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ABSTRACT

This is a report on one of a series of experiments to simulate a loss-of-
coolant accident (LOCA) using full-length fuel rods for pressurized water
reactors (PWR). The experiments were conducted by Pacific Northwest
Laboratory (PNL) under the LOCA simulation Program sponsored by the U. S.
Nuclear Regulatory Commission (NRC). The major shjective of this program was
to simulate a LOCA in a PWR and recovery from the simulated accident, first by
causing the maximum possible expansion of the cladding on the fuel rods from a
short-term adiabatic temperature transient to 1200 K (1700 F) leading to the
rupture of the cladding; and second, by reflooding the fuel rods to determine
the rate at which the fuel bundle is cooled.

The subject of this report is Materials Test 6A (MT-6A) which was the
last of the experiments in the LOCA Simulation Program. It was conducted in
the Canadian National Research Universal (NRU) reactor at Chalk River,
Ontario, Canada. A1l major objectives of the test were met, although a
computer control system malfunctioned. A1l 21 fuel rods were initially
pressurized to 6.03 MPa (875 psia) in order to cause the Zircaloy-4 cladding
to expand and rupture at high temperatures in the alpha phase, from 1035 to
1200 K (1400 to 1700 F). Pressure sensors attached to the fuel rods using
capillary tubing indicated that all 21 cladding tubes failed. A1) cladding
tubes ruptured while the peak temperatures were between 1050 and 1140 K (1430
and 1600 F). During the reflood phase, the temperature measurements of the
cladding indicated the rate at which the fuel bundle cooled. Although precise
measurements of the cladding strain were not made due to lack of funds, visual
inspection of a portion of one side of the fuel bundle revealed large amounts

of cladding strain.

A subsequent test MT-6B indicated that small notches in the stainless
steel shroud that surrounded the MT test bundles, is probably responsible for
major changes in the MT-6A and previous MT tests, cladding strain. The
notches (less stainless steel) produced a higher local neutron flux which
caused higher local fuel temperatures which caused higher local cladding
temperatures that produced much greater local cladding strain.



SUMMARY

The Loss-of-Coolant Accident (LOCA) Simulation Program was conducted by
the Pacific Northwest laboratory (PNL) for the U. S. Nuclear Regulatoery
Commission (NRC) and completed in 1984. The major objective of this program
was to simulate a LOCA in a PWR and recovery from the simulated accident,
first by causing the maximum possible expansion of the cladding on the fuel
rods from a short-term adiabatic temperature transient to 1200 K (1700 F)
leading to the rupture of the cladding; and second, by reflooding the fuel
rods to determine the rate at which the fuel bundle is cooled. The tests
conducted under the program were designed to simulated the heat up , reflood
and quench phases of a large break LOCA. The tests were conducted in the
Canadian National Research Universal (NRU) reactor using nuclear fission
heating to simulate the low level decay heat that is typical of LOCA
accidents. In this report is presented a quick-look analysis of the data and
results of materials Test 6A (MT-6A), the last of the tests to be conducted
under the PNL/NRC LOCA Simulation Program.

For this test, the design of the 3.7 m (12 ft) long test bundle for the
fuel rods was improved over the design of the test bundle used in previous MT
tests. It was redesigned to minimize temperature gradients on the
circumference of the cladding during the short term adiabatic heat up phase of
the test. The purpose was to maximize the radial expansion of the bundle
Zircaloy cladding on the fuel rods and the coplanar expansion in the bundle
during the heat up phase of the test. The reduced temperature gradients were
to be achieved, first by modifying the stainless steel shroud encompassing the
bundle uied in previous MT tests to include thermal insulation, and second, by
replacing the 20 heater rods that surrounded the 12 test rods used in previous
tests with 9 pressurized test rods for a total of 21 test rods.

A1l major objectives of the experiment were met, although a computer
controlled system malfunctioned. A1l 21 fuel rods were initially pressurized
to 6.03 MPa (875 psia) in order to cause the Zircaloy-4 cladding to expand and
rupture at high temperatures in the alpha phase, from 1035 to 1200 K (1400 to
1700 F). Pressure sensors attached to the fuel rods using capillary tubing
indicated that all 21 cladding tubes failed. A1l rods ruptured while the peak
temperatures were between 1050 and 1140 K (1430 and 1600 F). During the
reflood phase, the temperature measurements of the cladding indicated the rate
at which the fuel bundle cooled. Although precise measurements of the
cladding strain were not made due to lack of funds, visual inspection of a
portion of one side of the fuel bundle revealed large amounts of cladding
strain.

The data collected from thermocouples and pressure gages during heat up
and from thermocouples during the quenching phase demonstrated the rate of
cooling of the test bundle under LOCA conditions. To be able to predict the
rate of cooling under other conditions, though, an in depth qualification of
the data collected and a post test examination of the fuel rods would be
needed, but funds are not available for either. Without post test strain and
blockage measurements, no quantification of radial, axial, and coplanar values
of bundle coolant blockage can be stated to relate with the measured gquenching
rates of the cladding during the final phase of the simulated LOCA.
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The MT-6A (21 rod test) fuel bundle is being stored at this time (summer
1989) at CRL and plans are being made for its long term storage.

Though the malfunction of the computer did not affect the final outcome
of the test, it did cause the following changes:

The pressure control value closed at the start of the transient which
Eesulted in a system pressure of 1.72 MPa (250 psia) instead of 0.28 MPa
40 psia).

