
IIII1IIIIl--Iilllo

Ilill_IIlll_IIII1-_nlll-_ii11_

h

ORNL/TM-12512

Engineering Physics and Mathematics Division

Mathematical Sciences Section

THE DESIGN OF A STANDARD MESSAGE PASSING INTERFACE FOR

DISTRIBUTED MEMORY CONCURRENT COMPUTERS

David W. Walker

Mathematical Sciences Section

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6012

Oak Ridge, TN 37831-6367

Date Published: October 1993

Research was supported by the Advanced Research Projects

Agency under contract DAAL03-91-C-0047, administered by the
Army Research Office.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee, 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-84OR21400

MA,STEB
IlI_'rRtUOTlUNOFr, ls i:IOCUM[NTI_ ONtlalrr_

Contents

1 Introduction ... 1

2 An Overview of MPI 2
3 Details of MPI 3

3.1 Groups, Contexts, and Communicators 4
3.1.1 Process Groups 4
3.1.2 Communication Contexts 5

3.1,3 Communicator Objects 7

3.2 Application Topologies 7
3.3 Point-to-Point Communication 8

3.3.1 Message Selectivity 8
3.3.2 General Datatypes 9
3.3.3 Communication Completion 12
3.3.4 Persistent Communication Objects 13

3.4 Collective Communication 13
3.4.1 Collective Data Movement Routines 14

3.4.2 Global Computation Routines 16
4 Summary .. 16
5 References .. 17

,_°

- !11-

m

THE DESIGN OF A STANDARD MESSAGE PASSING INTERFACE FOR

DISTRIBUTED MEMORY CONCURRENT COMPUTERS

David W, Walker

Abstract

This paper presentsan overviewofMPI,& proposedstandardmessagepassinginterface

forMIMD distributedmemory concurrentcomputers.The designofMPI has been a collec-

tiveeITor_involvingresearchersintheUnitedStatesand Europe from many organizations

and institutions.MP! includespoint-to-pointand collectivecommunication routines,a_s

wellas supportforprocessgroups,communication contexts,and applicationtopologies.

While making use ofnew ideaswhere appropria.te,theMPI standardisbasedlargelyoll

currentpractice.

- V-

1. Introduction

This paper gives an overview of MPI, a proposed standard message passing interface for dis-

, tributed memory concurrent computers. The main advantages of establishing a message pa&,:-

ing interface for such machines are portability and ease-of-use, and a standard message passing

interface is a key component in building a concurrent, computing environment in which appli-

cations, software libraries, and tools can be transparently ported between different machines,

Furthermore, the: definition of a message passing standard provides vendors with a clearly de-

fined set, of routines that they can implement efficiently, or in some cases provide hardware or

low-level system support for, thereby enhancing scalability.

The functionality that MPl iS designed to provide is based on current common practice,

and is similar to that provided by widely-used message passing systems such as Express [12],

NX/2 [13], Vertex, [11], PAKMACS[8,9], and P4 [10]. In addition, the flexibility and usefulness

of MP! has been broadened by incorporating ideas from more recent and innovative message

passing systems such as CitlMP [4,5], Zipcode [14,15], and the IBM External User Interface

[7]. The general design philosophy followed by MPI is that while it, would be imprudent to

include new and untested features in the standard, concepts that have been tested in a research

environment should be considered for inclusion. Many of the features in MPI related to process

• groups and communication contexts have been investigated within research groups for several

years, but not in commercial or production environments. However, their incorporation into

MP! is justified by the expressive power they bring to the standard.

The MPI standardization effort involves about 60 people from 40 organizations mainly from

the United States and Europe. Most of the major vendors of concurrent computers are involved

in MPI, along with researchers from universities, government laboratories, and industry. The

standardization process began with the Workshop on Standards for Message Passing in a Dis-

tributed Memory Environment, sponsored by the Center for Research on Parallel Computing,

held April 29-30, 1992, in Williamsburg, Virginia [16]. At. this workshop the basic features es-

sential to a standard message passing interface were discussed, and a working group established

to continue the standardization process.

A preliminary draft proposal, known as MPI1, was put forward by l)ongarra, Hempel, Hey,

and Walker in November 1992, and a revised version was completed in February 1993 [3].

MPI1 embodies the main features that were identified at the Williamsburg workshop as being

necessary in a message passing standard. This proposal was intended to initiate discussion of

• standardization issues within the distributed nmmory concurrent computing community, and

has served as a basis for the subsequent MPI standardization process. Since MPll wa_ primarily

• intended to promote discussion and "get, the bali rolling," it, focuses mainly oil poinl-t(r-point

communications. MPI1 does not include any collective communication routines. MI'll brought

to the forefront a number of important standardization issues, and has served as a catalyst for

subsequent progress, however, its major deficiency is that the management, of resources is not,

thread-safe. Although MPI1 and the MPI draft standard described in this paper have many

feature:, in common, they are distinct proposals, with MPI1 now being largely superz_eded by

the MPI draft standard.

In November 1992, a meeting of the MPI working group was held in Minneapolis. at, which

it was decided to place the standardization process on a more formal footing, and to generally

adopt the procedures and organization of the High Performance Fortran forum. Subcommittees

were formed for the major component areas of the standard, and an email discussion service

established for each. In addition, the goal of producing a draft, MPI standard by the Fall of

1993 was set. To achieve this goal the MPI working group has met every 6 weeks for two days

throughout the first 9 months of 1993, and it, is intended to present the draft, MP! standard at.

the Supercornputing 93 conference in November 1993. These meetings and the email discussion

together constitute the MPI forum, menlbership of which has been open to all members of tile

high performance computing community.

This paper is being written at a time when MPI is still in the process of being defined, but.

when the main features have been agreed upon. The only major exception concerns communica-

tion between processes in different groups. Some syntactical details, and the language bindings

for Fortran-77 and C, have not yet been considered in depth, and so will not be discussed here.

This paper is not intended to give a definitive, or even a complete, description of MPI. While

the main design features of MPI will be described, limitations on space prevent detailed justifi-

cations for why these features were adopted. For these details the reader is referred to the MPl

specification document, and the archived email discussions, which are available electronically

as described in Section 4.

2. An Overview of MPI

MI'I is intended to be a standard message passing interface for applications running on MIMD

distributed memory concurrent computers. We expect MPI also to be useful in building li-

braries of mathematical software for such machines. MPI is not specifically designed for use

by paraJlelizing compilers. Mr'l does not contain any support for fault tolerance, and assumes

reliable communications. MPI is a message passing interface, not a complete parallel computing

programming enzironment. Thus, issues such as parallel I/0, parallel program composition,

and debugging are not addressed by MPI. In addition, MPI does not provide explicil support
Q

for active messages or virtual communication channels, although extensions for such features

are not precluded, and may be made in the ,_uture. Finally, MPI provides no explicit sup-
D

port for multithreading, although one of the design goals of MPI WaS to ensure that it can be

n , ill i IIII

-3-

implemented efficiently in a multithreaded environment.

' The MPI standard does not mandate that an implementation should be interoperable with

other MPI implementations. However, MPl does provide all tile datatype information needed to

" allow a single MP1 implementation to operate in a heterogeneous environment.

A set of routines that support point-to-point communication between pairs of processes

forms the core of Mr'I. Routines for sending and receiving blocking and nonblocking messages

are provided. A blocking send does not return until it is safe for the application to alter the

message buffer on the sending process without corrupt,ng or changing the message sent. A

ponblocking send may return while the message buffer on the sending process is still volatile,

and it should not be char_ged until it is guaranteed that this will not corrupt the message. This

may be done by either calling a routine that blocks until tbe message buffer may be safely

reused, or by calling a routine that performs a nonblocking check on the message status. A

blocking receive suspends execution on tl,e receiving process until the incoming message has

been placed in the specified application buffer. A nonblocking receive may return before the

message has been received into the specified application buffer, and a subsequent, call must be

made to ensure that tkis has occurred before the application uses the data in tim message.

In Mm a message may be sent in one of three communication modes. The communication

mode specifies the conditions under which the. sending of a message may be initiated, or when

" it completes. In ready mode a message may be sent only if a corresponding receive has been

initiated, In standard mode a message may be sent regardlens of whether a corresponding

" receive has been initiated, i'_inally, MPI includes a synchronou,_ mode which is the same as the

standard mode, except that the send operation will not complete until a corresponding receive

has been initiated on the destination process.

