort involves about 60 people from 40 organizations mainly from

the United States and Europe. Most of the major vendors of concurrent computers are involved

in MPI, along with researchers from universities, government laboratories, and industry. The

standardization process began with the Workshop on Standards for Message Passing in a Dis-

tributed Memory Environment, sponsored by the Center for Research on Parallel Computing,

held April 29-30, 1992, in Williamsburg, Virginia [16]. At. this workshop the basic features es-

sential to a standard message passing interface were discussed, and a working group established

to continue the standardization process.

A preliminary draft proposal, known as MPI1, was put forward by l)ongarra, Hempel, Hey,

and Walker in November 1992, and a revised version was completed in February 1993 [3].

MPI1 embodies the main features that were identified at the Williamsburg workshop as being

necessary in a message passing standard. This proposal was intended to initiate discussion of

• standardization issues within the distributed nmmory concurrent computing community, and

has served as a basis for the subsequent MPI standardization process. Since MPll wa_ primarily

• intended to promote discussion and "get, the bali rolling," it, focuses mainly oil poinl-t(r-point

communications. MPI1 does not include any collective communication routines. MI'll brought



to the forefront a number of important standardization issues, and has served as a catalyst for

subsequent progress, however, its major deficiency is that the management, of resources is not,

thread-safe. Although MPI1 and the MPI draft standard described in this paper have many

feature:, in common, they are distinct proposals, with MPI1 now being largely superz_eded by

the MPI draft standard.

In November 1992, a meeting of the MPI working group was held in Minneapolis. at, which

it was decided to place the standardization process on a more formal footing, and to generally

adopt the procedures and organization of the High Performance Fortran forum. Subcommittees

were formed for the major component areas of the standard, and an email discussion service

established for each. In addition, the goal of producing a draft, MPI standard by the Fall of

1993 was set. To achieve this goal the MPI working group has met every 6 weeks for two days

throughout the first 9 months of 1993, and it, is intended to present the draft, MP! standard at.

the Supercornputing 93 conference in November 1993. These meetings and the email discussion

together constitute the MPI forum, menlbership of which has been open to all members of tile

high performance computing community.

This paper is being written at a time when MPI is still in the process of being defined, but.

when the main features have been agreed upon. The only major exception concerns communica-

tion between processes in different groups. Some syntactical details, and the language bindings

for Fortran-77 and C, have not yet been considered in depth, and so will not be discussed here.

This paper is not intended to give a definitive, or even a complete, description of MPI. While

the main design features of MPI will be described, limitations on space prevent detailed justifi-

cations for why these features were adopted. For these details the reader is referred to the MPl

specification document, and the archived email discussions, which are available electronically

as described in Section 4.

2. An Overview of MPI

MI'I is intended to be a standard message passing interface for applications running on MIMD

distributed memory concurrent computers. We expect MPI also to be useful in building li-

braries of mathematical software for such machines. MPI is not specifically designed for use

by paraJlelizing compilers. Mr'l does not contain any support for fault tolerance, and assumes

reliable communications. MPI is a message passing interface, not a complete parallel computing

programming enzironment. Thus, issues such as parallel I/0, parallel program composition,

and debugging are not addressed by MPI. In addition, MPI does not provide explicil support
Q

for active messages or virtual communication channels, although extensions for such features

are not precluded, and may be made in the ,_uture. Finally, MPI provides no explicit sup-
D

port for multithreading, although one of the design goals of MPI WaS to ensure that it can be
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implemented efficiently in a multithreaded environment.

' The MPI standard does not mandate that an implementation should be interoperable with

other MPI implementations. However, MPl does provide all tile datatype information needed to

" allow a single MP1 implementation to operate in a heterogeneous environment.