The reflood system failed to control the desired flat top temperature
transient.
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PREFACE

A series of tests was conducted under the Loss of Coolant Accident (LOCA)
Simulation Program, sponsored by the U. S. Nuclear Regulatory Commission
(NRC), Office of Research, Division of Systems Research, between 1980 and
1984, This is a report on one of those tests. Included in the series were 1)
three experiments comprised of 45 mini experiments on the thermal hydraulics
of fuel bundles and 2) five materials tests on the amount of expansion of
Zircaloy cladding both under simulated LOCA conditio?g) They were designed
and performed by Pacific Northwest Laboratory (PNL). A1l were
conducted in the Canadian National Research Universal (NRU) reactor with the
support of the staff at the Chalk River Laboratory which is operated by Atomic
Energy Canada, LTD. One of the five material tests was supported by the
United Kingdom Atomic Energy Authority.

0BJECTIVES

The major objective of this program was to simulated a LOCA in a PWR and
recovery from the simulated accident, first by causing the maximum possible
expansion of the cladding on the fuel rods from a short-term adiabatic
temperature transient to 1200 K (1700 F) leading to the rupture of the
cladding; and second, by ref]oodz?a the fuel rods to determine the rate at
which the fuel bundle is cooled. An evaluation of the results of these
tests was provide to NRC for their use in assessing the rate at which an
accidently over heated nuclear core in a commercial 1ight water reactor could
be cooled or quenched. In the fifth and last test in the series, it was
demonstrated that the insulating shroud could provide thermal insulation for
the pressure tube and the NRU test facility. To be evaluated was the effect
of high temperatures and the resulting internal pressures on the fuel rods,
i.e., the maximum extent of the radial and axial strain on the cladding of the
fuel rods and other damage that might result. The experience and
understanding to be gained from the tests was to enable successive simulations
of more severe accidents to be performed.

BACKGROUND

The following is a brief review of the LOCA simulation Program. Included
in the program were three experiments conducted at high temperatures, the
thermal hydraulic experiments, and five experiments conducted at both high
temperatures and high pressures, the material expansion tests, on the
expansion of Zircaloy cladding on fuel rods. the experiments and tests are
presented in the following sections according to kind rather than in the order
in which they were conducted. However, the order in which each was conducted
is stated. the basic objectives and results of each are also included.

(a) Operated for the U.S. Department of Energy (DOE) by Battelle Memorial
Institute under Contract DE-AC06-76RLO 1830.
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Thermal -Hydraulic Experiments

The initial thermal-hydraulic experiment (TH-1), using 32 fuel rods with
instruments attached, was performed in October 1980 and provided a database
for predicting the quenchin?zsharacteristics of Zircaloy-clad fuel rods under
various reflood conditions. It was the first in the program. Twenty-eight
separate high temperature and pressure tests were included in TH-1. The
specific objective of these experiments was to characterize the rates of
initial heat up, reflood and quenching for as-fabricated fuel rods that were
not deformed and not pressurized. The exact parameters for the experiments on
the expansion of fuel cladding to be performed later were determined from the
results of these experiments at high temperatures. Experimental results
covered reflood rates of 1.88 to 28 cm/s and delay times to initiate reflood
of 3 s to 66 s. The results indicate that current analysis methods can
predict peak temperatures within 10% and the quench times measured for the
bundle were significantly less than predicted. For reflood rates of 2.5 cm/s
where long quench times were predicted (>2000 s), measured quench times of
200 s were found.

The thermal-hydraulic experiment (TH-2) was the fourth experiment and was
conducted in October 1981. Used in it was a new thermal-hydraulic test bundle
with fuel rods sealed at atmospheric pressure that was reconstituted in the
MT-1/MT-2 guard rod and shroud assembly. In order to minimize the expense of
the program, the test hardware was designed to be reused. Therefore, shroud,
heater rods and T-H test rods were used in more than one test. Deformed rods,
though, were never reused. Because used hardware was radjoactive, handling
operations were performed remotely. The remote operations with the test
hardware located under about 2-m of water were performed efficiently with the
help of a specially designed, computer-controlled disassembly, examination and
reassembly machine (DERM). This experiment included 14 separate tests at high
temperatures and pressures to determine the rates of reflooding necessary to
obtain a "flat-top" or extended transient from 1035 to 1105 K (1400 to
1525°F). The delay time and automatic control system used to control the
variable rate of reflood in this experiment demonstrated the capability of
holding temperatures above 1035 K (1400°F) for periods of up to 280 s. The
test conditions approached steady-state boiloff.

The fifth experiment was thermal-hydraulic experiment 3 (TH-3). Used in
it was the same test bundle used in TH-2; several new thermocouples (TCs) and
a spray desuperheater were added. Several modifications were also made to the
logic of the loop control to improve control of the rate of reflooding and
extend the length of the flat-top transient. TH-3 was performed just before
MT-3 to verify the loop control system (LCS) and the data acquisition and
control system (DACS) instrumentation and operation. TH-3 and MT-3 were both
performed in November 1981. TH-3 also verified the power levels during test
assembly and the improvements to the DACS performance. The results of the
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TH-3 experiment that included three separate high temperature tests made it
possible to extend the time above 1035 K (1400°F) from 280 s in TH-2.14 to

340 s in TH-3.03. 1In addition, the transient temperature history was modified
to provide more two-phase cooling at the start of the transient. The addition
of the spray desuperheater to the TH-3 assembly controlled the temperature of
the exiting steam.

Material Expansion Tests

The first materials experiment (MT-1), i.e., the test on the expansion of
Zircaloy fuel cladding, was the second in the program and was performed in
April 1981, using a cruciform of 11 rodg pressurized to 3.21 MPa (465 psia)
and l(y?ter tube surrounded by 20 guard® rods sealed at atmospheric pres-
sure, The objective of this test was to assess the rate at which the
expanded cladding can be cooled, based on evaluations of the rates of heat up
and quenching and the measurements of post-test cladding strain. The delay
time and the rate of reflood were selected to duplicate one of the experiments
at high temperatures, specifically TH-1.10, in which the fuel cladding reached
a peak temperature of 1145 K (1600°F). These conditions were achieved: 6 of
the(li rods ruptured and all 11 pressurized test rods expanded significant-
1y. The average peak rupture strain was 43%; the average time to rupture
was 43 s; and the average temperature at rupture was 1145 K (1600°F),

In the second materials experiment (MT-2), the third experiment in the
program, performed in July 1981, the MT-1 guard rods and shroud assembly were
reconstituted underwater and reused with a new cruciform test bundle. One of
the objectives of the test was to perform a low-temperature, 1090 K (1500°F),
test using variable rates of reflooding. The 12 test rods were pressurized to
3.21 MPa (465 psia). A malfunction of the reflood system, however 5sesuH:ed
in higher temperatures than desired and 8 of the 11 rods ruptured.( The
average peak rupture strain was 43%, the average time to rupture was 65 s, and
the average temperature at rupture was 1160 K (1625°F).