There are, therefore, 6 types of send operation and 2 types of receive, as sho_ n in Figure

1. In addition, routines art, provided that send to one process while receiving from another,

Different versions are provided for when the send and receive buffers are distinct, and for when

they are the same. The send/receive operation is blocking, so does not return until the send

buffer is ready for reuse, and the incoming message has been received. I'he two send/receive

routines bring the total number of point-to-point message passing routines up to 10,

3. Details of MPI

In this section we discuss the Mr'I routines in more detail. Since the point-to-point and col-

, Icctive commuoication routines depend heavily on the approach taken to groups and contexts,

axed to a lesser extent on process topologies, we shall discuss groups, contexts, and topologies

, first, These three related areas have generated much discussion within the MPI forum, and

a consensus has emerged only in the last, few weeks. To some extent this difficulty in arriv-

,q

......... _r , _11 ,, ,_

.

.... SEND - Blocking ' Nonblocking -
. ,.......... - ,..... --- .

Standard mpi.._end mpi_isencl

Read>' mpi_.vsend mpi_irsend

Syn ch ron ous mpi_s s end mp±_i s s end m................. _

...... RECEIVE Blocking Nonblocking
_

- Standard [_ mpi_recv mpiArecv............

Figure 1' Classification and names of the point-to-point send and receive routines,

ing at a consensus arises because different commonly-used message passing interfaces generally

handle groups, contexts, and topologies differently, and offer varying levels of support. The

differing requirements in these three areas within the parallel computing community have also

contributed to the diversity of views.

3.1. Groups, Contexts, and Communicators

Although it is now agreed within the MPI forum that groups and contexts should be bound

together into abstract communicator objects, as described in Section 3.1.3, the precise details

have yet to be worked out, particularly in the case of communicators for communication between

groups. Thus, in this subsection we will give an overview of groups, contexts, and communica-

tors, without going into specific details that may subsequently change. In particular, we will

not discuss communication between processes in different groups as at, the time of writing the

precise details are still under discussion.

3.1.1. Process Groups

The prevailing view within the MPI forum is that a process group is an ordered collection of

processes, and each process is uniquely identified by its rank within the ordering. For a group

of n processes the ranks run from 0 to n- I. This definition of groups closely corlforms to

current practice.

Process groups can be used in two important ways. First, they can be used to specify

which processes are involved in a collective communication operation, such as a broadcast.

Second, they can be used to introduce task parallelism into an application, so that different

groups perform different tasks. If this is done by loading different executable codes into each

group, then we refer to this as MIMD task parallelism. Alternatively, if each grGut) executes a

different conditional branch within the same executable code, then we refer to this a.s SPMI)

task parallelism (also known .as control parallelism }. Although MPI does ,,ot provide mechanisms

for loading executable codes onto processors, nor for creating processes and assigning them to

processors, each process may execute its own distinct, (:ode. However, it is expected thal many

" initial Mr'I implementations will adopt, a static process model, so that, a.s far a.s the, applicatiori

is concerned, a fixed number of processes exist from program initiation to completion, _:ach

" running the same SPMD code.

Although the MPI process model is static, process groups are dynamic in thor sense thai l,h_,y

can be created and destroyed, and each process can belong to several groups simultaneously,

However, the membership of a group canno! be changed asynchronously. For ore, or rnor(, pr(,

cesses to join or leave a group, a new group must t)e created which requires the, synchronization

of all processes in the group so formed. In MPI a group is an opaque object referenced by Hieans

of a handle. MPI provides routines for creating new groups by listing the ranks (within a spec-

ified parent group) of the processes making up the new group, or by partitioning an existing

group using a key. The group partitioning routine is also passed an index, the, size of which

determines the rank of the process in the new group. This also provides a way of permuting th['

ranks within a group, if all processes in the group use the sanle value, for th_ key, and set th__

index equal to the desired new rank. Additional routines giwi_,the rank of the calling proc_ss

within a given group, test whether the calling process is in a given group, perform a barri_r

synchronization with a group, and inquire about the size and membership of a group, ()tiler

routines concerned with groups may be included in the final MPI draft,.

3.1.2. Communication Contexts

Communication contexts, first used in the Zipcode communication system [14,15], promote,

software modularity by allowing the construction of independent communicatiol_ streams I)_.'-

tween processes, thereby ensuring that. messages sen! in one phase of an application ar(, n,)l

incorrectly intercepted by another ph&se. Communication contexts are particularly important

in allowing libraries that make tnessage t)assing calls to be used safely withirl a_l al)l)li(:atio11.
I

The point her_, is that the application developer ha.,_no way of knc)wing if th(, tag, group, alld

rank completely disambiguate the message traffic of different libraries and l.h_,rest of l,h_' al)l,li-

cation. Context provides an additional criterion for nlessag,' s_,l_'ction, and h_,nc_' l)('rHlils th,_

construction of independent tag spaces.

If communication contexts are not used there art, two ways in which a call t(_ a library

routine can lead to unintended behavior. In the first case the pr()cesses enter a library routint,

synchronously when a send has been initiated for which thf, llmtcllillg roceiv(, is not p()st_'(J illltil

, after the ii|)rary call. In this case th(, message may b_,i_icorr(wtly roc_,,iv(,dill tit,, library rrJlllirlt..

The second possibility arises when diit'eren! proc,rsses eljter a library r()utin_, asyrichr(m(msly,

. a.s shown i_ th__ example in Figure 2, resulting m nomtot_,rtl_jnisti(" t_,havi(_r, I[' the. [)r_:_ra_l_

behaves correctly processes (9and 1 each receive: _ m_:ssag_ t'rt)_ l)r()('oss 2, usillg a wil(lcardo(I

-6-

Process0 Process1 Process2

[recv(any)I_
=,

Figure 2: Use of contexts, Time increases down tilt' page, Nunlbers in parentheses indicate t,lw
process to which data are being sent, or received, The gray shaded area represents the library
routine call. In this case the program behaves as intended. Note that the second message sent
by process 2 is received by process 0, and tha! [,he nlessage sen[by process 0 is received by
process 2.

Process0 Process1 Process2

'recvlany) iSe d(1)l

i , iii !,

:':mcvi=i:i''-;: recv(2) ,i l

Figure 3: Unintended behavior of program. In this ca._e the message from process 2 to process
0 is never received, and deadlock results.

selection criterion to indicate that they are prepared to receive a nmssage fronl any process, Ttw

three processes then pass data around in a ring within the library routine. If conlmunicatiozl

contexts are not used this program may intermittently fail. Suppose we delay the s(:_ding of

the second message sent by process 2, for example, by inserting some computation, a,_ shown

in Figure 3. In this case the wildcarded receive in process 0 is satisfied by a message sent

from process l, rather than from process 2, and deadlock results, By supplying a different

communication context to the library foul in(, we can ensure, that the program is executed

correctly, regardless of when the processes enter th_ library routine

_

3.1.3. Communicator Objects
e

The "scope" of a communication operation is specified by th_ communication context used,

and the group, or groups, involved, l_) a collective communication, or in a point-t(r-pointii

communication between nlembers of the same group, only one group needs to be specitied, and

the source and destination processes arv given by their rank within this group. In a point-to-

point communication between processes in different groups, two groups must. be specified to

define the scope. In this case the source and destination processes are_ given by their ranks

within their respective groups. In MPI abstract, opaque objects called "communicators" are

used to define the scope of a communication operation. In intragroup communication involving

members of the same group a communicator can be regarded as binding together a context and

a group, The creation of intergroup communicators tot communicating between) processes in

different, groups is still under discussion within the MPI Forum, and so will not be discussed

here.

3.2. Application Topologies

In many applications the processes are arranged with a particular topology, such as a two-

or three-dimensional grid. MPI provides support, for general application topologies tha¿ are

• specified by a graph in which processes that communicate a significant amount are connected

by an arc. If the application topology is an n-dimensional Cartesian grid then this generality

. is not needed, so as a convenience MP! provides explicit, support for such topologies. For a

Cartesian grid periodic or nonperiodic boundary conditions may apply in azly specified grid

dimension. In MPI a group either has a Cartesian or graph topology, or no topology.

