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A NEW PICL TRACE FILE FORMAT

, Patrick lt. Worley

Abstract

A trace file format is described that will be used in future releases of the Portable In-

strumented Communication Library (PICL) and ParaGraph. The new format provides im-

proved support for tracing and profiling PICL communication primitives and user-defined

events. Ttle new format is also easily extended and may be useful in other instrumentation

packages and performance visualization tools.
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1. Introduction

" The Portable Instrumented Communication Library (PICL) is a subroutine library developed at.

Oak Ridge National Laboratory (ORNL) that implements a generic message-passing interface

" on a variety of multiprocessors [4], [5], [6]. Programs written using PICL routines instead of

the native commands for interprocessor comnmnication are portable in the sense that they can

be run on any machine on which the library has been implemented. PICL was designed

1) to provide portability between the target multiprocessors at, low overhead,

2) to provide trace data on interprocessor communications and user-defined tasks, again at

low overhead to avoid significantly perturbing the behavior being observed, and

3) to be easily maintained, easily ported to new systems, and easily extended to take advan-

tage of (new) native commands that are important for performance.

To support these design goals, PICL is implemented as a C subroutine library, with a machine

independent tracing layer and a machine-dependent layer that maps directly into the native

commands (when possible). PICL was made available to external users in March of 1989.

Since then, development has continued and several updates have been released, adding new

communication and tracing commands and ports to new multiprocessors.

Instrumentation logic was added to PICL in order to collect data for performance tuning

and debugging and to collect data for a research project on modeling the performance of par-

allel programs [16]. To support these efforts, a software tool called Paz:aGraph was developed
e

for visualizing the behavior and performance of parallel programs on message-passing multi-

processors [7], [8]. ParaGraph uses the trace information produced by PICL as input, but that

is ParaGraph's only dependence on PICL. ParaGraph was made available to external users in

April of 1990, and its development has also continued.

Since their releases, both PICL and ParaGraph have become popular, with sizeable user

bases and interest from vendors and other research groups in supporting the packages di-

rectly. In recognition of the needs of these external users, a conservative development policy

was adopted, emphasizing backward compatibility and restricting modifications to those that

directly address user needs. For example, until recently, PICL's trace file format has been

adequate for our needs, and has not been significantly modified since the initial design.

The current PICL trace file format is based on a format used in Dunigan's hypercube

. simulator mpsim [3], on the performance data collected automatically by the operating system

of the nCUBE 3200 [12], and on our expectations about what type of data we would need for

. our performance modeling research. Early on, we were concerned about the volume of data

to be collected, and we concentrated on supporting the sampling of cumulative performance
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statistics. While sampling performance statistics is an important and scalable approach to

measuring performance, other approaches have proved equally important. PICL trace data

is used most commonly as input to ParaGraph, which requires detailed event records. Also,

our performance tuning and modeling work are increasingly dependent oil tracing and profiling .-

user-defined events. While the current format provides sufficient information for both of these

activites, the interpretation of the data is often "context-sensitive", requiring that multiple

trace records be examined in a specific sequence in order to extract the desired information, lt

is also difficult to update the current trace file format to include new information, especially

events corresponding to new PICL commands, without losing backward compatibility. Finally,

due to ParaGraph's popularity, other software developers have implemented PICL's trace file

format in their systems, or have developed programs to translate their native formats to/from

the PICL format. This can be an unnecessarily complicated task because of the peculiarities

of the current PICL format. These deficiencies prompted us to redesign the PICL trace file

format.

2. New format

The new PICL trace file format is not designed to be a standard. In discussions on standardizing

trace file formats, the consensus seems to be that a standard metaformat to describe how to

interpret a trace file would be more useful than a standard trace format, given the different

requirements of hardware, operating system, and application code level instrumentation [2].

Instead, the new format is designed to address the specific needs of out modeling research

and of PICL and ParaGraph users. Since these requirements are common to many other

instrumentation and visualization systems, we also tried to make the new format general enough

to be used in other (similar)systems. (See, for example, [2], [9], [10], [13], [14], and [15].)

To emphasize the generality of the new format, it is specified in three levels of decreasing

generality. Section 2.1 describes the general structure of a trace record: the number, intended

use, and order of fields in a trace record. Section 2.2 describes the default representation of

each field, as used in PICL and ParaGraph, and some general conventions on the values of the

fields that are motivated by PICL and ParaGraph, but are not specific to them. Section 2.3

describes the PICL/ParaGraph-specific interpretation of each value for each field. Appendix A

contains a sample PICL trace file generated using the new format.

2.1. General structure of a trace record °

In the new format, trace records have the fields described in Table 1. Every record will have s,

the first six fields, but if the number of data fields is zero, then the data descriptor field is

eliminated.

11 'III ' '111 .... '_
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Field name Meaning

record type type of information in trace record
• event type type of event that information is associated with

timestamp when information was valid
processor id processor that information is associated with
process id process that information is associated with
number of data fields number of other data fields associated with record and event types
data descriptor format of other data fields
data other data fields

Table 1: Basic structure of a trace record

The emphasis in tile new format is on recording information associated with events, both

system and user-defined, with every record associated with some event type. The ordering of

the fields reflects the importance of tile fields to an animation system like ParaGraph: what,

when, where, and associated data. If the record or event type is not recognized by the system,

then it can skip to the next record. But, if the system wants to read in the data, then it has

enough information to do so.

Note that nothing has been said about the format of these fields or about how to interpret

the values of the fields. This is partially motivated by Reed's argument against specifying data

semantics in a portable trace file format, although it does not go as far as his proposal [2].