The primary objective of the third materials experiment (MT-3), the sixth
in the program, was to determine the expansion and restrictions on the flow
channel for a flat-top temperature transient using pressurized fuel rods.

Peak temperatures of the cladding were maintained above 1035 K (1400°F) for
180 s. The MT-3 experiment repeated the test conditions demonstrated by the
TH-3.03 test using a completely new test train with 12 fuel rods pressurized
to 3.9 MPa (565 psia) and 20 guard rods. A1l 12 test rods ruptured during the
active two-phase cooling regime. The average peak rupture strain was 46%, the
average time of rupture was 133 s, and the average temperature at rupture was
1070 K (1460°F). The MT-3 experiment had a lower average temperature at
rupture and a longer time until rupture than any of the other materials
experiments because of the significant amount of reflood water that was
introduced early in the transient (the delay time for reflooding was 7 s).

a The guard rods are unpressurized fuel rods that surround the periphery
(guard) of the test fuel rods to minimize radial heat loss from the test
fuel rods.
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The active strain region was spread over “2-m (go~1n.) length, and no loss of
cooling because of coplanar blockage or 1iftoff" was observed.

The fourth materials ?ggeriment (MT-4) was the seventh in the program and
was conducted in May 1982. Its primary objective was to evaluate the
expansion and rupture of cladding during heat up in the temperature range from
1035 to 1200 K (1400 to 1700°F) The 12 test rods in the 32-rod bundle were
initially pressurized to 4.62 MPa (670 psia) at 295 K (70°F) to assure rupture
in the correct temperature range. The MT-4 experiment was most similar to the
MT-2 experiment; three differences existed: 1) MT-4 rods were pressurized to
4.62 MPa (670 psia), whereas MT-2 rods were pressurized to 3.21 MPa (465
psia); 2) After the temperature turnaround following the heatup transient, the
peak temperatures of the cladding were stahilized to measure the characteris-
tics of the heat transfer of the expanded and ruptured fuel rods, whereas
during MT-2 the peak temperatures of the cladding were not stabilized, and

3) self-powered neutron detectors (SPNDS) mounted on the shroud were moved to
grid elevations to minimize distortion of axial fission power, whereas MT-2
had the SPNDs mounted away from the Inconel grids. During the test all 12
test rods ruptured with an average peak rod strain of 72.1%. The active
strain region was spread over 0.189 m (7.42 in.), the average time of rupture
was 55 s; and the average temperature at rupture was 1094 K (1511°F).

The MT-4 experiment used a new cruciform bundle of 12 pressurized test
fuel rods and the guard fuel rods and shroud previously used in MT-3. Test
operations most closely followed the operating conditions of the TH-1.16,
during which cooling by reflooding was used to terminate the transient
temperature of the heat up at ~1200 K (1700°F). Stabilized operations at the
post-transient stage closely followed the operating conditions used in the
MT-3 experiment.

The results from MT-4 provided data on the expansion of the cladding on
full-length PWR nuclear-heated rods in the temperature range where crystalline
Zircaloy is still in the alpha, hexagonal close-pack phase for variable
conditions of reflooding. These conditions extended the existing data base on
the response of the cladding to high temperatures and pressures for LOCA
conditions not previously investigated by test programs that were conducted
out of a reactor. The MT-4 test series yielded valuable information on 1)
the control of quench fronts and two-phase cooling used for subsequent
experiments at high temperatures and pressures on materials and 2) the quench
characteristics of rods that were expanded as compared to rods that were not
expanded for the flow conditions covered in these experiments.

Data from MT-4 have been used in conjunction with previous test results
to assess various calculational models for reactor safety analyses and in
conju?gjion with conclusions dertgsd elsewhere from electrically heated
tests and smaller scale tests conducted in a reactor. The experimantal
results of the program address 17 specific items outlined in the Code of
Federal Regulations, 10 CFR 50.46 and 10 CFR 50, Appendix K. These results

a Liftoff is a thermal decoupling of the cladding from the fuel that
results in cooling of the cladding during deformation.
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have been used to provide additional data for model calibration and to help
define the primary mechanisms for heat transfer for new analytical models.

The major contributions of these tests to 1ight-water reactor (LWR) technology
has been to quantify the uncertainty of the criteria for licensing and ?gfer
the potential for raising the operating 1imits on some commercial LWRs.

The MT-5 test was proposed to the NRC but never approved. As proposed,
MT-5 would have been similar to MT-4 except that irradiated fuel rods would
have been used in this study of cladding expansion.
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N. J. Wildung provided computer plots.
S. K. Edler edited this document and provided publication assistance.
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DATA REPORT:
MATERIALS TEST MT-6A

INTRODUCTION

This is the final report on the results of Materials Test 6A (MT-6A)
conducted by the Pacific Northwest Laboratory (PNL) under the Loss-of-Coolant
Accident (LOCA) Simulation Program, sponsored by the U.S. Nuclear Regulatory
Commission (NRC). The test was conducted in 1984 at the Canadian National
" Research Universal (NRU) Reactor at the Chalk River Nuclear Laboratory
(CRNL), operated by Atomic Energy of Canada, Ltd (AECL). It was the last of
the tests under the LOCA Simulation Program.