In MPI, application topologies are supported by an initialization routine, MJ't_(;lt^J'l! or

MPI_CART, that specifies the topology of a given group, a function MPI_INQItANN tha! d__-

termines the rank given a location in the topology associated with a group, and the. inverse

function MPI_INQLOCthat determines where a process is in the topology. In addition, the roli-

tine MPI_INQMAP returns the topology associated with a given group, and for a group with a

" r 'Ca tesmn topology, the routine MPI_INQCAWI _ gives the size' and periodicity of the topology

In addition to removing from the user the burden of having to write code to translate

between process identifier, as specified by group and rank, and location m the topology, MPI

also:

1. allows knowledge of the applicatioz_ topology to be _,xploited in ord_'r I(, _flici_r_lilya.,_sigrj

processes to physical processors,

- 2. provides a routine MPI_PARTC for partitioning a (:artesian grid into hyperplan_, groups

by removing a specified set of dimensions,
i

I

-8-

3. provides support for shifting data along a specified dimension of a Cartesian grid, and

By dividing a Cartesian grid into hyperplane groups it. is possible to perform collectiw' commu-

nication operations within these groups. In particular, if all but one dimension is removed a set It

of one-dimensional subgroups is formed, and it is possible for example, to perform a multicast

in the corresponding direction.

Support, for shift operations is provided by a routine, MPI_SHtFT..ID, that returns the ranks

of the processes that a process must, send data to, and receive data from, when participating

in the shift. Once the source and destination process are known for each process, the shift

is performed by calling the routine MPI_SENDRECVthat, allows each process to send to one

process while r_ceiving from another. In a circular shift, each process sends data to the process

whose location in the given dimension is obtained by adding a specified integer (which may be

negative) to its own location, modulo the number of processes in that dimension, lu an end-off"

shift each process determines the rank of its destination process by adding a specitied integer

to its own rank, but if this exceeds the number of processes in the given dimension, or is less

than zero, then no data are sent. If the Cartesian grid is periodic in the dimension in which

the shift is done, then MPI..SHIFTAD returns source and destination processes appropriate for

a circular shift. Otherwise MPI..SHIFT_ID returns source and destination processes appropriate

for an end-off shift.

3.3. Point.to.Point Communication
m

3.3.1. Message Selectivity

In MPI a process involved in a communication operation is identified by group and rank with

that group. Thus,

Process ID = (group, rank)

In point-to-point communication, messages rr',_, be consiciered labeled by communication con-

text and message tag within that, context. Thus,

Message ID _= (context, tag)

When sending or receiving a message the process and message identifiers must be specified. The

group and context, which define the scope of the communication operation, are specified by

means of a communicator object in the argument list of the send and receive routines. The rank

and tag also appear in the argument list. A message sent in one scope can only be received

in a different scope, so the communicator objects specified by the sead and receive routizles

must, match. The group and context components of a communicator may not be wildcarded.

Within a giw_n scope, message selectivity is by rank and tag. Either, or both, of these may I)e

wildcarded by a receiving process to indicate that the corresponding selection criterion is to be

• . I_¸

-9-

MPI_SEND(
IN start_of_buffer

. IN number_of_items

IN datatype_of.items
IN destination_rank

IN tag
IN communicator)

MPI_RECV(
OUT start_of_buffer
IN ma_x_number_of_iteros

IN datatype_of_iteros
IN source_rank

IN tag
IN communicator

OUT return_status_object)

Figure 4: Argument lists for tile blocking send and receive routines,

ignored, The argument lists for the block send and receive routines are shown in Figure 4.

• In Figure 4, the last argument to MPI_RECV is a handle to a return status object. This object

may passed to an inquiry routine to determine the length of the message, or the actual source

" rank and/or message tag if wildcards have been used, The argument lists for the nonMockmg

send and receives are very similaa" except that each returns a handle to an objecl that identifies

the communication operation. This object is used subsequently to check for completion of thp

operation, In addition, the nonblocking receive does not return a return status object. Instead

the return status object is returned by the routine that confirms completion of the receive

operation.

3.3.2.General Datatypes

All point-to-point message passing routines in MPI take as an argument the datatype of t.twI
data communicated. In the simplest case this will be a primitive datatype, such as an integer

or floating pelt,:, number. However, MPl also supports more general datatypes, and thereby

supports the ¢ommunication of array sections and structures involving combinations of primit iw,

datatypes.

A general datatype is a sequence of pairs of primitive datatypes and iIlle_er byte displacp-

ments Thus.

Datatype = { (typeo, dispo), (type 1,disp 1)..... (typen-t. disl,,,__) }

- 10-

Together with a base address, a datatype specifies a communication buffer. General datatypes

are built up hierarchically from simpler components. There are four basic constructors for

datatypes, namely the contiguous, vector, indexed, and structure constructors. We will now

discuss each of these in turn.

The contiguous constructor creates a new datatype from repetitions of a specified old

datatype. This requires us to specify the old datatype and the number of repetitions, n.

For example, if the old datatype is oldtype = { {double, 0), {char, 8)} and n = 3, then the

new datatype would be,

{ (double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40) }

It should be noted how each repeated unit in the new datatype is aligned with a double word

boundary. This alignment is dictated by the appearance of a doable in the old datatype, so

that the extent of the old datatype is taken as 16 bytes, rather than 9 bytes.

The vector constructor builds a new datatype by replicating an old datatype in blocks at

fixed offsets. The new datatype consists of count blocks, f'ach of which is a repetition of

blocklen items of some specified old datatype. The starts of successive blocks are offset by

stride items of the old datatype. Thus, if cotmt = 2, blocklen = 3, and stride - 4 then

the new datatype would be,

{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40),

(doable, 64), (char, 72), (double, 80), (char, 88), (doable, 96), (char, 104)}

Here the offset between the two blocks is 64 bytes, which is the stride multiplied by the extent

of the old datatype.

The indexed constructor is a generalization of the vector constructor in which each block ha.s

a different size and offset. The sizes and offsets are given by the entries in two integer arrays,

B and I. The new datatype consists of count blocks, and the/th block is of length B[i'i items

of the specified old datatype. The offset of the start of the/th block is I [i] items of the old

datatype. Thus, if count = 2, B = {3, I}, and I = {64,0}, then the new datatype would be,

{ (double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104).

(double, 0), (char, S)}

The structure constructor is the most general of the datatype constructors. This constructor

generalizes the indexed constructor by allowing each block to be of a different datatype. Thus,

-I1-

IL.

, liP"

IlL I

left right
edge edge

Figure 5: Particle migration in a one-dimensional code. The left and right edges of a process
domain are shown. We shall consider just the migration of particles across the righthand
boundary.

in addition to specifying the number of blocks, count, and the block length and offset arrays, B

and I, we must also give the datatype of the replicated unit in each block. Let us assume this is

specified in an array T. The length of the ith block is B [i] items of type T[i3, and the offset of

the start of the ith block is I [i'[bytes. Thus, if cotmt=3, T = {NPI..FLOAT,oldtype, MPI_CHAR},

I = {0, 16, 26}, and B = {2, 1,3}, then the new datatype would be,

{ (f 1oat, 0), (f 1oat, 4), (double, 16), (char, 24), (chru:, 26) (char, 27) (char, 28) }

In addition to the constructors described above, there is a variant of the vector constructor

" in which the stride is given in bytes instead of the number of items. There is also a variant of

the indexed constructor in which the block offsets are given in bytes.

To better understand the use of general data structures consider the example of an appli-

cation in which particles move on a one-dimensional domain. We assume that each process is

responsible for a different section of this domain. In each time step particles may move from

the subdomain of one process to that of another, and so the data for such particles must be

communicated between processes. We shall just consider here the task of migrating particles

across the righthand boundary of a process, as shown in Figure 5. The particle data are stored

in an array of structures, with each entry in this structure consisting of tile particle position,

x, velocity, v, and type, k:

struct PsCruct { double x; double v; int k; };

The C code for migrating particles across the righthand boundary is shown in Figure 6.