Special (header) records can be included at the beginning of a trace file to specify how to read

• and interpret these fields, if a standard metaformat is ever agreed upon. (See, for example, [1].)

The PICL defaults for the new format are described in subsequent sections.

2.2. General conventions for fields

2.2.1. Field representation conventions

The (default) PICL format continues to be an "external", human-readable format. Ali fields

are in ASCII character format and are separated by white space. Tile record type, event type,

processor ld, process ld, and number of data fields are ali integers. The data descriptor is either

an integer or a variable length character string delimited by the double-quote character. The

format of the data fields is indicated by the data descriptor field, as will be described in the next

section. The timestamp is a floating point number whose resolution is a function of the units

(e.g., seconds) and of the clock resolution of the machine on which the trace was generated.

Note that while it may be useful to specify the clock resolution in a header record, it is not

- necessary. If some care is taken during input, then the timestamp can be read without losing

resolution.

- We have found a human-readable syntax to be very useful for portability, for finding an._

correcting errors in trace files, and for perusing the data without the aid of a visualization
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system, and it does not preclude compressing the file if it is so desired. Note that PICL uses a

binary format internally to save space and to avoid the overhead of type conversion during the

program execution, but this is never seen by the user.

m

2.2.2. Field value conventions

The interpretation of the field values in the new format are ali specific to PICL, but the

conventions described in Table 2 may be useful to other system designers who wish to adopt

the new PICL syntax.

Field Conventions

record type if > O, then a user-defined record type
if < O, then a standard or system-defined record type

event type if _>0, then a user event or a user-defined subset of events
if = -1, then refers to ali events (global information)
if < -1, then a system event or a system-defined subset of events

timestamp time in seconds,
processor id if >_0, then the id of an individual processor

if = -1, then refers to ali processors (global information)
if < -1, then refers to subsets of processors

process id if > 0, then the id of a process on the specified processor
if = -1, then refers to ali processes on the specified processor

(global information)
if < -1, then refers to subsets of processes on the specified processor

number of data fields number of other data field_.

data descriptor if double-quote delimited, then a scanf control string
otherwise, if v

= 0, then character data ("Z¢")
= 1, then string data ("Zs")
= 2, then integer data ("Zd")
= 3, th_n long integer data ("Zld")
= 4, then single precision floating point data ("Zr")
- 5, then double precision floating point data ("Z:l.f")
> 6, then some other predefined data format

Table 2: Basic conventions on field values

The processor and process id fields are assumed to define the "location" of the associated

event. While the usual approach is to number the processes associated with each processor

sequentially starting with 0, it may also be useful to allow the process numbering to be indepen-

dent of the processor, directly supporting both processor-dependent and processor-independent

approaches to visualizing the performance. (Note that neither PICL nor ParaGraph currently

support multiple processes on a (serial) processor. The process id field has been introduced for

compatibility with systems that do support this programming model, and to allow PICL and

ParaGraph a growth path. In PICL trace files using the new format, the process id field is set
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either to the actual PID, i.e. the identification number assigned to the process by the native

• operating system, or to the value-1.)

In general, the data descriptor field will contain a seaaf control string [11]. This is a

(variable length) character string, delimited by the double-quote character, that describes the

format of each subsequent data field. The control string may describe multiple data values,

for example, an integer and a floating point number. In this case, each data field is defined to

contain multiple data values, representing a structure defined by the control string. For simple

data fields, a control string data descriptor is relatively compact. For example, the mlmber

of fields and the data descriptor for a record with data consisting of three integers would be

either 3 and "_d", respectively, or 1 and "_d_d_d", whichever is more natural for the given

record. But a control string data descriptor also supports a great deal of flexibility, allowing

data of different types to be included in the same record. For complex mixes of data types, the

control string may be very long. To mitigate the effect of this length on the size of the trace

file, a control string can be defined in a special record and represented by an integer value in

subsequent records. See §2.3 for a description of this record. As indicated in Table 2, certain

of these integer values have been predefined. For example, a data descriptor field value of 2 is

equivalent to the control string "Xd". These predefined integer values for the data descriptor

field are primarily meant to be examples, and can be redefined by using the special record type.

For most fields, the value-1 is designated to be a wildcard, and has special interpretations.

' A wildcard field value is used most often to denote that the associated information is "global",

applying to all events, processors, or processes. Depending on the specific use, the wildcard

• can also be interpreted as a "do not care" or a "do not know" value. Section 2.3.3 contains

examples of this latter interpretation. The event type, processor ld, and process id fields may

also have other special values that denote subsets. Some of these values are predefined, as in

Table 5, but most would be defined by special record types, described in §2.3.1 and §2.3.8.

These subset field values are used for indicating that the given information applies to the given

subset, of processors, processes, or event types, and are not used for any other purposes, in

contrast to the wildcard value.

2.3. PICL/ParaGraph-specific interpretation of field values

In this section, we first describe the new record and event types. We then describe the data

associated with a given record type and event type.

m

2.3.1. Record types

The record types currently supported are described in Table 3. There are four record type

categories: user-defined record types, event record types, statistics record types, and subset-
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Record Type Meaning

> 0 user-defined record type ,
-2 event rnark

-3 event entry
-4 event exit
-5 event label

-6 event data descriptor
-7 event message

-101 data fields contain cumulative time spent in (other) event types,
relative to specified event type

-102 data fields contain number of occurrences of (other) event types,
relative to specified event type

-103 data fields contain the volume statistic for (other) event types,
relative to specified event type

-201 data fields contain a list of processors defined as a subset
-202 data fields contain a list of processes defined as a subset
-203 data fields contain a list of event types defined as a subset

Table 3: PICL record types

definition record types. The user-defined record types are for identifying (to the user) what

the associated data means for a given event. The event record types are for collecting the

detailed event information, for both system and user-defined events, needed for an animation

system like ParaGraph. The statistics record types are for sampling performance data and for

profiling system and user-defined event types. For example, they can record the amount of time

that a process spent waiting for messages to arrive while within user-defined events of a given

type. The subset-definition record types are for defining values that refer only to a subset of

processors, processes, or event types.