A set of routines that support point-to-point communication between pairs of processes

forms the core of Mr'I. Routines for sending and receiving blocking and nonblocking messages

are provided. A blocking send does not return until it is safe for the application to alter the

message buffer on the sending process without corrupt,ng or changing the message sent. A

ponblocking send may return while the message buffer on the sending process is still volatile,

and it should not be char_ged until it is guaranteed that this will not corrupt the message. This

may be done by either calling a routine that blocks until tbe message buffer may be safely

reused, or by calling a routine that performs a nonblocking check on the message status. A

blocking receive suspends execution on tl,e receiving process until the incoming message has

been placed in the specified application buffer. A nonblocking receive may return before the

message has been received into the specified application buffer, and a subsequent, call must be

made to ensure that tkis has occurred before the application uses the data in tim message.

In Mm a message may be sent in one of three communication modes. The communication

mode specifies the conditions under which the. sending of a message may be initiated, or when

" it completes. In ready mode a message may be sent only if a corresponding receive has been

initiated, In standard mode a message may be sent regardlens of whether a corresponding

" receive has been initiated, i'_inally, MPI includes a synchronou,_ mode which is the same as the

standard mode, except that the send operation will not complete until a corresponding receive

has been initiated on the destination process.

There are, therefore, 6 types of send operation and 2 types of receive, as sho_ n in Figure

1. In addition, routines art, provided that send to one process while receiving from another,

Different versions are provided for when the send and receive buffers are distinct, and for when

they are the same. The send/receive operation is blocking, so does not return until the send

buffer is ready for reuse, and the incoming message has been received. I'he two send/receive

routines bring the total number of point-to-point message passing routines up to 10,

3. Details of MPI

In this section we discuss the Mr'I routines in more detail. Since the point-to-point and col-

, Icctive commuoication routines depend heavily on the approach taken to groups and contexts,

axed to a lesser extent on process topologies, we shall discuss groups, contexts, and topologies

, first, These three related areas have generated much discussion within the MPI forum, and

a consensus has emerged only in the last, few weeks. To some extent this difficulty in arriv-

,q
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.... SEND - Blocking ' Nonblocking -
. ,.......... - ,..... --- .

Standard mpi.._end mpi_isencl

Read>' mpi_.vsend mpi_irsend

Syn ch ron ous mpi_s s end mp±_i s s end m................. _

...... RECEIVE ............ Blocking Nonblocking
_ .......

- Standard [ _ mpi_recv mpiArecv............

Figure 1' Classification and names of the point-to-point send and receive routines,

ing at a consensus arises because different commonly-used message passing interfaces generally

handle groups, contexts, and topologies differently, and offer varying levels of support. The

differing requirements in these three areas within the parallel computing community have also

contributed to the diversity of views.

3.1. Groups, Contexts, and Communicators

Although it is now agreed within the MPI forum that groups and contexts should be bound

together into abstract communicator objects, as described in Section 3.1.3, the precise details

have yet to be worked out, particularly in the case of communicators for communication between

groups. Thus, in this subsection we will give an overview of groups, contexts, and communica-

tors, without going into specific details that may subsequently change. In particular, we will

not discuss communication between processes in different groups as at, the time of writing the

precise details are still under discussion.

3.1.1. Process Groups

The prevailing view within the MPI forum is that a process group is an ordered collection of

processes, and each process is uniquely identified by its rank within the ordering. For a group

of n processes the ranks run from 0 to n- I. This definition of groups closely corlforms to

current practice.

Process groups can be used in two important ways. First, they can be used to specify

which processes are involved in a collective communication operation, such as a broadcast.

Second, they can be used to introduce task parallelism into an application, so that different

groups perform different tasks. If this is done by loading different executable codes into each

group, then we refer to this as MIMD task parallelism. Alternatively, if each grGut) executes a

different conditional branch within the same executable code, then we refer to this a.s SPMI)

task parallelism (also known .as control parallelism }. Although MPI does ,,ot provide mechanisms

for loading executable codes onto processors, nor for creating processes and assigning them to



processors, each process may execute its own distinct, (:ode. However, it is expected thal many

" initial Mr'I implementations will adopt, a static process model, so that, a.s far a.s the, applicatiori

is concerned, a fixed number of processes exist from program initiation to completion, _:ach

" running the same SPMD code.