• In Figure 6 the code in the first box creates a datatype, Ptype, that represents the Pstruct

structure for a single particle. This datatype is,

- PCype = {(double,O), (double,8), (int,16)}

In the second code box the particles that have crossed the righthand boundary are identified,

- 12-

struct Petruct particle[lO00] ;
MPI.datatYl_ Ptype, Ztype;
MPI_datatype Stype [3]-{MPI_double, MPI.double, MPI.int };
int Sblock[3]-{1, 1, 1};
int Sindex[3] ;
int Pindex [100] ;
int Pblock[lO0] ;

Sindex[O] - O; I
Sindex[l]= sizeof(double);
Sindex[2]- 2*sizeof(double);

MPI_typeJtruct (3, Stype, Sindex, Sblock, &Ptype);

j=O;
for (i=0; i<lO0O;i++)

if (x[i] > right.edge) {
Pindex[j] = i;
Pblock[j] = 1;
j++;}

MPI.type_indexed (j, Ptype, Pindex, Pblock, kZtype);
t,

MPI_type_coamit (Ztype) ;
MPI-_end (particle, I, Ztype, dest, tag, ¢o_);

Figure 6: Fragment of C code for migrating particles across the righthand process boundary

tt

and their index in the particle array is stored in Pindex. It is assumed that no more than

100 particles cross the boundary. The call to MPZ_type_indexed uses an indexed constructor
a

to create a new datatype, Ztype, that references all the migrating particles. Before sending the

data, the Ztype datatype must be committed. This is done to allow the system to use a different

internal representation for Z'cype, and to optimize the communication operation. Committing

a datatype is most likely to be advantageous when reusing a datatype many times, which is not,

the case in this example. Finally, the migrating particles are sent to their destination process,

dest, by a call to MPI_send. The offsets in the Ztype datatype are interpreted relative to the

address of the start of the particle array.

3.3.3. Communication Completion

Following a call to a nonblocking send or receive routine there are a number of ways in which the

handle returned by the call can be used to check the completion status of the communication

operation, or to suspend further execution until the operation is complete. MPI_WAIT does no!

return until the communication operation referred to by the input handle is complete. MPI_TEST

does not wait until the operation identified by the input handle is complete, but, instead returns

a logical variable that. is TRUE if the operation is complete, and FALSE otherwise. If th_ input

handle refers to a receive operation, thvn MPI_WAITand MPI_TEST both return a handle to a

- 13-

return status object. This handle carl subsequently be passed to a query routine to determine

" the actual source, tag, and length of the message received.

An additional two routines exist for waiting for the completion of any or all of th(_ handles

" in a list of handles. Similarly, there are variants of the test routine that check if all, or at least

one, of the communication operations identified by a list of handles is complete.

3.3.4. Persistent Communication Objects

MPI also provides a set of routines for creating communication objects that completely describe

a send or receive operation by binding together all the parameters of the operation. A handle,

to the communication object so formed is returned, and may subsequently be passed to the

routine MPI_STARTto actually initiate the communication. The MPI_WAITroutine, or a similar

completion routine, must be called to ensure completion of the operation, a,_discussed in Sec:,ion

3.3.3.

Persistent, communication objects may be used to optimiz(: communication performance,

particularly when the same communication pattern is repeated many times in an application.

For example, if a send routine is called within a loop, performance may he improved by creating

a communication object that describes the parameters of the send prior to entering the loop,

and then calling MPI_STaRT inside the loop to send the data on each pass through the loop.

There are four routines for creating communication objects: three for send operations,

corresponding to the standard, ready, and synchronous modes, and one for receive operations.

A persistent communication object must be deallocated when no longer needed.

3.4. Collective Communication

Collective communication routines provide for coordinated communication among a groul) of

processes [1,2]. The process group is given by the communicator object that is input to th, _

routine. The MPI collective communication routines have been designed so thai their syntax

and semantics are consistent with those of the point-t(r-point routines, q'|w collective com-

munication routines may, but, do not have to be, implemented using the MPi point-to-point

routines. Collective communication routines do not have message tag arguments, though an

implementation in terms of the point-to-point routines rnay need to make use of tags. A col-

lective communication routine must be called by all members of the group with consistent

arguments. As soon as a process has completed its role in the collectiw_ communication it

. may continue with other tasks. Thus, a collective communication is not nec_ssarily a t)arri,,r

synchronization for the group. MPI does not include Jlonblocking forms of the collectiw, cot,-

• munication routines. MPi collective communication routines are. divided into two broad cla.,ises:

data movement routines, and global computation routines.

-14..

3.4.1. Collective Data Movement Routines

There are 3 basic types of collective data movement routine: broadcast, scatter, and gather.

There are two versions of each of these three routines: in the one-all case data are communicated

between one process and all others; in the all-all case data are communicated between each

process and all others. Figure 7 shows the one-all and all-all versions of the broadcast, scatter,

and gather routines for a group of six processors.

The all-all broadcast, and both varieties of the scatter and gather routines, involve each

process sending distinct data to each process, and/or receiving distinct data from each process.

In these' routines each process may send to and/or receive from each other process a differen!

number of data items, but the send and receive datatypes must be consistent. To illustrate this

point consider the following example in which process 0 gathers data from processes l and 2.

Suppose the receive datatype in proces:, 0, and the send datatypes in processes 1 and 2 are as

follows,

in process 0: recvtype={t:at, 0), (float,4)}

In process 1: sendl;ype={(int, 0), (float, 4), (in1;, 96), (float, i00), (int, 32), (flea1;, 36)}

In process 2: sendtype={(iat, 16), (float, 20), (inZ,48), (:float, 52)}

Such a situation could arise in a C program in which an indexed datatype constructor has been

applied to an array of structures, each element of which consists of an integer and a floating-

point number. Although the datatypes are different in each process, they are type eonszstent,

since each consists of repetitions of an integer followed by a float.

The one-all broadcast routine broadcasts data from one process to all other processes in the

group. The all-all broadcast broadcasts data from each process to all others, and on completion

each has received the same data. Thus, for the all-all broadcast each process ends up with the

same output data, which is the concatenation of the input data of all processes, in rank order.

The one-all scatter routine sends distinct data from one process to all processes in the group.

This is also known as "one-to-all personalized cornmunication". In the all-all scatter routine

each process scatters distinct data to all processes in the group, so the processes receive differenl

data from each process. This is also known as "all-tea-all personalized communication".

The communication patterns in the gather routines are the same as in the scatter routines,

except that the direction of flow of data is reversed. In the one-all gather routine one process

(the root) receives data from every process in the group. In the root process receives the

concatenation of the input buffers of all processes, in rank order. There is no separ;tle all-all

gather routine since this would just be identical to the all-all scatter routine, s¢, there, are 5
a

basic data movement routines.

15.

data _.......

i

, A0 A0
i - i

Ao...... one-allbroadcast , ,

" o. i._ Ao
Ao

ii ii ii i

AO

.... AO .

.......... J ,,,

-0............. ,o Go_Oo
B0 A0 B0 CO DO E0 F0.... _........ all-allbroadcast - - 1

Co ! "-i> _A° B0 C0 Do E° F°AoBoCoDOE0 Fo
- - _ ii i

E0 A0B O C0 DO E0 F0

F0 A0 B0 CO ,,,,DoEOLF0

t

A0 AI A2 A3 A4 A5 A0

• one-allscatter A1

......... '.... I _i__- > A2
..... , - rl,

.... . one-allgather A4

A5

A0 A1 A2 A3 A4 A5 A0 B0C0 _DO E0 F0
Ii , ,,,,,, ,

B0 B1 B2 B3 B4 B5 A B1 C D E1 F......... all-allscatter 1 1 1 ,1,,,

C0 C1 C2 C3 C4 C5 !-- .1_ D2 E2 F2
DO D1 D2 D3 D4 D5 w A3 B3 C3 E)3 E3 F3..

. E0 E1 E2 E3 E4 E5 A41 B4 C4 D4 E4 F4

i FO F1 F2 F3 F4 F5 A5_B5 C5 D5 E51 F.5;

Figure 7: One-all mid all-all versions of t|le broadca._t, scatter, and gather routines for a group
of six processes, In each c_e, each row of boxes represents data locations in one process,
Thus, in the one-all broadca._t,, initially just Lhefirst, process contains the data Ac_,but after
the broadcast all processes contain it,

16-

In addition, MPI provides versions of all these 5 r¢,utines, except the one-M] broadcast, in

which the send and receive datatypes are type consistent as discussed above, but in which each ,

process is allocated a fixed size portion of the communication buffer. These bring the total

number of data movement routines to 9.

3.4.2. Global Computation Routines

There are two basic global computation routines in MPI: reduce and scan. The reduce and scan

routines both require the specification of an input function. One version is provided ill which

the user selects the function from a predefined list; in the second version the user supplies (a

pointer to) a function that is associative and commutative', in the third version the user supplies

(a pointer to) a function that is assocl _tive, but not necessarily commutative. In addition, there

are three variants of the reduction ,,::'atines. In one variant the reduced results are returned to

a single specified process; in tile second variant the reduced results are returned to all processes

involved; and, in the third variant the reduced results are scattered across the processes involved.