The event entry and exit records are used for "events" (or states) that have a measurable

duration. The event mark is used for events that have no duration, or whose duration is too

short to be measured reliably. Note that whether an event has a measurable duration or not

can be a function of the instrumentation package, and it is legal to use either entry/exit or

mark record types with any event.

The event label record is for "naming" an event type, and is expected to have character

data. By use of wildcard or subset field values, an event name can be assigned that applies to ali

occurrences of an event type within a set of processes or processors. The event data descriptor

record is for associating an integer with a control string (for use in subsequent records with this

event type). This record has a single data field that contains an integer followed by a scanf m

control string. Again, wildcard and subset values can be used to "globally" associate an integer

with a particular control string.

The even_ message record is for recording error and debugging messages, and is expected

to have character data. While not part of the format specification, the event message record is
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unique in PICL in that it is written to the trace file immediately instead being saved in local

o storage until the entire trace buffer is flushed. In consequence, this record is saved even when

the program does not run to completion.

Currently, three statistics record types are defined. Each statistics record type is for collect-,f

ing a specific type of information. For example, suppose t.at a user defines the execution of a

subroutine to be an event of a certain type. Then a statistics record of type -101 would be used

to describe how much time had been spent executing each PICL command during ali calls to

this subroutine. Similarly, a statistics record of type -102 would be used to describe how many

times other user-defined event types had occurred within calls to the subroutine. The volume

statistic collected by record type -103 is described in §2.3.7. Note that the best approach for

collectin,, performance statistics is still under investigation, and that the number of statistics

record types is likely to grow. But we expect no significant change in ttle definitions of the

record types already specified.

2.3.2. Event types

The event types in the new PICL trace file format are listed in Tables 4 and 5. There are

currently 9 major categories of events: user-defined events, ali events (wildcard), interprocess

communication events, file i/o events, synchronization events, resource allocation events, generic

performance events (for labelling user code), tracing events, and predefine,.t event subsets.

Each of these categories is further subdivided, as indicated in the tables. The categories and

numbering scheme have been chosen to make it simple to add event types.
,i

Note that some event types are not associated with PICL commands. Some of these event

types reflect extensions that we intend to make to PICL in the near f':ture. Some of these event

types are internal to PICL and are not associated with any one command. Finally, some of

these event types are for referring to predefined subsets of event types. These subset types are

primarily for use in statistics records. See §2.3.7 for an explanation of their use.

PICL does not produce event records for some of the event types in Tables 4 and 5, but

these event types still have associated performance statistics. For example, PICL does not

produce event records for probe0 events (event types -53 an<.'-54), but the number of times

that each of these event types occurs is recorded. (Some programs make heavy use of probe0,

e.g. event loops in which probe0 is called to check whether a message ha._ arrived that needs to

be processed. Producing trace records for each probe0 call in such a program would produce

very large trace files and could significantly perturb the behavior of the program.)

Comments on some of the event categories follow.

,a
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Event type PICL command Event

> 0 --- user-defined events

-1 -- matches ali events (wildcard)

-11 open0 enabling interprocess communication
-12 closeO disabling interprocess communication
-13 _hoO requesting interprocess communication parameters
-14 recvinfoO requesting information about most recently received or

queried after message
-21 sendO sending a message (blocking)
-27 sendbeginO posting a request that a message be sent (nonblocking)
-28 sendstatus0 checking and finding that a send request is complete
-29 sertdstatus0 checking and finding that a send request is not

complete
-30 sende:IdO verifying that a send request is complete
-31 sendendO waiting until a send request is complete
-51 recv0 receiving a message (blocking)
-52 recvO waiting to receive a message (blocking)
-53 probe0 checking and finding that a message is available to be

received

-54 probe0 checking and finding that no message is available to be
received

-55 wait0 verifying that a message is available to be received
-56 waitO waiting until a message is available to be received
-57 recvbeginO posting a request that a message be received (nonblocking)
-58 reevstatus0 checking and finding that a receive request is complete
-59 recvstatusO checking and finding that a receive request is not complete
-60 recvendO verifying that a receive request is complete
-61 recvendO waiting until a receive request, is complete

-201 -- opening an i/o channel or initializing a file descriptor
-202 -- closing an i/o channel or freeing a file descriptor

-221 -- writing to a channel or file
-251 -- reading from a channel or file

-401 clocksyncO s3 :achronizing process clocks
-402 syncO synchronizing processes

-501 openO allocating computing resources
-502 closeO releasing computing resources
-503 load0 spawning process(es)

-601 -- idle (generic)
-602 -- system overhead (generic)
-603 -- user or parallel overhead (generic)

N

Table 4" PICL event types



-9-

Event type PICL command Event

-901 tracenode tracing
1;racehost
traceexit

-902 t;raceevent;s specifying number of user event types to collect statistics for
-903 rracefiles specifying file in which to save the trace data
-904 l;racelevel specifying what trace data to generate
-904 l:raceinfo requesting information on current tracing parameters
-911 tracemsg placing a message in the trace file
-912 traceflush writing the trace data to the trace file
-913 -- trace buffer has filled up, and detailed tracing has been

disabled

-914 -- trace buffer has filled up, and trace records are being
overwritten

-1001 -- matches ali user events

-1002 -- matches ali system events
-1011 -- matches ali interprocessor communication events

