lllﬂ'-“- lﬂl\ e

O

I

U!\\“ \Hﬂz 2

\\\\\

Illll2 S
l\\l\ =

= lle

Qs
SLAC-PUB-6166
April 1993

(1)

%;,%95@ ot

AMS: Area Message Service for SLC

M. Cranc, R. Mackenzie, D, Millsom, M. Zelazny

Stanford Lincar Aceclerator Center, Stanford University, Stanford CA 943057

Abstract

The Area Message Service (AMS) is a TCP/IP based mes-

saging service currently in use at SLAC. A number of

projects under development here at SLAC require an ap-
plication level interlace to the 4.3BSD UNIX socket. level
communications functions usig TCP/IP over ethernet.
AMS provides connection management, solicited message
transfer, unsolicited message transfer, and asynchronous
notification of pending messages. AMS is written com-
pletely in ANSI ‘€7 and is currently portable over three
hardware/operating system/network manager platforms,
VAX/VMS!/Multinet?, PC/MS-DOS?*/Pathworkst, VM
68K /pSOS/pNA™. The basic architecture is a client-server
comuection where either end of the interface may be the
server, 'I'his allows for connections and data flow to be
mitiated from either end of the interface. Included in the
paper are detaild concerning the connection management,
the handhing of the multi-platform code, and the imple-
mentation pro ess.

1. Introduction

The principal reason for developing the AMS was to pro-
vide network services to hardware and software which was
not already supported by the Stanford Linear Collider
(SLCY control system. The initial demand for AMS came
from a specifie project, the Machine Protection System
(MPS) and was soon followed by projects being developed
off-line and off-site by various collaborators. In attempting
to satisfy the need to access the SLO control system and
database by diverse projects, the following requirements
were specified.

1. The message scrvice shall be able to be implemented
on a variety of hardware and software platforms and should
he casy to port to new configurations when needed. The
platforms to be supported initially were VAX/VMS, Mo-
torola 680X0/pSOS, PC/MS-DOS.

2. 'The message service shall rely on readily available
hardware, software and protocol support. This was seen
to have the following advantages: new implementadions

*Work supported by the Department of Energy, contract DE-
ACO3-TERF005 15

'VAX and VMS are trademarks of Digital Eouipment Caorporation

“Multinet is a trademark of TGV, Ine

"MS-DOS is a trademark of MicroSoft Corp.,

Prathworks is a trademark of Digital Equipment Corporation
"PRSOS and pNA are trademarks of 181

would be easier to generate, projects being developed at
other sites would get easier access to the appropriate hard-
ware and software, using widely used protocols would al-
low off-site developers to connect to the control system re-
motely for testing purposes and developers would be able
to test their software off-site in the same network environ-
ment as the production environment.

3. The network services must he able to be integrated
into the existing SLC network software.

4. The services shall not impose a particular paradigm:
for example, server-client, master-siave. Applications shall
select. which ever paradigm was appropriate for them,

5. The services shall provide a flexible naming scheme
which was suitable in a real-time environment.

6. AMS shall not issue error messages. Instead it shall
simply return status to the caller.

2. Overview

It was decided that Ithernet and TCP/IP would provide
the underlying physical, network and transport layers and
that the package would rely specifically on TCP as the
transport layer. Thus AMS consists of a layer between the
application program and TCP/IP: calls made by the ap-
plication to send and receive data to other tasks are trans-
fated into the appropriate TCP calls to set up connections
and send or receive data. The application is oblivious to
the connection management being undertaken on its be
half.

AMS provides two types of transfers, synchronized and
unsynchronized. A synchronized message expects a reply
which is bound specifically to that message. An unsyn-
chronized request is like a reliable datagram. No reply or
acknowledgement is expected at the application level al-
though the TCP protocol provides reliable delivery,

AMS provides asynchronous notification of arrival of a
message or a reply to a message, At present itis only im-
plemented on the VAX platform. Other implementations
can provide this if the operating system allows and it is
required by the applications.

AMS provides peer to peer services, That is, any process
can intiate or receive a data transfer at any time, I a pro-
cess attempts to send datiac to a process to which a connee:
tion has not yet been established, AMS transparently sets
up the connection. If a connection crashes, AMS attopmpts
to re-establish the connection when the next message is
sent. Thus, AMS provides the appearance of connection-

“.2& Precented at the Particle Accelerator Conference (PAC 93), Washington, DC, May 17-20, 1993 ?Q
' g !