This latter variant is a generalization of the fold routine described in Chapter 21 of [6]. Thus,

there are 12 global computation routines, and a total of 21 collective communication routines

(or 22 if we include the routine for pertbrming a barrier synchronization over a process group).

The reduce routines combine the values provided in the input buffer of each process using

a specified function. Thus, if De is the data in the process with rank i in the group, and _ is

the combining function, then the following quantity is evaluated,
p

l) = Do _b DI • D'2¢, ' " _ D,,_ _ (1)

where n is the size'of the group. Common reduction operations are the evaluation ot' the

maximum, minimum, or sum of a set of values distributed across a group of processes.

The scan routines perform a parallel prefix with respect to an associative reduction operation

on data distributed across a specified group. On completion the output buffer of the process

with rank i contains the result of combining the values from the processes with rank 0, l i,

i. e,,

_I = Do ¢_Dl _-_D:__,,._ Ds (2)

It should be noted that segmented scans can be performed by first creating distinct sub-

i groups for each segment.

4. Summary

This paper has given an overview of the main features of MPI, but has not described the

detailed syntax of the MPI routines, or discussed language binding issues, These will be full)'

I

-17-

discussed in the MPI specification document, a draft of which is oxpected to be available by the

• Supercomputing 93 conference in November i993,

The design of MP1 ha/_ been a cooper tire effort, involving about fit) people. Much of the

" discussion has been by electronic mail, and has been archived, along with copies of the MP!

draft and other key documents. Copies of the archives and documents may be obtained by

netlib, For details of what is available, and how to get it, please send the nmssage "send index

from mpi" to netltbQornl.gov,

Acknowledgments

Many people have contributed to MPI , SO it is not possible to acknowledge them all individ-

ually, However, many of the ideas presented in this paper are due to the MPI subcommittee

chairs: Scott Berryrnan_ James f',ownie, Jack i)ongarra, AI (;eist, William (;rol, p, I/elf llempel,

Steve Huss-Lederman, Anthony Skjellum, Marc Snir, and Steven Zenith. Lyndon (',larke, Bob

Knighten, Rik Littlefield, and Rusty Lusk haw: also made important contributions, as has also

Steve Otto, the editor of the MI_Ispecification docum_mt,.

5. References

, [1] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. He, C,-T, lto, S, Kil)nis, and Marc Snir, (:el:

A portable and tunable collective communication library for scalable l)arallel computers,

, Technical report, IBM T. J, Watson Research (',enter, 1993. Preprint.

[2] J. Bruck, It. Cypher, P. Elustondo, A. tlo, C,-'I'. tlc_, S. Kipnis, and Marc Snir ('.c!:

A portable and tunable collectiw, communication library h_r scalable parallel computers.

Technical report, IBM Almaden Research (',enter 1993. Preprint.

[3] J, J. Dongarra, It. Hempel, A, J, (;, tley, and 1), W Walker, A i_rop(J_al for a user

level, message passing interface in a distributed menmry envir_mment, 'l'echtlical llepor_

TM-12231, Oak Ridge National Laboratory, February 1993.

[4] Edinburgh Parallel Computing (_',entre, University of Edinburgh. ClllMI' (,'onc_pts, Juno

1991.

[5] Edinburgh Parallel Computing Centre, University of Edinburgh, CHIMP Verswn !.0

Interface, May 1992.
4

[6] G. ('. Fox, M. A. Johnson, (;. A, Lyzenga, S, W, Otto, J. K. Sainlon, and I). W. Walk_,r_

. Soh,tn,q Problems on Concurrent Procrs,_ors, voillmr, 1. |'r_nti¢_, Jlall, l':nglt,w_,o(I ('.litl_,

N.J., 1988.

- 18-

[7]D. Frye,R. Bryant,H. Ho, R, Lawrence,and M, Snir.An externaluserinterfacefor

scalableparallelsystems.Technicalreport,IBM, May 1992.

[8]R. Hempel. The ANL/GMD macros(PARMACS) infortranforportableparallelprogram-

ruingusingthemessagepassingprogrammingmodel _ users'guideand reference'manual.

Technicalreport,GMI), Postfach1316,I)-5205Sankt Augustin l,Germany. November

1091.

' V[9]R. Hempel,ll.-C.Boppe,and A, Supalo .A proposalfora PAIIMACS libraryinterfacr.

Technicalreport,GMD, Postfach131fi,D-5205SanktAugustinl,Germany, October1992.

[I0]Ewing Lusk, Ross Overbeek,et al. PortableProfl_amsfor ParallelProcessor,_.|loll,

Rinehart.and Winston,Inc.,1987.

[11] nCUBE Corporation. nCUSE '_' Programmers Guzdc, r/LO, December 1990.

[12] Parasoft Corporation, Express Version 1,0: A Communtcatw_ L'nmronm,mt /or Parallel

Computers, 1988,

[13] Paul Pierce, The NX/2 operating system In Proceedings of the, Tb,trd (onfe enc_ orl

Hypercube Concurrent Computers and Apphcattons, pages 384. 390, ACM Press, 19_(_.
m

[14] A, Skjellum and A. Leung, Zipcode: a portabl_, multicomputer communication library

atop the reactive kernel, In D W, Walker and Q, F, Stout, editors, Proceedings of thf
lm

Fifth Distributed Memory Concurrent Computmq Conference, pages 767. 776, IEi!_i" l'res,_,

1990,

[15] A. Skjellum, S. Smith, C, Still, A, Leung, and M. Morari. The Zipcod_, ntessag_, pa.,_sing

system. Technical report, Lawrence Livermore Nati(mal Laboratory', Seplenll.,r 1992

[16] D, Walker. Standards for message passing in a distributed memory environmolJt. Techz_ic_tl

Report TM-12147, Oak Ridge National l, aboratory, August 1992,

L

- 1_)-

, ORNL/TM-12512

" INTERNAL DISTRIBUTION

1, B. R. Appleton 19. T. H, Rowan
2. J. Choi 2(}-24, R. F. Sincovec

3-4, T, S, Darland 25-29.D, W. Walker
5. E. F. D'Azevedo 30-34. I_, C. Ward

6. J. J. Dongarra 35, P. II. Worley
7. G. A. Geist 36. Central Research Library

8. L. J, Gray 37. ORNI, Patent Office
9. M. R. Leuze 38, K-25 Applied Technology Li-

10 E,G, Ng brary
il. C. E. Oliver 39. Y-12 TechnicalLibrary

12. B, W. Peyton 40. Laboratoryl{ecords-R('

13_.17.S. A. Raby 41-42. l,aboratoryRecordsDepartment
18. C. tl. Romine

EXTERNAL DISTRIBUTION

43. Thomas A. Adams, NCC, and OSC / NRaD, C,ode 733,271 Catalina Blvd., Satt

Diego,CA 92152-5000
w

44, RobertJ,Allen,DareaburyLaboratory,S,E,R.C.,I)aresbury,WarringtonWA4

4AD, UnitedKingdom

45, Giovanni Aloisio, Dipt. di Elettrotecnica ed Elettronica, Universita di Bari, Via
Re David 200, 70125 Bari, Italy

46. Ed Anderson,MathematicalSoftwareGroup,('.rayResearchIncorporated,655F

Lone Oak [)rive,Eagan,MN 55121

47. Mark Anderson, Rice University, Department of (',o|||puter Sciencv, I'. (). Box
1892, Houston, TX 77251

48. ian G. Angus, Boeing (',omputer Services, M/S 7L-22, P. (). Box 24346, Seattle,,
WA 98124-0346

49. Marco Annaratone, Digital Equipn|ent Corloratmn, 14(i Main Strf,et MLOl-
5/U46, Maynard, MA 01754

50, Vaaanth Bala, IBM T, J, Watson Research (:e||ter, P. O. Box 218, Yorktown

Heights, NY 10598

51. Donald M. Austin, 6196 EECS Bldg ,, University of Minm,sota, 200 ilni(m Strt,_,t,
S,E,, Minneapolis, MN 55455

II

52, Joseph G. Baron, IBM (:orporatio||, AWS Advanced Produc! I)evelopment, 114{)()
Burnet Road, Austin, TX 787,)8-,149,t

e

53, Edward tt, Barsis, Computer Science am| Mathematics, !'. O. Box 5800, Samlia
National Laboratories, Albuquerque, NM 87185