Although the MPI process model is static, process groups are dynamic in thor sense thai l,h_,y

can be created and destroyed, and each process can belong to several groups simultaneously,

However, the membership of a group canno! be changed asynchronously. For ore, or rnor(, pr(,

cesses to join or leave a group, a new group must t)e created which requires the, synchronization

of all processes in the group so formed. In MPI a group is an opaque object referenced by Hieans

of a handle. MPI provides routines for creating new groups by listing the ranks (within a spec-

ified parent group) of the processes making up the new group, or by partitioning an existing

group using a key. The group partitioning routine is also passed an index, the, size of which

determines the rank of the process in the new group. This also provides a way of permuting th['

ranks within a group, if all processes in the group use the sanle value, for th_ key, and set th__

index equal to the desired new rank. Additional routines giwi_,the rank of the calling proc_ss

within a given group, test whether the calling process is in a given group, perform a barri_r

synchronization with a group, and inquire about the size and membership of a group, ()tiler

routines concerned with groups may be included in the final MPI draft,.

3.1.2. Communication Contexts

Communication contexts, first used in the Zipcode communication system [14,15], promote,

software modularity by allowing the construction of independent communicatiol_ streams I)_.'-

tween processes, thereby ensuring that. messages sen! in one phase of an application ar(, n,)l

incorrectly intercepted by another ph&se. Communication contexts are particularly important

in allowing libraries that make tnessage t)assing calls to be used safely withirl a_l al)l)li(:atio11.
I

The point her_, is that the application developer ha.,_no way of knc)wing if th(, tag, group, alld

rank completely disambiguate the message traffic of different libraries and l.h_,rest of l,h_' al)l,li-

cation. Context provides an additional criterion for nlessag,' s_,l_'ction, and h_,nc_' l)('rHlils th,_

construction of independent tag spaces.

If communication contexts are not used there art, two ways in which a call t(_ a library

routine can lead to unintended behavior. In the first case the pr()cesses enter a library routint,

synchronously when a send has been initiated for which thf, llmtcllillg roceiv(, is not p()st_'(J illltil

, after the ii|)rary call. In this case th(, message may b_,i_icorr(wtly roc_,,iv(,dill tit,, library rrJlllirlt..

The second possibility arises when diit'eren! proc,rsses eljter a library r()utin_, asyrichr(m(msly,

. a.s shown i_ th__ example in Figure 2, resulting m nomtot_,rtl_jnisti(" t_,havi(_r, I[' the. [)r_:_ra_l_

behaves correctly processes (9and 1 each receive: _ m_:ssag_ t'rt)_ l)r()('oss 2, usillg a wil(lcardo(I
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Process0 Process1 Process2

[recv(any)I_
=,

Figure 2: Use of contexts, Time increases down tilt' page, Nunlbers in parentheses indicate t,lw
process to which data are being sent, or received, The gray shaded area represents the library
routine call. In this case the program behaves as intended. Note that the second message sent
by process 2 is received by process 0, and tha! [,he nlessage sen[ by process 0 is received by
process 2.

Process0 Process1 Process2

'recvlany) iSe d(1)l

i , iii !,

:':mcvi=i:i''-;: recv(2) ,i l

Figure 3: Unintended behavior of program. In this ca._e the message from process 2 to process
0 is never received, and deadlock results.

selection criterion to indicate that they are prepared to receive a nmssage fronl any process, Ttw

three processes then pass data around in a ring within the library routine. If conlmunicatiozl

contexts are not used this program may intermittently fail. Suppose we delay the s(:_ding of

the second message sent by process 2, for example, by inserting some computation, a,_ shown

in Figure 3. In this case the wildcarded receive in process 0 is satisfied by a message sent

from process l, rather than from process 2, and deadlock results, By supplying a different

communication context to the library foul in(, we can ensure, that the program is executed

correctly, regardless of when the processes enter th_ library routine
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3.1.3. Communicator Objects
e

The "scope" of a communication operation is specified by th_ communication context used,

and the group, or groups, involved, l_) a collective communication, or in a point-t(r-pointii

communication between nlembers of the same group, only one group needs to be specitied, and

the source and destination processes arv given by their rank within this group. In a point-to-

point communication between processes in different groups, two groups must. be specified to

define the scope. In this case the source and destination processes are_ given by their ranks

within their respective groups. In MPI abstract, opaque objects called "communicators" are

used to define the scope of a communication operation. In intragroup communication involving

members of the same group a communicator can be regarded as binding together a context and

a group, The creation of intergroup communicators tot communicating between) processes in

different, groups is still under discussion within the MPI Forum, and so will not be discussed

here.