The major objective of this program was to simulate a LOCA in a pres-
surized water reactor and recovery from the simulated accident, first, by
causing the maximum expansion of the cladding possible from a short-term
adiabatic transient to temperatures as high as 1200K (1700°F) leading to the
rupture of the cladding; and, second, by then reflooding to determine the
rate at which the bundle can be cooled.

For this test, the design of the 3.7-m (12-ft) Tong test bundle for the
fuel rods was improved over the design of the test bundle used in previous MT
tests. It was redesigned to minimize temperature gradients on the circum-
ference of the cladding during the short-term adiabatic heat-up phase of the
test. The purpose was to maximize the radial and axial expansion of the
Zircaloy cladding on the fuel rods and the coplanar expansion of the bundle
during the heat-up phase of the test. The reduced temperature gradients were
to be achieved first by modifying the metallic shroud encompassing the bundle
used in previous test to include thermal insulation. Then the 20 heater rods
that surrounded the 12 test rods in previous tests were replaced with 9
pressurized test rods, resulting in a test bundle containing a total of 21
test fuel rods.

Supporting objectives of the test were as follows:

¢ Provide the fuel cladding sufficient time in the alpha-Zircaloy
temperature region--1050 to 1140K (1430 to 1600°F)--to maximize
expansion and to cause the fuel rods to rupture before they were
cooled by reflooding.

¢ Provide expansion values of the cladding with a test assembly surrounded
by an insulated shroud to compare with expansion values from prior tests
that were performed without insulating shrouds but with heater rods.



e Expand and rupture all pressurized rods of a 21-rod bundle to compare
the results with the results of the expansion and rupture character-
istics and rod-to-rod mechanical interactions in a bundle in which only
some of the rods were pressurized, and therefore, in which only some of
the rods expanded.

o Evaluate expansion characteristics of a bundle in which all rods expand
and rod-to-rod interaction can occur.

e Provide data to compare the rate of cooling of a bundle in which all
fuel rods that have expanded and ruptured with the rate of cooling of
the configuration in which only the 12 center rods in a 32-rod bundie
expanded and ruptured.

e Compare the rate at which expanded fuel rods can be cooled in a bundle
with reduced bypass potential with that of MT-4 (large bypass via the
flow areas around the heater rods).

e Determine the fission power as a function of elevation along the full-
length bundle in the NRU.

The following are objectives that will be useful for future tests:

e Characterize test assembly power for both a steam environment and a
water environment.

o Determine the change of the fission power in the fuel bundle in the NRU
reactor when the steam coolant is replaced with water coolant.

The basic objective of the test was met and the results are reported
here. This report begins with a description of the experiment; included are
a description of the test train assembly and of the operations. Following it
is a section on experimental conditions and results. Appendixes A through G
contain graphs of data acquired during the test. All the data collected
during the test were recorded for time intervals of 1/5s and "written" on
magnetic tape in machine language unique to the hardware and software of the
computer system used. The data were then converted to VAX binary at PNL and
processed to produce the plots given in this report. PNL cannot, however,
ensure the future "readability" of these magnetic tapes as no provisions have
been made to preserve them.

The results and analysis of previous MT tests helped support the recent
NRC regu]atio? 50 accept best estimate calculations for the safety analyses
of LWR LOCAs. (9




EXPERIMENT DESCRIPTION

The components of the test assembly that were used for the MT-6A experi-
ment are described, and the instrumentation that was provided is detailed.
The experiment operation is also described, and experimental conditions and
results are discussed.

TEST TRAIN ASSEMBLY

The test train (including the head closure, hanger tube, and fuel assem-
bly) was ~9 m (30 ft) Tong. The closure region provided the primary pressure
boundary and included penetrations for numerous instrumentation leads. The
hanger tube was used to suspend the fuel assembly and shroud from the head
closure, and instrument leads were attached to the hanger to protect them
during transport and testing. The shroud supported the fuel rods through
spacer grids, served as a protective liner and insulator, contained any
ballooned fuel rods, and provided proper coolant flow distribution during
various stages of the experiment. A schematic of the closure and upper sec-
tions of the pressure tube and hanger tube assembly is shown in Figure 1.

The stainless steel shroud consisted of two ~4-m (14-ft) Tong halves that
were welded together. A schematic of the insulated shroud is shown in Fig-
ure 2; an assembly drawing of the shroud is shown in Figure 3. The shroud
contains Zr0O, insulation between the outer stainless steel exterior and the
Zircaloy inner liner.

The fuel assembly consisted of a 5 x 5 segment of a 17 x 17 PWR fuel
assembly with the four corner rods removed (Figure 4) and provided a basic
fuel bundle array of 21 rods (see Table 1). Al1l rods were pressurized just
before the transient test. A helium fill pressure of 6.03 MPa (875 psia) at
295K (70°F) was used. The prepressurization provided the necessary internal
cladding stresses to cause test rod rupture in the desired temperature
range.

Test train instrumentation included: 8 SPNDs, 150 TCs, 21 fuel rod pres-
sure sensors, 2 liquid level detectors, and 2 flux wires. The instrumenta-
tion was Tocated at 46 elevations or levels along the test assembly; these
levels are defined in Figure 5 and detailed in Figures 5 through 8. Instru-
mentation for the various levels is shown in Table 2.

Turbine flowmeters (located outside the test assembly) and TCs provided
the main source of thermal-hydraulic data. Local coolant temperatures were
measured with TCs that protruded into the coolant channel and with TCs
attached to the shroud. TCs were also spot welded to the inside of the
cladding surface. These cladding TCs monitored the cladding temperature
without interference from fuel pellet chips or unintentional TC relocation.

Flux wires along the inner liner provided a measure of the fuel power
distribution during the transient portion of the test. The wires were
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inserted just prior to the transient. In previous tests, flux wires were
inside the fuel assembly during preconditioning and the transient.