- 2(I -

54, Eric Barszcz, Mail Stop "I'-045, NASA Ames Research Center, Moffel Field, CA

94035

55. Eric Barton, Meiko Limited, 650 Aztec West, Bristol BSI2 4SD, (Jnfled Kingdonl

56. A. Basu C-DAC 2/1 Brunton Road Bangalore 560 025 India

57 Adanl Beguelin, Carnegie Mellon University, School of ('omputer Science, 50(1(}
Forbes Avenue, Pittsburgh, PA 15213-3890

58. Siegfried Benker, institute for Statistics and Computer Science, (Iniversity of Vi-
enna, A-1210 Vienna, Austria

59. Ed Benson, Digital Equipment ('orp., i46 Main Street, ML01-5/II46, Maynard.
MA 01754

60. Roger Berry, NCUBE Corporation, 4313 Prince ttoad, I{ockvillv. MD 20853

61. Scott Berryman, Yale (In|versify, Computer Science !)epartment, 51 Prospect
Street, New Haven, CT 06520

62. Biondo Biondi, Stanford University, I)epartment of Geophysics, Stanford, (_'A
94305

63, Robert Bjornson, Department of Computer Science, Box 2158 Yale Station, New
Haven, CT 06520

64. Peter Brezany, Institute for Statistics and Computer Science, University of Vienna,
A-1210 Vienna, Austria Ib

65, Roger W. Brockett, Wang Professor of EE and CS, Division of Applied Sciences,
Harvard University, Cambridge, MA 02138

J

66. Eric Browne, University of Cambridge, l)epartment of Earth Science_, Downing
Street, (',ambridge CB2 3EQ, United Kingdom

67 Clemens H. Cap, University of Zurich, Department of Computer Sciencv, Win-
terthurerstr. 190, CH-8057 Zurich, Switzerland

68. Trevor Carden, Parsys Ltd., Boundary |louse, Boston Road, London W7 2QE,
United Kingdom

69_ Siddhartha Chatterjee, RIACS, Maid Stop T045.1, NASA Ames Research ('enter,
Moffett Field, CA 94035-100(}

70. [lsing-bung Chen, University of Texas-Arlington, CSE DepartnJent, Box 19{115.
Arlington, TX 76019

71, Doreen Y. Cheng, Computer Science Corporation, NASA Ames Research ('enter,
Mail Stop 258-6, Moffetl Field, CA 94035

72. Kuo-Ning Chiang, National Center for |ligh-Perforn|ance ('omputing. P,(). lh)x
19-13(i, Hsinchu, Taiwan R.O.(_

73, Lyndon Clarke, Edinburgh Parallel Computing ('entre, Janws ('lerk Maxwell
Building, The King's Buildings, Maylield Road, Edinburgh EH9 3JZ, (_nited Kiag-
dora

, i lla:iIII II III I IIII IIII II

I

-21 -

74. Robert Cohen, Department of Computer, trance, Australian National University,
, GPO Box 4, Canberra 2601, Australia

75. Michele Colajanni, Dip. di Ingegneria Elettronica, Universita' di Roma "Tor Ver-

• gata" Via della Ricerca Scientiflca, 00133 - Roma, Italy

76. Jerenly Cook, Parallel Processing Laboratory, Dept. of lnformatics, University of
Bergen, High Technology Centre, N-5020 Bergen, Norway

77. Manuel Eduardo C. D. Correia, Centro de Informatica, Universidade do Porto

(CIUP), Rua do Campo Alegre 823, 4100 Porto, Portugal

78. Jim Cownie, Meiko Limited, 650 Aztec West, Bristol BSI2 4SD, United Kingdom

79. Michel Dayde, CERFACS, 42 Avenue G. Coriolis, 31057 Toulouse (:edex, France

80. David DiNucci, Computer Sciences Corporation, NASA Ames Research (?,enter,
M/S 258-6, Moffet Field. CA 94035

81. Mark Debbage, University of Southampton, Dept. of Electronics and (:omputer
Science, Highfieid, Southampton SO9 5NH, United Kingdom

82. Dominique Dural, Telmat lnformatique, BP 12, Rue de I'industrie, 6836(/Soultz,
France

83. "Ibm Eidson, Theoretical Flow Physics Branch, M/S 156, NASA Langley Research
Center, Hampton, VA 23665

o 84, VictorEijkhout,UniversityofTennessee,107 Ayres Hall,Departmentof 'o(,m-

puterScience,Knoxville,TN 37996-1301

, 85. Anne Elster, Cornell University, Xerox DRI, 502 Engineering and Theory Center,
, Ithaca, NY 14853

86. Rob Falgout, Lawrence Livermore National Lab, L-419, P, O. Box 808, Livermore,
CA 94551

87. Jim Feeney, IBM Endicott, R. D. 3, Box 224, Endicott, NY 1376(I

88. Edward Felten, Department of Computer Science, University of Washington, S(rttl,-
tie, WA 98195

89. Vince Fernando, NAG Limited, Wilkinson ttouse, Jordan tlill Road, Oxford OX2
8DIL United Kingdom

90 Sam Fineberg, NASA Ames Research (;enter, M/S 258-6, Moffett Field, (:A 94035-
1000

91, Rand.)' Fischer, 615 NW 32st Place, Gainesville, FL 32607

92. Jon Flower, Parasoft (',orporation, 25(!(} E. Foothill Blvd., Suite 205, l'a.,_adena.
CA91107

Q

93. David Forslund, Lo,_ Alamos National Laboratory, Advanced (:omputing Labora-
tory, MS B287, Los Alamos, NM 87545

94. Geoffrey C, Fox, Syracuse University, Northeast Parallel Architectures (',enter, 111
College Place, Syracuse, NY 13244-41(}0

II I I

- 22 -

95. Lars Frellesen, Math-Tech Aps, Kildeskovsvej 67, 2820 f;entofte, DK - Denmark

96. Josef Fritscher, Computing Center, 'l'echnical University of Vienna, Wiedner tlaupt-
strasse 8-10, A-1040 Vienna, Austria

97. Daniel I). Frye, IBM Corporation, Dept. 49NA / MS 614, Neighborhood Road,

Kingston, NY 12401

98. Kyle Gallivan, University of Illinois, CSItD, 465 CSRL, 1308 West Main Street,
Urbana, IL 61801-2307

99. J. Alan George, Vice President, Academic and Provost, Needles tlall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G 1

100. Mike Gerndt, Zentralinstitut fuer Angewandte Mathenlatik, Forschungszentrunl
Juelich GmbH, Postfach 1913, D-5170 Juelich, Germany

101. lan Glendinning, University of Southampton, Dept. of Electronics and (',oral).
Sci., Southampton SO9 5NIl, United Kingdom

102. Gene H. Golub, Department of Computer Science, Stanford IJniversity, Stanford,
CA 94305

103. Adam Greenberg, Thinking Machines Corporation, 245 First Street, (:ambridge,
MA 02142-1214

104. Robert Greimel, AVL List Gmbh., Department TSS, Kleiststrasse 48, A-8020
Graz, Austria,

105. WiUiam Gropp, Argonne National Laboratory, Mathematics and Computer Sci-
ence, 9700 South Cass Avenue, MCS 221, Argonne, IL 60439-4844

106. Sanjay Gupta, ICASE, Mail Stop 132C, NASA Langley Research Center, Hamp- °
ton, VA 23665-5225

107. John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames, IA
50O11

108. Fred Gustavson, IBM T. J. Watson Research Center, Room 33-260, P. O. Box

218, Yorktown Heights, NY 10598

109. Robert Halstead, Digital Equipment Corporation, Cambridge Research Lab., One,
Kendall Sq, Bldg. 700, Cambridge, MA (12139

ll0. Robert J. Harrison, Battelle Pacific Northwest, Laboratory, Mail Stop K1-90, I'.
O, Box 999, Richland, WA 99352

111. Leslie Hart, NOAA/FSL, R/E/FS5,325 Broadway, Boulder, CO 80303

l l2. Tom Haupt, Syracuse University, Northeast Parallel Architectures f',enter, I iI
College Place, Syracuse, NY 13244-4100

113. Michael Heath, University of Illinois, NCSA, 4157 Beckmaa lnstitut_ _, 405 North *
Mathews Avenue, Urbana, I!, 61801-2300

114. Don Heller, Center for Research on Parallel (',omputation, Rice 1Jniversity, P.O.
Box 1892, ltouston, TX 77251

23 -

115. Rolf Hempel, GMD, Schloss Birlinghoven. Postfach 13 16, D-W-5205 Sankl Au-
• gustin 1, Germany

116. Tom Henderson, NOAA/FSL, R/E/FS5.32,5 Broadway, Boulder, CO _303

" 117. Anthony J. G. Hey. University of Southampton, Dept of Electronics and ('omp.