3.2. Application Topologies

In many applications the processes are arranged with a particular topology, such as a two-

or three-dimensional grid. MPI provides support, for general application topologies tha¿ are

• specified by a graph in which processes that communicate a significant amount are connected

by an arc. If the application topology is an n-dimensional Cartesian grid then this generality

. is not needed, so as a convenience MP! provides explicit, support for such topologies. For a

Cartesian grid periodic or nonperiodic boundary conditions may apply in azly specified grid

dimension. In MPI a group either has a Cartesian or graph topology, or no topology.

In MPI, application topologies are supported by an initialization routine, MJ't_(;lt^J'l! or

MPI_CART, that specifies the topology of a given group, a function MPI_INQItANN tha! d__-

termines the rank given a location in the topology associated with a group, and the. inverse

function MPI_INQLOCthat determines where a process is in the topology. In addition, the roli-

tine MPI_INQMAP returns the topology associated with a given group, and for a group with a

" r 'Ca tesmn topology, the routine MPI_INQCAWI _ gives the size' and periodicity of the topology

In addition to removing from the user the burden of having to write code to translate

between process identifier, as specified by group and rank, and location m the topology, MPI

also:

1. allows knowledge of the applicatioz_ topology to be _,xploited in ord_'r I(, _flici_r_lilya.,_sigrj

processes to physical processors,

- 2. provides a routine MPI_PARTC for partitioning a (:artesian grid into hyperplan_, groups

by removing a specified set of dimensions,
i
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3. provides support for shifting data along a specified dimension of a Cartesian grid, and

By dividing a Cartesian grid into hyperplane groups it. is possible to perform collectiw' commu-

nication operations within these groups. In particular, if all but one dimension is removed a set It

of one-dimensional subgroups is formed, and it is possible for example, to perform a multicast

in the corresponding direction.

Support, for shift operations is provided by a routine, MPI_SHtFT..ID, that returns the ranks

of the processes that a process must, send data to, and receive data from, when participating

in the shift. Once the source and destination process are known for each process, the shift

is performed by calling the routine MPI_SENDRECVthat, allows each process to send to one

process while r_ceiving from another. In a circular shift, each process sends data to the process

whose location in the given dimension is obtained by adding a specified integer (which may be

negative) to its own location, modulo the number of processes in that dimension, lu an end-off"

shift each process determines the rank of its destination process by adding a specitied integer

to its own rank, but if this exceeds the number of processes in the given dimension, or is less

than zero, then no data are sent. If the Cartesian grid is periodic in the dimension in which

the shift is done, then MPI..SHIFTAD returns source and destination processes appropriate for

a circular shift. Otherwise MPI..SHIFT_ID returns source and destination processes appropriate

for an end-off shift.

3.3. Point.to.Point Communication
m

3.3.1. Message Selectivity

In MPI a process involved in a communication operation is identified by group and rank with

that group. Thus,

Process ID = (group, rank)

In point-to-point communication, messages rr',_, be consiciered labeled by communication con-

text and message tag within that, context. Thus,

Message ID _= (context, tag)

When sending or receiving a message the process and message identifiers must be specified. The

group and context, which define the scope of the communication operation, are specified by

means of a communicator object in the argument list of the send and receive routines. The rank

and tag also appear in the argument list. A message sent in one scope can only be received

in a different scope, so the communicator objects specified by the sead and receive routizles

must, match. The group and context components of a communicator may not be wildcarded.