(types - 11 - -200)
-1012 -- matches ali send events (types -21 - -50)

" -1013 -- matches ali receive events (types -51 - -80)
-1014 -- matches all blocked send/receive events

. (types -31, -52, -56, -61)
-1201 -- matches ali file i/o events

(types -201 - -400)
-1401 -- matches ali synchronization events

(types -401 - -500)
-1501 -- matches ali resource allocation performance events

(types -501 - -600)
-1601 -- matches ali generic performance events

(types -601 - -700)
-1901 -- matches ali tracing events

(types -901 - -1000)
-1902 -- matches ali trace flushing events

(types -911, -912)

Table 5: PICL event types
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Interprocess communication events. This category dominates in PICL trace flies that

are used as input to ParaGraph, and the numbering scheme has been chosen to keep tile

event type numbers small. The semantics for the send and receive events listed in Table 4

are not completely defined. When sending a message on iPSC and nCUBE multiprocessors, ._

the message is copied into a system buffer if the destination process has not yet posted a

corresponding receive request. On these systems, the send operation is complete (as far as the

sending process is concerned) when the send buffer can be modified without corrupting the

message. On a system using fully synchronous message-passing semantics, a send operation is

not complete 'mtil the message has been received by the destination process. Both blocking

(send0 and recv0) and nonblocking (sendbegin0, recvbegin0) communication events are

meaningful for both styles of message-passing semantics. In blocking events, control does not

return to the calling process until tile corresponding operation is complete. In nonblocking

events, control returns immediately, and further events (commands) are required to determine

when the corresponding operation is complete, e.g. sendstatus0, sendend0, recvstatus0, and

reevend0. Thus, the difference between the two styles of message-passing semantics is solely

in the definition of when a send operation is complete. If PICL, or some other system, ever

supports both styles of message-passing semantics in the same program, then additional event

types will need to be defined. This possibility was taken into account in the current numbering

scheme.

Note that a call to recv0 that waits because the message has not yet arrived and a call

to reev0 that does not need to wait are treated as separate event types. Systems that can

differentiate between the "overhead" of processing a receive request and the time when a process

is idle waiting for a message to arrive may wish to nest the two event types, to record this

information. Since PICL cannot do t t'- either one event type or the other will be associated

with a given reev0 call, but not both. Similar comments apply to the sendend0, wait0, and

reever_.? PICL commands (and corresponding event types).

File i/o events. File input/output events strongly influence the performance of parallel

application codes. Rather than definiog PICL calls for these commands, we decided to provide

support for hand instrumentation of the relevant commands. This decision is likely to change

when it becomes clear what type of file ilo commands should be supported directly in PICL, or

when a standard emerges. In the meantime, we anticipate that the number of distinct file i/o

event types will eventually be comparable to the number of interprocess communication event
M

types, and have chosen the numbering scheme accordingly.

Missing events. Events that have been ignored include more sophisticated point-to-point

communication events like swap, ali global events other than simple synchronization, and any
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support for shared-memory primitives (locks, semaphores, etc.) We have attempted to leave

room in this numbering scheme for a significant increase in the number of event types. But

renumbering the event types listed in Tables 4 and 5 will be a simple task if tlle current

• numbering system must eventually be redone.

2.3.3. Data fields for event entry, exit, and mark records

Tables 6-18 describe the data fields associated with event entry/exit or event mark record

types for PICL events. As indicated earlier, event mark and event entry/exit are both legal

record type "options" for any event. PICL currently produces either an event mark or an

event entry/exit pair for any given event type, but not both, and only the records generated

by PICL are described in Tables 6-13. But the event mark records are easily specified in terms

of the event entry/exit records; the data fields for an event mark record are _,_e data fields

for the corresponding event entry record followed by the data fields for the evez, exit record.

In contrast, specifying event entry/exit records from event mark record specifications must be

done on a case-by-case basis. For the current set of PICL event types, it is sufficient to put ali

of the data fields from the event mark record in the event entry record.

For the most part, we consider ali data fields to be optional. An animation tool needs some

of the data for certain displays, like destination for a send command and source for a receive

command when displaying a spacetime diagram [7], but other displays need only the time that

an event began and ended to be meaningful, lt is our hope that analysis programs will use the

data, if available, but be robust enough to work if the data are missing.

Wildcard event. Entry and exit records for the wildcard event are one way of indicating

the beginning and end (of the traced portion) of a process. Note that this is redundant because

the tracing event records indicate exactly the same information. The wildcard is the natural

event type for describing cumulative statistics for an entire process, but the tracing event type

also has the same statistics.

Event PICL Record # of Data Data Data

type command type Fields Descriptor Fields

-1 (ali events) entry 0 --
exit 0 _

Table 6: PICL data fields for wildcard event

t_

Interprocess communication events. The data fields of the interprocess communication

- events (Tables 7 and 8) reflect PICL's calling syntax and semantics, but also provide explicit

support for multiple processes per processor selecting messages by processor and process id as
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Event PIC,r., Record # of Data Data Data
type command type Fields Descriptor Fields

- 11 openO entry 0 -- --
exit 0 -- --

-12 closeO mark 0 --
-13 whoO ....

-14 recvinfoO ....