The two liquid level detectors did not operate very well during MT-6A;
therefore, liquid level data are not included in this report. The detectors
are based on time domain reflectometry (TDR) and are described in more detail
in (Marshall et al. (1983).

EXPERIMENT OPERATION

The MT-6A experiment consisted of a preconditioning phase, preliminary
calibration tests, water and steam calorimetry tests, and a test in which all
test rods ruptured (MT-6A). The experiment was performed in the L-24 site in
the NRU reactor (Figure 9). The assembly was oriented in the reactor with
side £ (the side that has fuel rods designated E) facing north.

The preconditioning phase was initiated on May 23, 1984. Two rises to
full NRU power operation and two conditional reactor trips assured fuel
pellet cracking and good fuel/cladding mechanical contact.

Calibration tests were performed to insure proper operation and control
using the LCS and the DACS. These tests calibrated reflood flow rates, delay
times, and test assembly back pressures. The fuel temperature was maintained
low enough so that there would be no rod deformation.

The main MT-6A test, in which all 21 pressurized test rods ruptured
during the heatup phase, was performed on May 25, 1984. The conditions and
results of this test are discussed in this section.

The MT-6A transient test used the LCS preprogrammed reflood rate con-
trol. After a preset reflood delay (controlled by the DACS), the LCS was
programmed to control the ref'ood rate at 0.20 m/s (8 in./s) for 3 s,

0.18 m/s (7 in./s) for 3s, 0.051 m/s (2 in./s) for 3 s. At that time, the
DACS was supposed to take over reflood control to maintain fuel temperatures
approximately constant. An anomaly in the reflood control prevented the DACS
from taking control once the reflood rate reached 0.051 m/s (2 in./s). The
continued reflood at this rate caused the fuel to cool and quench, ending the
test. The reflood rates are shown in Figure 10.
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JABLE 2. Instrumentation at Each Level in the MT-6A Test Assembly

Cladding Inner
Inside Carrier Liner Spacer
—level  Diameter TCs Shroud TCs _TCs =~ _JCs  _JICs  SPNDs
0.0 3
14.0 2
25.5 2
35.0 2
46 2
56.03
61.0 3
67.5 2
69.0 3
74.0 3
79.0 3 2 3
84.0 3
85.2 4
88.5 2
3 3
94.0 3
98.0 3
102.0 3 3 4
106.2 3 3
109.5 2
110.2 & 111.0 3
115.0 3
119.0 3
123.0 3 3 4
3 4
130.5 2
131.2 & 132.0 3 3
136.0 3
144.0 2 4
148.2 4
151.5 2
156.0
169.0 _ 4 - _ _ _
Total 54 14 16 15 21 8
NOTE: Four braze TCs were at Level 156, 4 outlet TCs were at Level 169, 2

1iquid level TCs were at Level 173, 2 liquid level TCs were at Level
177.5, 2 1iquid level TCs were at Level 182, 2 1iquid level TCs were
at Level 186, 2 liquid level TCs were at Level 191, 4 outlet TCs were
at Level 200, 5 hanger bar TCs were at Level 220.7, 1 hanger bar TC
was at Level 326.3, 2 liquid level TCs were at Level 202, one liquid
level detector ran from the top of the shroud to the top of the spool
piece. Another liquid level detector ran from Level 0 to Level 160
inside the shroud.
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EXPERIMENT CONDITIONS AND RESULTS

The following factors are discussed in this section: fuel rod pressures
and temperatures, axial power distribution, and the effects of steam cooling
versus water cooling on test assembly power.

EVEL ROD PRESSURES AND TEMPERATURES

Gas pressure changes were measured as a function of time in the plenums
of the 21 fuel rods using an out-of-reactor pressure transducer on each rod.
Prior to the transient test, all 21 rods were initially filled with helium to
a pressure of 6.03 MPa (875 psia) at 295K (70°F).

The pressure transducers indicated rod failure, as summarized in
Table 3. The test rods were fitted with strain gauge-type pressure trans-
ducers. The pressure transducers were located outside the reactor above the
test assembly and were connected to the fuel rod plenums by capillary tubes.
?;assura transducer data for two rods are (4A and 5D) shown in Figures 11 and

Prior to the transient, pressures were about 9.31 MPa (1350 psi). When
the steam cooling to the test assembly was shut off and the power remained

JABLE 3. Fuel Rod Rupture Times and Pressures
Pressure Sensor Rupture Time., s Rupture Pressure, MPa (psi)

PT-M1-3C 63 6.21 (900)
PT-M2-4C 62 6.55 (950
PT-M2-3D 60 6.72 (975)
PT-M]-1B 59 7.93 (1150
PT-M1-1C 61 7.24 (1050
PT-M1-1D 64 6.90 (1000)
PT-M1-2A 62 7.65 (1110)
PT-M1-2B 62 6.07 (880)
PT-M]-2C 61 6.55 (950
PT-M2-2D 60 6.96 (1010)
PT-M2-2E 63 6.96 (1010)
PT-M]-3A 63 7.24 (1050)
PT-MI-38 62 6.07 (880)
PT-M2-3E 60 7.24 (1050)
PT-M1-4A 64 7.24 (1050)
PT-M1-48 62 6.72 (975)
PT-M2-4D 6] 6.27 (910)
PT-M2-4E 62 6.90 (1000)
PT-M] - 5B 61 7.58 (1100)
PT-M2-5C 60 7.52 (1090)
PT-M2-5D 58 7.93 (1150)
23
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constant, the fuel heatup caused the pressure to increase. Because the fuel
ballooned at higher temperatures, the pressure eventually decreased unti]
rupture, which was followed by a rapid decrease in pressure. As shown in
Figure 11, the fuel temﬁerature was constant prior to the transient. After
the steam cooling was shut off, the fuel temperature increased until just
prior to rupture. Just before rupture, cladding temperatures dropped near
the rupture location, perhaps because of cladding 1iftoff near the rupture
zone. The temperature and corresponding pressure for a rod that has one TC
hot junction located close to the rupture region are shown in Figure 11. A
similar trace where the TCs are not close to the rupture region is shown in
Figure 12. Peak fuel temperatures near a rupture region tend to be lower
than those away from the rupture region, which tends to confirm that balloon-
ing has no deleterious effect on heat transfer and may even enhance it.