Within a giw_n scope, message selectivity is by rank and tag. Either, or both, of these may I)e

wildcarded by a receiving process to indicate that the corresponding selection criterion is to be
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MPI_SEND(
IN start_of_buffer

. IN number_of_items

IN datatype_of.items
IN destination_rank

IN tag
IN communicator)

MPI_RECV(
OUT start_of_buffer
IN ma_x_number_of_iteros

IN datatype_of_iteros
IN source_rank

IN tag
IN communicator

OUT return_status_object)

Figure 4: Argument lists for tile blocking send and receive routines,

ignored, The argument lists for the block send and receive routines are shown in Figure 4.

• In Figure 4, the last argument to MPI_RECV is a handle to a return status object. This object

may passed to an inquiry routine to determine the length of the message, or the actual source

" rank and/or message tag if wildcards have been used, The argument lists for the nonMockmg

send and receives are very similaa" except that each returns a handle to an objecl that identifies

the communication operation. This object is used subsequently to check for completion of thp

operation, In addition, the nonblocking receive does not return a return status object. Instead

the return status object is returned by the routine that confirms completion of the receive

operation.

3.3.2.General Datatypes

All point-to-point message passing routines in MPI take as an argument the datatype of t.twI
data communicated. In the simplest case this will be a primitive datatype, such as an integer

or floating pelt,:, number. However, MPl also supports more general datatypes, and thereby

supports the ¢ommunication of array sections and structures involving combinations of primit iw,

datatypes.

A general datatype is a sequence of pairs of primitive datatypes and iIlle_er byte displacp-

ments Thus.

Datatype = { (typeo, dispo), (type 1,disp 1)..... (typen-t. disl,,,__) }
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Together with a base address, a datatype specifies a communication buffer. General datatypes

are built up hierarchically from simpler components. There are four basic constructors for

datatypes, namely the contiguous, vector, indexed, and structure constructors. We will now

discuss each of these in turn.

The contiguous constructor creates a new datatype from repetitions of a specified old

datatype. This requires us to specify the old datatype and the number of repetitions, n.

For example, if the old datatype is oldtype = { {double, 0), {char, 8)} and n = 3, then the

new datatype would be,

{ (double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40) }

It should be noted how each repeated unit in the new datatype is aligned with a double word

boundary. This alignment is dictated by the appearance of a doable in the old datatype, so

that the extent of the old datatype is taken as 16 bytes, rather than 9 bytes.

The vector constructor builds a new datatype by replicating an old datatype in blocks at

fixed offsets. The new datatype consists of count blocks, f'ach of which is a repetition of

blocklen items of some specified old datatype. The starts of successive blocks are offset by

stride items of the old datatype. Thus, if cotmt = 2, blocklen = 3, and stride - 4 then

the new datatype would be,

{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40),

(doable, 64), (char, 72), (double, 80), (char, 88), (doable, 96), (char, 104)}

Here the offset between the two blocks is 64 bytes, which is the stride multiplied by the extent

of the old datatype.

The indexed constructor is a generalization of the vector constructor in which each block ha.s

a different size and offset. The sizes and offsets are given by the entries in two integer arrays,

B and I. The new datatype consists of count blocks, and the/th block is of length B[i'i items

of the specified old datatype. The offset of the start of the/th block is I [i] items of the old

datatype. Thus, if count = 2, B = {3, I}, and I = {64,0}, then the new datatype would be,

{ (double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104).

(double, 0), (char, S)}

The structure constructor is the most general of the datatype constructors. This constructor

generalizes the indexed constructor by allowing each block to be of a different datatype. Thus,



-I1-

IL.