—

. DIETRIBUTION OF THIS DOCUMENT IS UNIINMITED

fess network services by hndime the conmection manags ment
from the apypdieation,

A e transhnion serviee is provided so that Tocad name
table maintensnes s uot necessary. This sorviee can be
provided trom more than one source, to avold having a
single point of Talure, and 1t allows for dynamic address
asstennent so thiad i the event ol a systemn fatlure the
transtation for o e, ONLINE for example, can be re-
assiencd to the address of the current online host, This
e server currently runs only under VMS.

A naming convention as used to allow the application
program Lo send and recerve messages to AMS peers using
ASCH node and task vames. In this convention the node
nane corresponds 1o the 1P address and task name corre-
sponds to the TCP port nuniber, The translation of these
node and task nanies to 1P addresses and port numbers is

provided by thie niome server,

3. Connection Management

One design goal of AMS 15 to hide connection management
frotn the user providing peer to peer networking in keeping
with the current SLC control systen message service. Fach
AMS peer which nses AMS has a server socket to passively
acccpt connection requests and a client socket to actively
conneet aclient socket to a target AMS peer. AMS initial-
ization is performed by calling AMSINIT with a number
ol configuration argmments such as the maximmm size of
the messages to he sent/received, the maximum number
of nodes 1o connect to, lists of AMS peer names to send
or receive from. ete,

The inttialization routine: allocates

menory space to use at run time; sets up a linked list of

records which track the status of each connection: sets up
the loeal server socket to aceept incoming connections; al-
locates aclient socket for each possible remote connection;
tries to connect to cach possible remote peer: registers the
peer with the name server; and then returns to the nser.
Toremove AMS from a process the AMS_KILY, routine is
used which closes all allocated socket structures ineluding
the server socket, frees the AMS allocated memory space
and removes the AMS peer from the name server.

During runtime the code checks to see if there are any
outstanding incoming connection requests at the server
If a data send s
required and there are no connections to the peer, AMS

yort and connects them as required.
| 1

tries to set up a connection to the peer and complete the
data transfer.

4. Message Transfer

The ealling interface provides two modes for sending mes-
sages, “synchronized™ and “unsynchronized™. Syn-
chronized mode provides a mechanism by which a sending
task can bind an onthonnd message with a specifie reply.
oo reply o a synehironized tiessage is not received within
acspecified timeont but s later generated by the receiver,

because, for example. the recover s hoscis slow or the fune.
tion requested takes adong tie it will be disearded. Thus,
an apphication can be sure that o syichromzed reply really
“helones™ 1o the message ast sen. Teoadso ensures that
the rephy comes fromy the instantiation of the task which
received the messave. Unsynchronized mode provides o
stmple message transfer without regard to synehronization
and without regard (o the current instantiation of the re
coetving task. 'Thus two unsynehronized messages could be
received by different sequential exeeutions of the same task.

Synchronized messages are supported by the services
AMS SEND SYNCH, AMSSEND_REPLY, AMS.GE'T.-
REPLY and AMS_RECEIVE, Synchronized messages are
sent by calling the routine AMS.SENDSYNCH, This al-
lows the caller to send multiple synchromzed messages in
the one call and primes the message service o expeet
replics. Message destinations are identified nmquely by
the triplet (node, task, command) and only one oustand-
ing message to a spectfic triplet s allowed at any time.

Once a synchronized message has been sent, it can be
“cancelled” by receipt of a reply from the target or a tne-
out where the timeont period for a reply starts after AMS.-
GET.REPLY has been ealled. After sending a synchro-
nized message, the sender can recetve a reply by calling
AMS_GET REPLY. This serviee allows the caller to spec-
ify a list of messages seat using one or more previous calls
to AMS.SEND SYNCH. In AMS.GET_REPLY a timeout
can be specified after which any replies to the messages
specified are disearded. In addition, for cach message in
the list, a status is returned whiely specifies the fate of the
reply, Onee atimeout has expired. a new message can be
sent to the same triplet. I this case it is possible that
the receiver is still holding onto messages from a previous
“send™. In fact, messages can Ustack up” on the receiver
and will he presented to the application in the order re-
ceived. 1 a receiver replies to messages which have been
timned-out, the rephes are discarded by AMS at the sender
end.

Replies are sent using the serviee ANMS.SEND_REPLY.
AMS cheecks that replies correspond with synehronized
messages previously reccived and for given node/task, it
always generates replies to the earlicst synchronized mes-
sage received.

Unsynchronized messages are supported by the ser-
vices AMS SEND, AMS_RECEIVE and AMS_RECEIVE.-
NOWAI'L. To send an unsynchronized message, the routine
AMS_SEND is called.

To receive the next available message, AMS_RECEIVE
or AMS_RECEIVE_NOWATT is called. 'These routines re-
turn both synchronized and nnsynchronized messages. It
is up to the application to decide which type of message it
has received. The “nowait” version provides a mechanism
for asynchronous notification under VMS.