-21 sendO entry 4 (3) "Xd" length in bytes
type
destination processor id
destination process id

exit 0 -- --

-27 sendbeginO entry 4 (3) "_,d" length in bytes
type
destination processor id
destination process id

exit 1 "Xd" send request id

-28 sendstatusO entry 1 "Xd" send request id
exit 0 -- --

-29 sendstatusO ....

-30 sendendO entry 1 '°7,d" send request id
exit 0 -- --

-31 sendendO entry 1 "Xd" send request id
exit 0 -- --

-51 recvO entry 3 (1) "_.d" requested type
requested processor id
requested process id

exit 4 (3) "7.d" length in bytes
received type
source processor id
source process id

Table 7: PICL data fields for interprocess communication events
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" Event PICL Record # of Data Data Data
type command type Fields Descriptor Fields

-52 recvO entry 3 (1) "_d" requested type
requested processor id
requested process id

exit 4 (3) "7,d" length in bytes
received type
source processor id
source process id

-53 probeO ....

-54 probeO ....
-55 waitO ....

-56 waitO entry 3 (l) "Y,d" requested type
requested processor id
requested process id

exit 4 (3) "_d" length in bytes
found type
source processor id
source process id

-57 recvbeginO entry 3 (1) "Y,d" requested type
requested processor id

" requested process id
exit 1 "Y.d" receive request id

-58 recvstal;us0 entry 1 "Xd" receive request id
• exit 4 (3) "7.d°' length in bytes

received type
source processor id
source process id

-59 recvstatusO ....

-60 recvendO entry 1 "Y.d" receive request id
exit 4 (3) "7,d" length in bytes

received type
source processor id
source process id

-61 recvendO ent.ry 1 "Xd" receive request id
exit 4 (3) "7,d" length in bytes

received type
source processor id
source process id

. Table 8: PICL data fields for inter_rocess communication events
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well as by message type, and typeless messages, none of which are currently supported in the

PICL programming model. The wildcard value (-1) can be used to indicate that a given data •

field is not relevant or not defiaed. Data fields at the end of the record can also simply be

dropped by stipulating a smaller value for the number of data fields. Tile ordering of tile data ?

fields has been chosen so that this latter mechanism can be used to include only information

relevant to PICL. The number of data fields that will be produced in the next version of PICL

is indicated in parentheses.

Simply eliminating data fields that are not relevant is not a very general technique for adding

flexibility, depending as it does on both the choice and the ordering of the data fields as to

whether the approach can be used. But it does decrease the size of trace records, and it does

follow the previously mentioned maxim that missing data should not effect correct execution of

visualization or analysis tools. In particular, both eliminating fields and usiilg the wildcard field

value should be (equally) valid techniques for indicating that a certain data field is not relevant

or not defined. A different option for incorporatiag different versions of send and receive is to

introduce new event types for these operations, but thio should probably be done only for truly

different events, e.g. send/receive with significantly different semantics.

As indicated in §2.3.2, PICL does not produce event records for event types -53 and -54,

associated with probe0, because these events are of short duration and may occur very often in

a program. For similar reasons, PICL does not produce event records for event types -13, -14,
,m

-29, -55, and -59, associated with who0, recvinfo0, sendstatus0, wait0, and reevstatus0,

respectively. But PICL will produce event records for event types -28, -56, and -58, also
,D

associated with sendstatus0, wait0, and recvstatus0, either because of the longer duration

of the events or because of the limited frequency that these events will occur. For example, for

each nonblocking receive request, at most one call to recvstatus0 will find that the message has

been received (event type -58). Subsequent calls to reevstatus0 will check for the completion

of the next outstanding receive request of tile indicated type, returning an error if there are no

other outstanding receive requests of that type.

Note that, in PI.CL, the send request id for the sendsl;atus0 and sendend0 events is identical

to the message type associated with the corresponding sendbegin0 event. If instrumenting the

native iPSC equivalents (,.sgdone,msgwait,and isend),then a different value would be used

to identify the corresponding isend, but the definition of the data field applies to both cases.

Similar comments apply to the receive request ld.

File i/o events. File i/o events are one of the recent additions to the PICL tracing facility,

and we are still working out how best to instrument them. For example, there are numerous

different types of file read and write commands, each of which may require a distinct event

type. Minimally, we want to know how often these events occur, and how much time is spent
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within them. As indicated in Table 9, we also record the name of the file or channel that is

opened or closed in file open or close commands, what file is being written to or read from in

read or write commands, and tile amoulit of data read or written.

• Synchronization events. The only synchrouization events specified currently are the clock

normalization and barrier events. While PICL does not support barriers for subsets of proces-

sors or processes, this is an obvious (and important) generalization, and the data fields have

been chosen to support this. The number of data fields actually generated by PICL is indicated

in parentheses, as before, although the wildcard value is an equally valid way of indicating that

ali processes and processors are expected to participate in the event.

Note that many of the shared-memory primitives, like locks and semaphores, would also

be useful additions to this category of event types. While this trace format is strongly geared

toward message-passing systems, the new generation of multiprocessors support multiple pro-

gramming models, and a single program may mix programming styles.

Resource allocation events. The only support in PICL for resource allocation is that

the host processor (on systems with a host) can allocate and deallocate processors and load

processes onto processors. Since tile format described in Table 11 does not restrict these events

to the host processor, the same events can be used for the next generation of multiprocessors

or on networks of workstations, where any process can allocate processors and load (spawn)

other processes. But for these more general resource allocation and process spawning events,

more or different data may need to be recorded.