AXIAL POWER DISTRIBUTION

Prior to the MT-6A test, the axial power distribution in the fuel assem-
bly was evaluated using normalized local heatup rates, assembly self-powered
neutron detector (SPND) measurements, assembly flux wire data, and a series
of measurements taken by a transient flux probe during the preconditioning
phase of the experiments in the NRU reactor. Local axial powers were cal-
culated using the adiabatic period heatup rates and the fuel rod mass and
specific heat. These normalized results are plotted against a computed power
profile based on core physics calculations for the MT-4 test (Figure 13).

For the MT-6A experiment, a technique was devised that permitted inser-
tion of a flux wire into the test train between the preconditioning and
transient phases of the test. Thus, the flux wire data represent only the
flux distribution that existed during the low-power operation of the tran-
sient, The axial scan data from this wire are shown in Figure 14, which
represents the activity of the wire as a function of axial position along the
test assembly. As shown, cyclic localized neutron flux increases of about
+4% with a spacing of about 18 c¢m (7 in.) are superimposed on the normal
axial profile.

The stainless steel shroud used for the MT-6A experiment was a modifica-
tion of the shroud design used in all previous NRU LOCA tests. In that
design, the shroud was split lengthways, and 3-in. long flats were cut on the
outside surface of the stainless steel shroud on 7-in. centers to accommodate
clips that held the two halves together during the tests and permitted easy
disassembly after the tests. The modification of existing shrouds for M1-6A
and MT-6B consisted of removing some material from the inside surface of the
shroud, welding the two halves together, and eliminating the clips. Stain-
less steel is a mild neutron absorber, and the reduced mass of metal at the
flats resulted in an increased neutron flux at these locations. In the
original shroud design, the mass in the region of the flats was reduced by
17%, After modifying the shroud for MT-6A, the localized mass was reduced by
21% of the cross section. The axial locations of these flats, as well as the
location of the spacer grids, are shown in Figure 14. The correspondence of
the flats and the localized flux increases is not exact; there is a 1- to

26




HEATUP RATE-

BASED POWER

SPND DATA

FLUX WIRE DATA

NRU PRECONDITIONING
REACTOR FLUX DATA
weweus CALCULATED POWER
PROFILE

HEATUP RATE.
CALCULATED
AVERAGE ROD
POWER =0 367
KW/t

16 o

OO G

14 L.

12 b

NORMALIZED POWER

08 p— /O

] L ] | -
4 6 8 10 12

ASSEMBLY ELEVATION,
EIGURE 13. Comparison of MT-4 Heatup Rate-Based, SPND, Flux

Wire, NRU Reactor Preconditioning, and Calculated
Axial Power Profiles

1-1/2-in. offset between the activity increases and the locations of the
flats. This offset is probably due to a lack of correspondence between the
zero locations of the fuel rods and the flux wire.

The effects of the localized neutron flux and the resulting power and
cladding temperature variations on the measured cladding strain for the MT-4
rods are shown in Figures 15 and 16. There is a correspondence between the
locations of the flats on the shroud and the localized strain effects in the
cladding. The large decrease in strain in the middle of the middle span is
coincident with a nonflat region in the shroud. The effect of the mechanical
restraint provided by the spacer grids on cladding strain is also clearly
shown. There are no indications of significant cladding strain reductions
between the other spacer grid spans, as was noted in MT-1 and MT7-2. However,
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FIGURE 14. Axial Neutron Flux Distribution During the MT-6A Transient

a change in the shape of the strain profile is evident at locations asso-
ciated with the flat regions in the shroud. This strain behavior is indica-
tive of a temperature effect associated with the localized flux variations at ;
these elevations.

An approximation of the effect of the localized flux and power increases
on cladding temperature for the MT-4 tests can be deduced. The flux wire
data for MT-6A show a minimum-to-maximum difference in local power of about
8%. Adjusting this value to account for the difference in the fraction of
metal removed from the MT-4 shroud results in a local power variation of
about 6%, For MT-4, the cladding strains occurred during the adiabatic
heatup in which the cladding temperature ramp rates were controlled almost
exclusively by the local power. The local temperature variations were very
small at the start of the transient because they were primarily established
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FIGURE 15. Axial Strain Profile for MT-4

by the temperature of the steam coolant. Thus, the local temperature varia-
tions in the region of maximum strain was estimated to be 6% of the 615K
(650°F) temperature increase from the start of the transient to the time of
rupture, or about 20K (40°F). Thus, the MT-4 data dramatically illustrate
the extreme sensitivity of the cladding strain behavior to temperature.