, liP"

IlL I

left right
edge edge

Figure 5: Particle migration in a one-dimensional code. The left and right edges of a process
domain are shown. We shall consider just the migration of particles across the righthand
boundary.

in addition to specifying the number of blocks, count, and the block length and offset arrays, B

and I, we must also give the datatype of the replicated unit in each block. Let us assume this is

specified in an array T. The length of the ith block is B [i] items of type T[i3, and the offset of

the start of the ith block is I [i'[ bytes. Thus, if cotmt=3, T = {NPI..FLOAT,oldtype, MPI_CHAR},

I = {0, 16, 26}, and B = {2, 1,3}, then the new datatype would be,

{ (f 1oat, 0), (f 1oat, 4), (double, 16), (char, 24), (chru:, 26) (char, 27) (char, 28) }

In addition to the constructors described above, there is a variant of the vector constructor

" in which the stride is given in bytes instead of the number of items. There is also a variant of

the indexed constructor in which the block offsets are given in bytes.

To better understand the use of general data structures consider the example of an appli-

cation in which particles move on a one-dimensional domain. We assume that each process is

responsible for a different section of this domain. In each time step particles may move from

the subdomain of one process to that of another, and so the data for such particles must be

communicated between processes. We shall just consider here the task of migrating particles

across the righthand boundary of a process, as shown in Figure 5. The particle data are stored

in an array of structures, with each entry in this structure consisting of tile particle position,

x, velocity, v, and type, k:

struct PsCruct { double x; double v; int k; };

The C code for migrating particles across the righthand boundary is shown in Figure 6.

• In Figure 6 the code in the first box creates a datatype, Ptype, that represents the Pstruct

structure for a single particle. This datatype is,

- PCype = {(double,O), (double,8), (int,16)}

In the second code box the particles that have crossed the righthand boundary are identified,
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struct Petruct particle[lO00] ;
MPI.datatYl_ Ptype, Ztype;
MPI_datatype Stype [3]-{MPI_double, MPI.double, MPI.int };
int Sblock[3]-{1, 1, 1};
int Sindex[3] ;
int Pindex [100] ;
int Pblock[lO0] ;

Sindex[O] - O; I
Sindex[l]= sizeof(double);
Sindex[2]- 2*sizeof(double);

MPI_typeJtruct (3, Stype, Sindex, Sblock, &Ptype);

j=O;
for (i=0; i<lO0O;i++)

if (x[i] > right.edge) {
Pindex[j] = i;
Pblock[j] = 1;
j++;}

MPI.type_indexed (j, Ptype, Pindex, Pblock, kZtype);
t,

MPI_type_coamit (Ztype) ;
MPI-_end (particle, I, Ztype, dest, tag, ¢o_);

Figure 6: Fragment of C code for migrating particles across the righthand process boundary

tt

and their index in the particle array is stored in Pindex. It is assumed that no more than

100 particles cross the boundary. The call to MPZ_type_indexed uses an indexed constructor
a

to create a new datatype, Ztype, that references all the migrating particles. Before sending the

data, the Ztype datatype must be committed. This is done to allow the system to use a different

internal representation for Z'cype, and to optimize the communication operation. Committing

a datatype is most likely to be advantageous when reusing a datatype many times, which is not,

the case in this example. Finally, the migrating particles are sent to their destination process,

dest, by a call to MPI_send. The offsets in the Ztype datatype are interpreted relative to the

address of the start of the particle array.

3.3.3. Communication Completion

Following a call to a nonblocking send or receive routine there are a number of ways in which the

handle returned by the call can be used to check the completion status of the communication

operation, or to suspend further execution until the operation is complete. MPI_WAIT does no!

return until the communication operation referred to by the input handle is complete. MPI_TEST

does not wait until the operation identified by the input handle is complete, but, instead returns

a logical variable that. is TRUE if the operation is complete, and FALSE otherwise. If th_ input

handle refers to a receive operation, thvn MPI_WAITand MPI_TEST both return a handle to a
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return status object. This handle carl subsequently be passed to a query routine to determine

" the actual source, tag, and length of the message received.

An additional two routines exist for waiting for the completion of any or all of th(_ handles

" in a list of handles. Similarly, there are variants of the test routine that check if all, or at least

one, of the communication operations identified by a list of handles is complete.

3.3.4. Persistent Communication Objects

MPI also provides a set of routines for creating communication objects that completely describe

a send or receive operation by binding together all the parameters of the operation. A handle,

to the communication object so formed is returned, and may subsequently be passed to the

routine MPI_STARTto actually initiate the communication. The MPI_WAITroutine, or a similar

completion routine, must be called to ensure completion of the operation, a,_discussed in Sec:,ion

3.3.3.