Generic performance events. Not ali events of interest are defined within this format, and

generic labels are provided that can be used to identify performance aspects of an unidentified

event. For example, event type -603 can be used to label sections of code that are added when

parallelizing a serial code, to support the identification of parallel inefficiencies or overhead.

The entry/exit records associated with these events are described in Table 12.

Tracing events. Tracing events are recorded to allow the trace file to be interpreted cor-

rectly, and to measure some of the gross effects of tracing. See Table 13 for a description

of the data fields associated with these events. Note that the first event record is always

the tracenode/1;raeehos_; entry record and the last event record is always the corresponding

exit record. Thus, cumulative statistics for an entire process are the relative statistics for the

"tracing" event type (-901).

" Subset events. Entry, exit, and mark records for subsets of event types are "legal", but not

particularly useful or meaningful. The primary use of subset event types is in the specification
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Event PICL Record # of Data Data Data
type command type Fielas Descriptor Fields °

-201 (file open) entry (variable) "Zt" file/channel name
exit 1 "Zd" file descriptor/unit number

-202 (file close) entry 1 "Zd" file descriptor/unit number
exit 0 --

-221 (file write) entry 2 "Zd" length in bytes
file descriptor/unit number

exit 0 --

-251 (file read) entry 0 --
exit 2 "Zd" length in bytes

file descriptor/unit number

Table 9: PICL data fields for file i/o events

Event PICL Record # of Data Data Data
type command type Fields Descriptor Fields

-401 elocksync0 entry 2 (0) "Zd" processor subset synchronized
process subset synchronized

exit 0 --

-402 sync0 entry 2 (0) "Zd" processor subset synchronized
process subset synchronized

exit 0 _

Table 10: PICL data fields for synchronization events
m

Event PICL Record # of Data Data Data

type command type Fields Descriptor Fields

-501 open0 entry 1 "_d" requested number of processors
exit 1 "Zd °' allocated number of processors

-502 closo0 entry 0 --
exit 0 --

-503 "toad0 entry (variable) "Ze" name of executable
exit 2 "Zd" processor on which process was

spawned

process id of spawned process

Table 11" PICL data fields for resource allocation events

Event PICL Record # of Data Data Data
type command type Fields Descriptor Fields

-601 (idle) entry 0 --
exit 0 _

-602 (system overhead) entry 0 -- -- .
exit 0 --

-603 (user-defined or parallel overhead) entry 0 _
exit 0 _ -- •

Table 12: PICL data fields for generic performance events
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of cumulative statistics for the subsets, especially in the context of statistics records. The

number of predefined subset event types is likely to increase in the future, as new (individual)

event types are added, and as new subsets are identified as being important.

e

2.3.4. Data fields for event label records

The event label record is for "naming" an event type occuring in a given process and processor.

By use of wildcard (or subset) values, this record type can also be used to label ali instances

of an event type, independent of the process and processor, or to label a process or processor

independent of the event type. As indicated in Table 14, the data should be a sequence of

characters defining the label.

2.3.5. Data fields for event data descriptor records

The event data descriptor record is for associating an integer with a control string. As indicated

in Table 15, this record has a single data field that contains an integer followed by a character

string, which is assumed to be a double-quote delimited scanf control string. The scope of

the integer alias for the control string can be controlled by the use of wildcard or subset field

values. Note that "ZdZs", the data descriptor for the trace record indicated in Table 15, will

not adequately describe the format of the data field if the control string within the field contains

white space characters. In such a case, the data descriptor should be modified.
i

2.3.6. Data fields for event message records

The event message record is for recording error and debugging messages, and other comments

or annotations that are needed in the trace file. As indicated in Table 16, the data should be

a sequence of characters defining the label.

2.3.7. Data fields for statistics records

Each event type has cumulative statistics representing time spent in events of this type and

the number of times events of this type occurred. Each event type with a length data field

(types associated with send0, sendbegin0, recv0, wait0, recvstatus0, recvend0, file write,

file read, tracemsg, and traceflush) has a corresponding cumulative volume statistic. The

number of processes spawned by load0 is also considered to be a volume statistic. Finally, the

total amount of trace data collected by a process is considered to be a volume statistic for the

" tracing event type (-901).

If ali events of a given type have durations that are not measurable or are not measured,

' then the associated time statistic value is -1. Similarly, if the number of occurrences or the

volume for an event type is not measured or is not defined, then the corresponding statistic
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Event PICL Record # of Data Data Data
type command type Fields Descriptor Fields

-901 tracenode/ entry 0 -- --
tracehost

_raceexit exit 0 -- -- .-

-902 traceevenl:s entry 1 "Zd" number of user events
being profiled

exit 0 -- --

-903 traeefiles entry 0 -- --
exit 0 -- --

-904 tracelevel mark 3 "Zd" PICL event tracing level
user event tracing level
trace event tracing level

-905 traceinfo ....