Consideration of the effects of the localized flux and power variations
on the cladding strain behavior for MT-4 is speculative. If the cladding
strain behavior that occurred in the MT-4 rods had not been perturbed by the
localized temperature effects, it is expected that the rate of volume
increase in the rods would have been greater and the internal gas pressure
decrease later in the transient prior to rupture would have been larger than
what occurred. These effects would have delayed rupture and would have
resulted in rupture at a somewhat lower pressure and higher temperature.
However, once plastic instability was reached, the strain rate would have
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FIGURE 16. Partial Axial Strain Profile for MT-4

been sufficiently high that these effects would probably not have been large.
The rupture hoop stress would still bhe expected to follow the temperature
correlation. Because the rupture temperature data from the experiment ar?
slightly higher than the alpha phase peak strain predicted by NUREG-0630, 11)
use of this prediction would lead to the conclusion of a somewhat lower
average rupture strain than was found. Thus, it may be concluded that the
removal of metal to form the flats on the stainless steel shroud affected the
local power, which in turn affected the local strain if the strains occurred
during the adiabatic heatup period. This resulted in a modification of the
axial strain pattern, probably a small increase in the peak rupture strain,
and no change in the coolability conclusions.
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EFFECT OF STEAM COOLING VERSUS WATER COOLING ON TEST ASSEMBLY POWER

A test was performed prior to the MT-6A transient to determine the
effect of steam cooling versus water cooling on test assembly power. For
this test, the NRU reactor power was maintained at a constant ievel. Cal-
orimetry measurements showed that the test assembly power was 86.8 kW when
filled with water and 94.5 kW when filled with steam, indicating an approx-
imate 8% decrease in power as the reflood completely fills the test assembly.
These results can be used to improve the interpretation of the MT-6A and
MT-6B test data, which has a similar 21-rod test assembly, as well as all
prior test data.
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APPENDIX A

DURING THE MT-6A TRANSIENT

Summaries of transient fuel pressures and inside cladding temperatures
for MT-6A are presented in this appendix. Figures A.1 through A.18 present
both pressure and temperature traces for each rod. Figure A.19 presents
pressure traces only for three rods that had no thermocouples.

The remainder of this appendix consists of the following figures:

A.1  Fuel Rod Interior Cladding Temperatures for Rod 1B at Levels
90.0 and 94.0, Rod 3B at Level 98.0, and Plenum Pressures for

ROd lB [ . . + 1] 1] 1] L] . 1] . * . L T N A e L] . . 1] . 1] + * . A03
A.2  Fuel Rod Interior Cladding Temperatures at Levels 1272, 132.0,

and 136,0, and Plenum Pressures for Rod IC . . . . . . . . . . A.4
A.3  Fuel Rod Interior Cladding Temperatures at Levels 127.2, 132.0,

and 136.0, and Plenum Pressures for Rod 10 . . . . . . . . . . A.5
A.4 Fuel Rod Interior Cladding Temperatures at Levels 56.0, 61.0,

and 69.0, and Planum Pressures for Rod 2A . . . . . . . . . . A.6
A.5 Fuel Rod Interior Cladding Temperatures at Levels 102,0, 106.2,

and 111.0, and Planum Pressures for Rod 28 . . . . . . . . . . A.7
A.6 Fuel Rod Interior Cladding Temperatures at Levels 56.0, 61.0,

and 69,0, and Planum Pressures for Rod IC . . . .. . . . .. A.8
A.7  Fuel Rod Interior Cladding Temperatures at Levels 115.0, 119.0,

and 123.0, and Plenum Pressure for Rod 20 . . . . . . . . .. A.9
A.8 Fuel Rod Interior Cladding Temperatures at Levels 56.0, 61.0,

and 69.0, and Plenum Pressures for Rod 2 . . . . . . . ., . . A.10
A.9 Fuel Rod Interior Cladding Temperatures at Levels 102.0, 106.2,

and 111.0, and Plenum Pressures for Rod 3A . . . . . . . ., .. A.1l
A.10 Fuel Rod Interior Cladding Temperatures at Levels 98.0, 90.0,

and 94.0, and Plenum Pressures for Rod 38 . . . . . . e A.12
A.11 Fuel Rod Interior Cladding Temperatures at Levels 115.,0, 119.0,

and 123.0, and Plenum Pressures for Rod 3E . . . . . . . . . . A.13
A.12 Fuel Rod Interior Cladding Temperatures at Levels 74.0, 84.0

and 79.0, and Plenum Pressures for Rod 4A . . . . . . . . . . A 14
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A.13

A. 14

A.15

A.16

A.17

A.18

Ailg

Fuel Rod Intertor Cladding Temperatures at Levels 102.0, 106.2,
and 111.0, and Plenum Pressures for Rod 4B . . . . . . . . . .

Fuel Rod Interior Cladding Temperatures at Levels 115.0, 119.0,
and 123.0, and Plenum Pressures for Rod . . . . . . . . . ..

Fuel Rod Interior Cladding Temperatures at Levels 74.0, 79.0,
and 84.0, and Plenum Pressures for Rod 46 . . . . . . . . . .

Fuel Rod Interior Cladding Temperatures at Levels 98. 0, 94 0,
and 90.0, and Plenum Pressures for Rod 68 . . . . . . .

Fuel Rod Interior Cladding Temperature at Levels 74.0, 79.0,
and 84.0, and Plenum Pressure for Rod 5C . . . . . . . . . . .

Fuel Rod Interior Cladding Temperature at Levels 127.2, 132. 0.
and 136.0, and Plenum Pressures for Rod 50 . . . . . . . . .

Fuel Rod Plenum Pressures for Rods 3C, 4C, and 30 . . . ., . .

A2

A 15

A.16

A.17

A.18

A.19

A.20
A.2]
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APPENDIX B

[RANS IENT FUEL CLADDING TEMPERATURES
QURING THE MT-6A TRANSIENT

Fuel cladding thermocouples were welded to the inside of the fuel
cladding. Temperature curves for these thermocouples for the MT-6A transient
arc presented in this appendix. These curves demonstrate how the fuel heats
up almost adiabatically unti) the reflood water starts to cool the fuel at
the thermocouple elevation. These curves demonstrate that the rods can be
cooled, even though all 21 rods ballooned and ruptured and were constrained
by the shroud.