Persistent, communication objects may be used to optimiz(: communication performance,

particularly when the same communication pattern is repeated many times in an application.

For example, if a send routine is called within a loop, performance may he improved by creating

a communication object that describes the parameters of the send prior to entering the loop,

and then calling MPI_STaRT inside the loop to send the data on each pass through the loop.

There are four routines for creating communication objects: three for send operations,

corresponding to the standard, ready, and synchronous modes, and one for receive operations.

A persistent communication object must be deallocated when no longer needed.

3.4. Collective Communication

Collective communication routines provide for coordinated communication among a groul) of

processes [1,2]. The process group is given by the communicator object that is input to th, _

routine. The MPI collective communication routines have been designed so thai their syntax

and semantics are consistent with those of the point-t(r-point routines, q'|w collective com-

munication routines may, but, do not have to be, implemented using the MPi point-to-point

routines. Collective communication routines do not have message tag arguments, though an

implementation in terms of the point-to-point routines rnay need to make use of tags. A col-

lective communication routine must be called by all members of the group with consistent

arguments. As soon as a process has completed its role in the collectiw_ communication it

. may continue with other tasks. Thus, a collective communication is not nec_ssarily a t)arri,,r

synchronization for the group. MPI does not include Jlonblocking forms of the collectiw, cot,-

• munication routines. MPi collective communication routines are. divided into two broad cla.,ises:

data movement routines, and global computation routines.
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3.4.1. Collective Data Movement Routines

There are 3 basic types of collective data movement routine: broadcast, scatter, and gather.

There are two versions of each of these three routines: in the one-all case data are communicated

between one process and all others; in the all-all case data are communicated between each

process and all others. Figure 7 shows the one-all and all-all versions of the broadcast, scatter,

and gather routines for a group of six processors.

The all-all broadcast, and both varieties of the scatter and gather routines, involve each

process sending distinct data to each process, and/or receiving distinct data from each process.

In these' routines each process may send to and/or receive from each other process a differen!

number of data items, but the send and receive datatypes must be consistent. To illustrate this

point consider the following example in which process 0 gathers data from processes l and 2.

Suppose the receive datatype in proces:, 0, and the send datatypes in processes 1 and 2 are as

follows,

in process 0: recvtype={t:at, 0), (float,4)}

In process 1: sendl;ype={(int, 0), (float, 4), (in1;, 96), (float, i00), (int, 32), (flea1;, 36)}

In process 2: sendtype={(iat, 16), (float, 20), (inZ,48), (:float, 52)}

Such a situation could arise in a C program in which an indexed datatype constructor has been

applied to an array of structures, each element of which consists of an integer and a floating-

point number. Although the datatypes are different in each process, they are type eonszstent,

since each consists of repetitions of an integer followed by a float.

The one-all broadcast routine broadcasts data from one process to all other processes in the

group. The all-all broadcast broadcasts data from each process to all others, and on completion

each has received the same data. Thus, for the all-all broadcast each process ends up with the

same output data, which is the concatenation of the input data of all processes, in rank order.

The one-all scatter routine sends distinct data from one process to all processes in the group.

This is also known as "one-to-all personalized cornmunication". In the all-all scatter routine

each process scatters distinct data to all processes in the group, so the processes receive differenl

data from each process. This is also known as "all-tea-all personalized communication".

The communication patterns in the gather routines are the same as in the scatter routines,

except that the direction of flow of data is reversed. In the one-all gather routine one process

(the root) receives data from every process in the group. In the root process receives the

concatenation of the input buffers of all processes, in rank order. There is no separ;tle all-all

gather routine since this would just be identical to the all-all scatter routine, s¢, there, are 5
a

basic data movement routines.
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data _.......

i ...........................

, A0 A0
i - i ....

Ao...... one-allbroadcast , , ..........