-911 tracemsg entry 1 "_d" length in bytes
exit 0 -- --

-912 traceflush entry 0 -- --

exit 1 "Zd" length in bytes
-913 (buffer full) mark 0 -- --

-914 (overwriting buffer) mark 0 --

Table 13: PICL data fields for tracing events

Event PICL Record # of Data Data Data

type command type Fields Descriptor Fields

(any) -- -5 (variable) "Zt" label

Table 14: PICL data fields for event label records

Event PICL Record # of Data Data Data

type command type Fields Descriptor Fields

(any) -- -6 1 "XdXs" control string

Table 15" PICL data fields for event data descriptor records

Event PICL Record # of Data Data Data
type command type Fields Descriptor Fields

(any) -- -7 (variable) "Zt" message

Table16:PICL datafieldsforeventmessagerecords

Event PICL Record # of Data Data Data
type command type Fields Descriptor Fields

(any) -- -101 (variable) "XdXlf" event type and cumulative
time spent within event type

(any) -- -102 (variable) "ZdZd" event type and number of
occurrences of event type

(any) -- -103 (variable) "XdXd" event type and associated
volume statistic

Table 17: PICL data fields for statistics records
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value is -1. Thus, an instrumentation package does not have to collect ali of the data specified

in the new PICL trace file format. In particular, PICL may not collect ali of these statistics.e,

The data fields in the statistics records are described in Table 17. The number of data

fields is variable, but each field is an ordered pair consisting of an event type and an associated

statistic. The statistic for the associated event type is measured relative to the event type

of the trace record. As mentioned above, for event types without a particular statistic, the

corresponding data field is defined to be -I. Similarly, if an event type has not been defined,

then the associated statistics are defined to be -1. To keep the statistics records short, PICL only

outputs these ordered pairs for events with postive statistics, with the underlying assumption

that those events not mentioned have zero or undefined statistics.

A complete profile of PICL and/or user event types is useful as a summary statistic, but it is

both very space consuming add expensive to calculate if sampled multiple times during a code's

execution. A more practical approach is to specify subsets of these event types (e.g. ali sends,

ali receives, etc.), and return statistics summed over subsets. Some standard subsets have been

defined in Table 5 for this purpose, and other subsets can be defined using the subset-definition

record types.

2.3.8. Data fields for subset-definition records

The data fields in the subset-definition records are described in Table 18. The number of data

" field _,is variable, but the first field defines the integer label for the subset, and the subsequent

fields define the subset.
q

Event PICL Record # of Data Data Data
type command type Fields Descriptor Fields

(any) -- -201 (variable) "Zd" subset identifier and list of
processor ids in subset

(any) -- -202 (variable) "Zd" subset identifier and list of
process ids in subset

(any) -- -203 (variable) "Zd" subset identifier and list of
event types in subset

Table 18: PICL data fields for subset-definition records

2.4. Header records

Header records are trace records that are prepended to a trace file and that are used in the

" processing or understanding of the rest of the trace file. The one example mentioned previously

is the use of header records (in some standard metaformat) to define, the format of subseqv,_nt

" records. A more Lypical use of header records is to identify the trace file: when it was generated,

who generated it, the program(s) that produced the trace, the parallel computer the program
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ran on, the configuration of the parallel computer, etc. Also, some visualization and analysis

tools expect the trace file to begin with global information on the number of processes, the

number of events, event labels, etc., so that the tool does not have to read the trace file more

than once. Other information, relevant to PICL-like systems, that can be encoded in header

records include clock resolution(s), integer aliases for data descriptor control strings, ".._eger

aliases for files names and i/o channels, processor and process subset definitions, names of

executables associated with processor and/or process ids, machines names corresponding to

processor ids, and lines of source code and names of source files corresponding to events. (The

last item is of major importance in debugging, and the second to last item is important when

computing over heterogeneous networks, where the processor numbering is arbitrary, but the

machine names are fixed.) Some of this information is, or can be, embedded within the trace

file, but the visualization tools wapt the information at the beginnining of the file.

There are as yet no PICL trace records defined specifically as header records. Producing

header records is problematic in PICL because ther_ is no controlling process in the writing

of a trace file, and PICL header records will need to bc added in a postprocessing step. _'.,t

the format of header records is already fairly well determined. Some new record types may

be needed (probably with type values > 2G0), but wildcard or subset field values can be used

to indicate the scope of the the information. The timestamp for header records added in

postprocessing should precede the earliest recorded time, so that they are still the first records

in the file after sorting by timestamp. Due to the clock normalization logic, negative timestamps

are legal, so it is not sufficient simply to define the timestamp of a header record to be less
P

than zero.

2.5. PaxaGraph requirements

PICL always produces entry and exit records for the tracing event (-901) and detailed summary

statistics (record types -101, - 102, -103) for event type -1. ParaG raph looks for the tracing even t

entry record to begin the animation for a given process, and uses the tracing event exit record

to determine when the process has terminated. ParaGraph then uses the mark, entry, and

exit record types for other events, both system and user-defined, when animating the trace

file. User-defined record types are sometimes used in special application specific ParaGraph

displays, where the record types define what the associated data means. Currently, ParaGraph

ignores the event label, data desciptor, and message records, ali statistics records, and ali

subset-definition records.

ParaGraph expects that there will be exactly one process per processor, and that P pro-

cessors are numbered 0 to P- 1, with the exception of a host processor. In homogeneous

multiprocessor systems with a host, the host processor generally behaves much differently than
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the other processors, and it is important to distinguish it in the trace data. In PICL, the host

processor id is 32767, and ParaGraph ignores any trace records with this processor ld.
J

3. Future work

The new PICL trace file format is not completely specified. But the part described in this

document already represents a superset of the old PICL format, and it is sufficiently well-

defined to be used with ParaGraph. Further development will be driven by our experiences

with the new format, especially in the context of our _,uning and modeling research. Wc also

welcome suggestions and comments from users and from developers of simi'.ar systems.

Like PICL, the new F'ICL trace file format is a research tool, and the needs of our research

will determine how it changes. But we anticipate most future changes to be restricted to

the PICL/ParaGraph-specifics described in §2.3, and those changes are most likely to be the

addition of new event and record types and the addition of new data fields to existing record

types.