Sci., Southampton SO9 5NH. l!nited Kingdom

118. Mark Hill, University of Southampton, Dept, of Electronics and Comp. Sci.,
Southampton SO9 5NH, United Kingdom

119. C.T. Howard Ho, IBM Almaden Researcll Center, K54/802,650 Harry Road, Sail
Jose. CA 95120

120, Rand)' Holmes, IBM Corporation, High Performance Computing Services, 1507
LBJ Freeway, Dallas. TX 75234

121, Gary W. Howell, Florida Institute of Technology, Department of Applied Mathe-
matics, 150 W. Univeristy Blvd,, Melbourne, FL 32901

122_ ChengchangHuang, 2814 Beau Jardin, Apl. 301, Lansing. M1 48910

123. Steve Huss-Lederman, Supercomputing Research ('enler, 17100 Science I)riw,,
Bowie, MD 20715-4300

124. Joefon Jann, IBM T.J_ Watson Heseareh (_enter. P. O. Box 218. Yorktown Heights
NY 10598

, 125. S. Lennarl Johnsson, Thinking Machines (;orporation, 245 First Street, (_am-
bridge, MA 02142-1214

. 126. Charles gung, IBM Kingston, 67LB/MS 614. Neighborhood Road, Kingston, NY
12401

127. Edgar T. Kalns, Michigan State University, Advanced Computing Systems Lal_,
Department of Computer Science, Easl Lansing. MI 48824

128. Malvyn H. Kalos, Cornell Theory Center. Engineering and Theory ('enter Bldg.,
Cornell [!niversity, Ithaca, NY 14853-3901

129. John Kapenga, Departnlent of Compute_ Science, Western Michigan liniversuty.
Kalamazoo. M! 49008

130 Hans Kaper. Mathematics and Computer Science Division, Argonne National l,aJ,-
oratory, Bldg. 221. 9700 South (;ass Avenue, Argonne, II, 60439

131. Udo Keller, PALLAS GmbH, Hermuelheimer Strasse 10, D-W5040 Bruehl, (;er-

man)'

132. Ken Kenned)'. Rice l.lniversi,s', Departmen! of Compuler Science, P. O. P,ox 1892.
Houston. TX 77251

• 133, Ronan Keryell. Ecole Nationale Superieure des Mines de Paris, (:entre de liecherch_,
en lnformalique. 35, Rue Saint-ttonore, 77305 Fomain_,bleau (_edex, Franc,.

" 134. Shlomo Kipnis, IBM T. J, Watson Research (:enter. P() Box 21_, Yorklown
Heights. NY 10598

24-

135. Robert L. Knighten, Intel Corporation, Supercomputer Systems Division, 15201
NW Greenbrier Parkway, Beaverton, OR 97006

136. Charles Koelbel, Rice University, CITI/CRPC, P. O. Box 1892, Houston, TX
77251

137, Edward Kushner, lntel Corporation, 15201 NW Greenbrier Parkway, Beaverton,
OR 97006

I38. Pierre Lagier, 24, Avenue de l'Europe, 78141 Velizy Villacoublay, Franc_.

139. Derryck Lamptey, National Transputer Support Centre, University of Sheffield,
Sheffield, United Kingdom

140. Falk Langhammer, Parsytec Computer GmbH, Juelicher Strasse 338, D-510() Aachen,
Germany

141. Randolph Langley, Florida State University, 400 SCL, B-186, Tallahassee, FL
32306

142. Bob Leafy, San Diego Supercomputer Center, P. O. Box 85608, San Diego, (:A
92186-9784

143. Bruce Lea,sure, Kuck and Associates, Inc., 1906 Fox Drive, Champaign, IL 6182(1

144. James E. Leiss, Rt. 2, Box 142C, Broadway, VA 22815

145. Eric Leu, IBM Almaden Research Center, 650 Harry Road K54/802, San ,lose,
CA 95123

D

146. David Levine, Argonne National Laboratory, MCS 221 C-216, Argonne, IL 60439

147. John Lewis, Boeing Computer Services, Mail Stop 7L-21, P. O. Box 24346, Seattle,
WA 98124-0346

148. David Linden, Digital Equipment Corp., 146 Main Street, ML01-5/1_46, Maynard,
MA 01754

149. Rik Littlefield, Battelle Pacific Northwest Laboratory, Mail Stop K1-87, P. O. Box
999, Richland, WA 99352

150. Miron Livny, University of Wisconsin, Department of Computer Science, 1210
West Dayton Street, Madison, WI 53706

151. Rusty Lusk, Argonne National Laboratory, Mathematics and Computer Scienc(*.
9700 South Cass Avenue, MCS 221, Argonne, IL 60439-4844

152. Arthur B. Maccabe, Sandia National Labs, Dept. 1424, Albuquerque, NM 87185-
5800

153. Nell MacDonald, Edinburgh Parallel Computing Centre, James Clerk Maxwell
Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JZ. United Ki_ig-
dora

154. Peter Madams, nCUBE Corporation, 919 East Hillsdale Blvd., l:oster City, ('A
94404

155. Amitava Majumdar, University of Michigan, Department, of Nuclear Engineering,
Ann Arbor, MI 48109

- 25-

156. David P. Mallon, Leeds University, School of Computer Studies, Leeds LS2 9JT,

,, United Kingdom

157. Dan Cristian Marinescu, Computer Sciences Department, Purdue University, West.
, Lafayette, IN 47907

158. Tim Mattson, Scientific Computing Associates, Inc., 265 Church Street, New
Haven, CT 06510-7010

159, Oliver McBryan, University of Colorado at, Boulder, Department, of Coniputer
Science, Campus Box 425, Boulder, CO 80309-0425

160. Robert McLay, University of Texas at Austin, Dept, ASE-EM 60600, Austin, TX
78712

161, James McGraw, Lawrence Livermore National Laboratory, L-306, P. O. Box 8(18,
Livermore, CA 94550

162. Phil McKinley, A714 Wells Hall, Michigan State University, East Lansing, MI
48824

163. Piyush Mehrotra, ICASE, Mail Stop 132C, NASA Langley Research (:enter, Hamp-
ton, VA 23665

164. Paul Messina, California Institute of Technology, Mail Stop 158-79, 1201 E. Cali-
fornia Boulevard, Pasadena, CA ill 125

165. Moataz Mohamed, University of Oregon, Department of Computer Science, Eu-
o gene, OR 97403

166. Neville Moray, Department of Mechanical and Industrial Engineering, llniversity
. of Illinois, 1206 West, Green Street, Urbana, IL 61801

167. Charles Mosher, ARCO Exploration and Production Technology, 230() West Piano
Parkway, Piano, TX 75075-8499

168. Harish Nag, lntel Corporation, M/S CO4-02, 5200 Elam Young Parkway, tlills-
boro, OR 97124

169. Jonathan Nash, Leeds University, School of Computer Studies, Leeds LS2 ,qJT,
United Kingdom

170. Dan Nessett, Lawrence Livermore National Laboratory, L-60, Livermorc, ('A
9455(I

171 Lionel M. Ni, Michigan State University, l)ept, of Computer Science, A714 Wells
Hall, East Lansing, MI 48824-1027

172. Mike Norman, Edinburgh Parallel Computing (-:entre, James Clerk Maxwell Build-
ing, The King's Buildings, Mayfield Road, Edinburgh Ell9 3JZ, United Kingdom

173. James M. Ortega, Department o1"Applied Mathematics, Thorntotl Ilall, 17niversJly
" of Virginia, (_harlottesviile, VA 22901

174. Steve Otto, Oregon (;raduate lnstitule, I)el)artment of ('.onlputer Sci, ;rod l!:n_.,
" 19600 NW yon Neumann Drive, Beavert(m, OR 97006-1999