" o. i._ Ao
Ao

ii ii ii i .....

AO

.... AO .

.......... J ,,,

-0............. ,o Go_Oo
B0 A0 B0 CO DO E0 F0.... _........ all-allbroadcast - - 1

Co ! "-i> _A° B0 C0 Do E° F°AoBoCoDOE0 Fo
- - _ ii i

E0 A0B O C0 DO E0 F0

F0 ..... A0 B0 CO ,,,,DoEOLF0

t

A0 AI A2 A3 A4 A5 A0

• one-allscatter A1

......... '.... I _i__- > A2 ....
..... , - rl,

.... . one-allgather A4 ..........

A5 .......

A0 A1 A2 A3 A4 A5 A0 B0C0 _DO E0 F0
Ii , ,,,,,, ,

B0 B1 B2 B3 B4 B5 A B1 C D E1 F......... all-allscatter 1 1 1 ,1,,,

C0 C1 C2 C3 C4 C5 ! .......-- .1_ D2 E2 F2
DO D1 D2 D3 D4 D5 w A3 B3 C3 E)3 E3 F3..

. E0 E1 E2 E3 E4 E5 A41 B4 C4 D4 E4 F4

i FO F1 F2 F3 F4 F5 A5_B5 C5 D5 E51 F.5;

Figure 7: One-all mid all-all versions of t|le broadca._t, scatter, and gather routines for a group
of six processes, In each c_e, each row of boxes represents data locations in one process,
Thus, in the one-all broadca._t,, initially just Lhefirst, process contains the data Ac_,but after
the broadcast all processes contain it,
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In addition, MPI provides versions of all these 5 r¢,utines, except the one-M] broadcast, in

which the send and receive datatypes are type consistent as discussed above, but in which each ,

process is allocated a fixed size portion of the communication buffer. These bring the total

number of data movement routines to 9.

3.4.2. Global Computation Routines

There are two basic global computation routines in MPI: reduce and scan. The reduce and scan

routines both require the specification of an input function. One version is provided ill which

the user selects the function from a predefined list; in the second version the user supplies (a

pointer to) a function that is associative and commutative', in the third version the user supplies

(a pointer to) a function that is assocl _tive, but not necessarily commutative. In addition, there

are three variants of the reduction ,,::'atines. In one variant the reduced results are returned to

a single specified process; in tile second variant the reduced results are returned to all processes

involved; and, in the third variant the reduced results are scattered across the processes involved.

This latter variant is a generalization of the fold routine described in Chapter 21 of [6]. Thus,

there are 12 global computation routines, and a total of 21 collective communication routines

(or 22 if we include the routine for pertbrming a barrier synchronization over a process group).

The reduce routines combine the values provided in the input buffer of each process using

a specified function. Thus, if De is the data in the process with rank i in the group, and _ is

the combining function, then the following quantity is evaluated,
p

l) = Do _b DI • D'2¢, ' " _ D,,_ _ ( 1)

where n is the size'of the group. Common reduction operations are the evaluation ot' the

maximum, minimum, or sum of a set of values distributed across a group of processes.

The scan routines perform a parallel prefix with respect to an associative reduction operation

on data distributed across a specified group. On completion the output buffer of the process

with rank i contains the result of combining the values from the processes with rank 0, l ..... i,

i. e,,

_I = Do ¢_Dl _-_D:__,,._ Ds (2)

It should be noted that segmented scans can be performed by first creating distinct sub-

i groups for each segment.

4. Summary

This paper has given an overview of the main features of MPI, but has not described the

detailed syntax of the MPI routines, or discussed language binding issues, These will be full)'
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discussed in the MPI specification document, a draft of which is oxpected to be available by the

• Supercomputing 93 conference in November i993,

The design of MP1 ha/_ been a cooper tire effort, involving about fit) people. Much of the

" discussion has been by electronic mail, and has been archived, along with copies of the MP!

draft and other key documents. Copies of the archives and documents may be obtained by

netlib, For details of what is available, and how to get it, please send the nmssage "send index

from mpi" to netltbQornl.gov,
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