The remainder of this appendix consists of the following figures:

B.1  Fuel Rod Interior Cladding Temperatures for Rods 2E, 2A, and 2C

at level 56 . . . . . . . Lo e e e B.3
B.2 ‘tuel Rod Interior Cladding Temperatures for Rods 2C, 2E, and 2A

at level 61 . . . . . . . s e e B.4
8.3 Fuel Rod Interior Cladding Temperatures for Rods 2E, 2A, and

2C at lLevel 69.0 . . . . . . . Lo e e e B.5
B.4 fuel Rod Interior Cladding Temperatures for Rods 5C, 4E, and

4A at Level 74.0 . . . . . . . L Lo e e e B.6
B.5 Fuel Rod Interijor Cladding Temperatures for Rods 4E, 5C, and

4A at Level 79.0 . . . . . . . L L e B.7
B.6 Fuel Rod Interior Cladding Temperatures for Rods 5C, 4A, and

a4t at Level B4.0 . . . . . . . L Lo B.8
B.7 Fuel Rod Interior Cladding Temperatures for Rods 3B, 5B, and

IB at level 90 . . . . . . . . L Lo B.9
B.8 Fuel Rod Interior Cladding Temperatures for Rods 3B, 5B, and

1B at level 94.0 . . . . . . . . . ... B.10
B.9 Fuel Rod Interior Cladding Temperatures for Rods 5B, 3B, and

1B at level 98 . . . . . . . . . ..o B.11
B.10 Fuel Rod Interior Cladding Temperatures for Rods 3A, 4B, and

2B at Level 102 . . . . . . . . .. e B.12
B.1l tuel Rod Interior Cladding Temperatures for Rods 2B, 4B, and

3A at level 106.2 . . . . . . .o oo s B.13

B.1




B.12

Fuel Rod Interior Cladding Temperatures for Rods 3A, 2B, and
4B at Level 111.0 . . . . . .« o v o o oo e e e e e

Fuel Rod Interior Cladding Temperature for Rods 4D, 3E, and
2D at Level 115.0 . . . . . . . . . .o e e e e e e e

Fuel Rod Interior Cladding Temperatures for Rods 4D, 2D, and
3E at Level 119.0 . . . . . . ... L0 e e e e e e e e

Fuel Rod Interior Cladding Temperatures for Rods 3E, 4D, and
2D at Level 123.0 . . . . . . e e e e e e e e e e e

Fuel Rod Interior Cladding Temperatures for Rods 1D, 1C, and
50 at Level 127.2 . . . « v « v v i o e e e e e e e e e

Fuel Rod Interior Cladding Temperatures for Rods 1D, 5D, and
1C at Level 127.2 . . .« © v i i e e e e e e e e e e e

Fuel Rod Interior Cladding Temperatures for Rods 1D, 5D, and
1C at Level 136.0 . . . . . . ¢« v i i e e e e e e e e

B.2

B.14

B.15

B.16

B.17

B.18

B.20
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FIGURE B.1. Fuel Rod Interior Cladding Temperatures for
‘ Rods 2E, 2A,-and 2C at Level 56
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TEMPERATURE, F

FIGURE B.2,

Rods 2C, 2E, and 2A at Level 61
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APPENDIX C
TRANSIENT FUEL CLADDING AND SHROUD INSIDE AND OUTSIDE TEMPERATURES
DURING THE MT-6A TRANSIENT

Fuel cladding temperatures and shroud inside and outside temperatures

are compared in this appendix. These curves demonstrate how effectively the
shroud insulates the hot fuel rods from the pressure tube.

c.1

c.2

c03

The remainder of this appendix consists of the following figures:

Comparison of Fuel Rod Interior Cladding, Shroud Inner Liner,
and Shroud Outside Temperatures at Level 79 . . . . . . . .. C.2

Comparison of Fuel Rod Interior Cladding, Shroud Inner Liner,
and Shroud Outside Temperatures at Level 102 . . . . . . . . . c.3

Comparison of Fuel Rod Interior Cladding, Shroud Inner Liner,
and Shroud Qutside Temperatures at Level 123 . . . . . . . .. C.4
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FIGURE C.1. Comparison of Fuel Rod Interior.Cladding, Shroud Inner
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inner liner.

APPENDIX 0

TRANSIENT SHR

.
DURING THE MT-6A TRANSIENT

Shroud 1iner thermocouples were located on the insulation side of the

this appendix.

D.1
D.2
D.3
D.4
D.5

The remainder of this appendix consists of the following figures:

Shroud Inner Liner Temperatures at Level 79
Shroud Inner Liner Temperatures at Level 102
Shroud Inner Liner Temperatures at Level 123
Shroud Inner Liner Temperatures at Level 144

Shroud Inner Liner Temperature at Level 156

D.1
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Shroud liner temperatures for the transient are presented in

D.2
D.3
D.4
D.5
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EIGURE D.1. Shroud Inner Liner Temperatures at Level 79
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FIGURE D.2. Shroud Inner Liner Temperatures at Level 102
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FIGURE D.4. Shroud Inner Liner Temperatures at Level 144
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TRANSIENT OUTSIDE SHROUD TEMPERATURES
DURING THE MT-6A TRANSIENT




APPENDIX E

TRANSIENT OUTSIDE SHROUD TEMPERATUKES
DURING THE MT-6A TRANSIENT

Appendix E presents outside shroud temperatures during the MT-6A
transient. The low shroud temperatures verify that the insulated shroud
performs well.

The remainder of this appendix consists of the following figures:

E.1 Shroud Outside Temperatures at Level 79 . . . . . . . . . ..

E.2 Shroud Qutside Temperatures at Level 102 . . . . . . . . . . .

E.3 Shroud Outside Temperatures 2t Level 123 . . . . . . . . . ..

E.4 Shroud Outside Temperatures at Level 144 . . . . . . . . . ..

E.5 Shroud Outside Temperatures at Level 169 . . . . . . . . . ..
E.1

E.2
E.3
E.4
E.5
E.6
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FIGURE E.1. Shroud Outside Temperatures at Level 79
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FIGURE E.2. Shroud Outside Temperatures at Level 102
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