175. Andrea Overman, NASA Langley Research Center, MS 125, tlampton, VA 23665

26-

176. Peter S. Pacheco, University of San Francisco, Department of Mathematics, San
Francisco, ('.A 94117

i77. Cherri M. Pancake, Department of (_omputer Science, Oregon State University,
Corvallis, OR 97331-3202

w,

178. Raj Panda, IBM Corporation, Mail (:od__ E39/4305, 11400 Burne! Rd. , Austin,
TX 78758

179. David Payne. lntel Corporation, Supercomputer Systems Division, 15201 NW
Greenbrier Parkway, Beaverton, OR 97006

180. Arnulfo Perez, Centro de lntelJigencia Artifical, ITESM, Suc. De ('orreos "J" ('_.l'.
64849, Monterrey N.L., Mexico

181. K.S. Perivnayagam, Centre for I)evelopntent of Advanced Computing, Pune 11ni-
veraity Campus, Pune 411 007, India

182. Matthew Peters, Parallel and Distributed Processing, IBM UK Scientific ('.entre,

Winchester, United Kingdom

183. Garry Petrie, lntel MS CO5-01, 5200 NE Elam Young Parkway, llillsboro, OR
97124-6497

184. Greg Pfister, IBM Corporation, Mail Stop 9462, 11400 Burner Road, Austin, TX
78758-349'_

185. Jean-Laurent Philippe, ARCItIPEL S.A., PAE des Glaisins, I rue du Bulloz, F-
74940 Annecy-le-Vieux, France

186. Paul Pierce, lntel Corporation, Supercomputer Systems Divisio,l, 15201 NW (;reen-
brier Parkway, Beaverton, OR 97006

187. Robert J. Plemmons, Departn_ents of Mathematics and C,omputer Science, Box
7311, Wake Forest University Winston-Salem, NC 27109

188. James ('. T. Pool, Deputy Director, Caltech Concurrent Supercomputing Facility,
MS 158-79, California Institute of Technology, Pasadena, CA 91125

189. Steve Poole, 11631 Lima,]touston, TX 77099

190. Roldan Pozo, University of Tennessee, 107 Ayres llall, l)epartmen! of (_olnpuler
Science, Knoxville, TN 37996-1301

191. Angela Quealy, Sverdrup Technology, lnc., NASA Lewis Research (:ent_,r (;rtml,,
2001 Aerospace Pkwy, Brook Park, O11 44142

192. Padres Raghavan, University of Illinois, NCSA, 4151 Beckman lnstil.ute, 4(}5
North Matthews Avenue, Urbana, IL 61801

193. Sanjay Ranka, Syracuse llniversity, Northea.sl Parallel Architectures ('enter, Ill
College Place, Syracuse, NY 13244-41()0

194. Robber! van R,ellesse, Dept. of Computer Science, 4118 l,ipsorJ Hall, (:orrwll [ini-
versity, Ithaca, NY 14853

t

195. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

- 27-

196, Peter Rigsbee, Cray Research Incorporated, 655 Lone Oak Driw,, Eagan MN

,, 55121

197. Guy Robinson, European Centre for Medium Range Weather Forecasting, |{eading
o RG3 9AX, Berkshire, United Kingdom

198. Matt, Rosing, ICASE, Mail Stop 132C, NASA Langley l_esearch Center, tlampton,
VA 23665-522,5

199. Joel Saltz, ICASE, Mail Stop 132C, NASA Langley Research (:enter, llampton,
VA 23665-5225

200. Ahmed H, Sameh, CSRD, University of illinois 1308 West Main Street Urbana,
IL 61 i_01-2307

901. Erich Schikuta, C_ITI/CRPC Rice University, 13100 South Main, tlouston, TX
77005

202. Rob Schreiber, RIAC'S, Mail Stop T045-I, NASA Ames I_esearch (',enter, Mt)fbql
Field, CA 94022

203. David S. Scott, lntel Scientific Computers, 15201 N. %'. Greenbrier Parkway.
Beaverton, OR 97006

204. Eugen Schenfeld, NEC Research Institute, 4 Independence Way, Princeton, N,I
08540

205. Ricardo A. Schmutzer, Pontificia Universidad Catolica de Chile, l)epartnmnl of
,, Computer Science, Las Torcazas 212, La,,_Condes - Santiago, Chile

206, Mark Sears, Division 1424, Sandia National Laboratories, P O Box 5800, Albu-
,, querque, NM 87185-5800

207. Ambuj Singh, UC Santa Barbara, l)epartmenl of('omputer Science, Santa Bar-
bara, CA 93106

208. Chuck Simmons, 5(10 Oracle Parkway, 13ox 1i59414, l(edwood Shores. ('A 94065

209. Anthony Skjellum, Mississippi Stale University. l)epartment of('olni_uter Scien(:_,,
Drawer ('S, Mississippi State, MS 39762-5623

210. St.even (;. Smith, Lawrence IJvermore National Lab, 1,-419, 1'. (), Box _()_. l,lver.
more, (;A 94550

211. Marc Snir, IBM T. J. Watson Research ('enter, I'0 Box :218, ltooni 28-22{;, York-
town lleights, NY 10598

212. Karl Solchenbach, PALLAS Gmbtl, llermuelheinier Strasse III l)-5040 Bruehl (;er-.

many

213. ('harles tl. Still, [,awrence l,iw:rmore National l,ab, !,-416, 1'. () Box _118, i,iv,,r
tlmre, (:'.A 9455(1

4

214. Alain Stroessel, lnstitut l:rancais du Petrol_,, I'arallel Processin_ (;mUl,, Ill' :111
92506 Rueil Malmaison. l"rano,

II

215. Vaidy Sunderam, Emory University, Delft,. of Math and ('Oml)uler ,qcienc_., At-
lanta, GA 30322

- 28--

J

216, Mike Surridge, Univ, of Southampton Parallel Applications Centre, 2 Venture,
Road, Chilworth Research Centre, Southarnpton SOl 7NP, United Kingdom

217. Alan Sussman, University of Maryland, Computer Science Department, A. V.
Willianls Building, College Park, MD 20742

218. Paul N. Swartztrauber, National Center for Atmospheric Research, P. O. Box

3000, Boulder, CO 80307

219. Clemens-August Thole, GMD-I1.T, Schloss Birlinghoven, D-5205 Sankt Augustin
1, Germany

220. Bob Tomlinson, Los Alamos National Laboratory, Group C-8, MS B-272, Los
Alamos, NM 87545

221. Anne Trefethen, Engineering and Theory Center, Cornell University, Ithaca, NY
14853

222. Christian Tricot, ARCtIIPEL S.A., PAE des Giaisins, 1 rue du Bulloz, F-74940

Annecy-le-Vieux, France

223. Anna Tsao, Supercomputing Research Center, 17100 Science Drive, Bowie, MI)
20715-4300

224. Lew Tucker, Thinking Machines Corporation, 245 First Street, Cambridge:, MA
02142-1214

225. Robert van de Geijn, University of Texas, Departnmnt of Computer Sciences, TAI
2.124, Austin, TX 78712 *

226. Robert G. Voigt, National Science Foundation, Room 417, 1800 (; Street, N.W.,
Washington, DC 20550

227. Linton Ward, 11400 Burnet Rd, Austin, TX 78758

228. Dick Weaver, IBM M77/E365, 555 Bailey Ave, P. O. Box 49023, San Jose, CA
95161-9023

229. Tarrany Welcome, Lawrence Livermore National Lab, Massively Parallel Comput-
ing Initiative, L-416, P. O. Box 808, Livermore, CA 94550

230. Jim West, IBM Corporation, MC 5600, 3700 Bay Area Blvd., Houston, TX 77058

231. Stephen R. Wheat, Dept. 1424, Sandia National Labs, Albuquerque, NM 87185-
5800

232. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P. O.
Box 1892, Houston, TX 77251

233. Andrew B. White, Computing Division, Los Alamos National Laboratory, I', O.
Box 1663, MS-265, Los Alamos, NM 87545

234. Joel Williamson, Convex Computer (:orporation, 3000 Waterview Parkway, }tichard_
son, TX 75083-3851

235. Steve Zenith, Kuck and Associates, lnc,, 1906 Fox Drive, Champaign, IL {i1820-
7334

- 29 -

236. Mohammad Zubair, NASA Langley Research Center, Mail Stop 132(', Hampton,
VA 23665

Q

237. Office of Assistant Manager for Energy Research and Development, U.S. Depart,-
ment of Energy, Oak Ridge Operations Office, P. O, Box 2001 Oak Ridge, TN

" 37831-8600

238-239, Office of Scientific & Technical Information, P, O. Box 62, Oak Ridg_, TN 37831