AMS_RECEIVENOWALT will set up an Asynrhronons
System Trap (AST) for when amessage arrives nnless there
15 already a message winting. When o jmessage arrives,

the AST set up by AMS.RECEIVE_NOWATT will copy

the message into the user’s hutfer remove s ownonternal
copy, set the user’s event thag and eadl the neer’s AST

5 Name Server

The name server pracess carrently runs on the VAN pla
form only. 1t has a hardeoded well known 1P port and

1P address but future plans inctude the ability to move

the server from node to node, TCP /TP was chosen for the
server connection protocol since there was already a base
of TOP code implemented for AMS, This will eventually
change to UDP to allow less network overhead, quicker
response, and the ahility to use multicast features. The
server simply loops accepting new connections fram AMS
clients, servicing name translation requests and elosing the
connections. Utilities to support server diagnosties and
routine shutdown and startup procedures are in develop-
nent now.

The AMS name server client code resides along with the
rest. of the AMS code in each platform’s libraries. 'The
clicnt connects to the name server, sends a name transla
tion request to the name server, and returns, There are no
spocial fentures i these chient operations,

6. Security

Seenrity is required to protect an AMS peer from receiving,
connections from unauthorized clients. Extra connections
including aceidental and malicious attempts to talk to an
peer are not allowed. Fach peer provides alist of permitted
peers to AMS at initiahization time. This list is checked
A conneet time 1o ensure that the incoming peer is valid
and permitted. The notion of a ALL* (or total wildeard)
is used to tell AMS that any peer may be conneected and
received /sent to. The use of ALL* bypasses the use of the
permitied peer list, but does check the nanme server to val-
idate the peer nae. The name server is the central place
where seeurity is checked. Before a peer is recognized it
must register with the name server. After it has registered,
other peers may attempt connections to it. When AMS no
longer exists for a particutar node, the peer can be removed
from the name server by calling AMS_KILL.

7. Implementation

All of the AMS source code is stored on the VAX/VMS sys
tem using the Digital Bguipment Corporation Code Man-
agement System (CMS) as the code management tool.
This allows mltiple programmers to work on the same
bits of code with a minimum of conflicts. The code s
shiared ammongst the differing platforms by using a special
include file, one for cach platforia. This include file pro
vides aomeans to transtate file names, differing funetion re
turn codes and differing funetion eall names, Very few ¢

Inguage Aibdel statements are actually vused i the code
which makes mamtainence and readability much casier.
he first goal i the implementation process was to

geta
sunple conneet and data passing skeleton up and working.
I'he requirement was to implement e sonnection
phifosophy as the foundation for the send/receive portions
AMS INTT was (he first routine to be coded
along with the mulu pladorm inchade files. VAN to VAN
were the first connections, followed by the 68K o VAXL
The MS-DOS port followed soon alter to ensure that the

raess

ol the code.

multi-platform coding philosophy was correct. After con
nections were established | the passing of datac was the next
step. ‘The send routines were simple sinee 1t 1s an active
type of transaction. Receive was more difficult beeause of
the polling nature of time independent data receives, The
TCP socket select call was implemented along with batfer
allocation rontines to allow receiving data with a minimum
of CPE overhiead. Studies of CPU and network perfor-
mance were done <oon after the mtial releases of AMSU It
was found that each VAX process using AMS consuned
substantial CPU time calling the TOP seleet call to see if
any new data was available. 'The noowait receive routines
vere then coded specifically for the VAL platform to cut
this CPU tinne down. The name server was the fast part of
the project to be implemented. Previous to this time, all
AMS peer names were stored i hard coded tables internal
to AMS.

8. Future Plans

There are plans to improve AMS as the user hase grows.
The most important plan is to change the name server
communications from TCP to UDP. This wili reduce net-
work tratlic and scrver node CPU usage. 'There also needs
o be failover procedures in soltware to gracelully handle
the transfer of the SLO control system from on VAX to an-
other with the AMS impact being the node location of the
nanie server and the transtation of the node names “PRO-
DUCTIONT and "DEVELOPMENT" which are used hy
the AMS peers to distinguish bhetween the SLOT VAX es,
There are also a number of diagnostic tools to support the
name server which need developiment.

AMS is currently being used by a number of develop-
ment projects here at SLAC and has had uearly a year of
satisfactory service. [t has proven itself to be a reliable
messaging service and has met all of it’s design goals. The
first. production release of projects nsing AMS are due in
the very near future.

DISCLAIMER

This report was prepared as an account of work sponsored-by an agency of the United States
Government. Neither the United Gtates Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately cwned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