A ckn owl e d ge mel_ * s

The design of the new PICL trace file format was motivated primarily by the needs of ORNL

projects in performance modeling and in global climate change, but the following people also

made contributions. Extensive discussions with Maurice van Rick, then at LIP in Lyon, con-

vinced us of the utility of making the new format general enough to be used in other systems.

" Discussions with Michael Heath and our experience with a prototype version of ParaGraph

written by Jennife Finger confirmed that the new format works well with ParaGraph. We

express our appreciation to Jon Flower of Parasoft for providing us with descriptions of the

trace data formats used in Express. We also express our appreciation to Ewing Lusk of Argonne

National Laboratory for providing descriptions of the trace data formats produced by the alog

package and used in the visualization tool upshot, and for commenting on the appropriateness

of the new PICL format for these systems.

A. Example trace file

The trace records in Table 20 were generated by the PICL program in Table 19 running on 8

processors of an Intel iPSC/860 at Oak Ridge National Laboratory. The program broadcasts

" the time from processor 0 to the other processors twice, once by using the default broadcast

mechanism (a destination value of-1) and once by using a ring broadcast algorithm. Tracing

• commands are used to identify the first broadcast as user event 0 and the second broadcast as

user event 1. The value received in each broadcast is saved in the trace file using a user-defined
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record type. To keep the trace file short, the program specifies that trace data from only one

processor be saved in the file trace. Since this program was run "hostless", i.e. without a host

program, the trace data generated on the other processors was lost.

To demonstrate the relevant trace records, ali PICL commands are called after tracing is

enabled. In practice, initial calls to tracelevel, traceevents, and trace:files would be made

before calling tracenode, and the clock synchronization option in 1;racenode would be used to

mask the effect of the overhead introduced by these commands on the runtime behavior. In this

program, the synchronization option is not invoked in the call to craceaode and an explicit

call to ¢locknyn¢0 is made following the trace:files call. This also masks the effect of the

perturbation, but has the side-effect of making times preceding the call to clocksync0 negative,

which is legal in the new PICL format. (The timestamps of ali trace records that have not yet

been written to the permanent trace file are effected by synchronization of the clocks, not just

those that follow the call to clocksync0.) If the call to clocksync0 were replaced with a call

to tracenode with the clock synchronization option set, then the positive timestamps would

be similar, and the trace records with negative timestamps would not have been generated.

The program uses some PICL commands that are not yet available in the released version of

the library, but the comments in the program should be sufficient to interpret the code. Each

line of code has been numbered, and numbers have been added to the trace in Table 20 to

indicate which line of code caused the trace record to be generated. These line numbers do not
w,

actually occur in the program or trace file. Also, trace records that are too long to be displayed

on one line have the symbol "\" appended to the end of the line that is broken.
,p

Note that many of the trace records are associated with the close0 call. Since traceexit

is not called explicitly, close0 calls it implicitly, at which time ali of the summary statistics

are generated. As an aid in interpreting Table 20, Table 21 describes the _rst statistics record

in detail. As mentioned in §2.3.7, only those events whose statistics are positive are listed in

the statistics records.
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(I) main()

(2) {

(3) inr numproc,me,host;
(4) double x,clockO();
(5)
(6) tracenode(10000,O,O); /* enable tracing */
(7) ¢racelevel(1,1,1); /* set tracing levels */

(8) traceevents(2,1,1,1,1,1); /* enable profiling of user events */

(9) openO(_numproc,_me,&host); /* enable interprocessor communication */
(10) if (me == numproc-2)

(11) tracefiles("","trace",O); /* specify where to save trace data */
(12)

(13) clocksyncO(); /* synchronizeprocessor clocks */

(14) traceblockbegin(O,O,O); /* record beginning of user event */

(15) if (me == 0){ /* broadcast time using native broadcast */
(16) x = clockO();
(17) sendO(_x,sizeof(double),O,-1);
(18) }
(19) else recvO(kx,sizeof(double),O);
(20) traceblockend(O,O,O); /* record end of user event */
(21) tracedata(O,O,"double",1,_x);/*record data associated with user event */
(22)

(23) traceblockbegin(1,O,O); /* record beginning of user event */
• (24) if (me == 0){ /* broadcast time using ring algorithm*/

(2B) x = clockO();
(26) sendO(&x,sizeof(double),l,me+l);
(27) }
(28) else{

(29) recvO(kx,sizeof(double),l);
(30) if (me.l<numproc)
(31) sendO(_x,sizeof(double),1,me+1);

(32) };
(33) traceblockend(1,0,O); /* record end of user event */
(34) tracedata(1,0,"double",l,kx);/* record data associated with user event */
(3S)
(36) closeO(); /* disable interprocessor communication */
(37) }

Table 19: Example PICL program
,d
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-3 -901 -0.715036 6 0 0 (6)

-2 -904 -0.715024 6 0 3 2 1 1 1 (7)

-3 -902 -0.715017 6 0 1 2 2 (8)

-4 -902 -0.713847 6 0 0 (8)

-3 -11 -0.713833 6 0 0 (9)

-4 -11 -0.713735 6 0 0 (9)

-3 -903 -0.713724 6 0 0 (11)

-4 -903 -0.008091 6 0 0 (11)

-3 -401 -0.008079 6 0 0 (13)

-4 -401 0.00O005 6 0 0 (13)

-3 0 0.000016 6 0 2 2 0 0 (14)

-3 -52 0.000128 6 0 1 2 0 (19)

-4 -52 0.000516 6 0 3 2 8 0 0 (19)
-4 0 0.000539 6 0 2 2 0 0 (20)

0 0 0.000635 6 0 1 5 0.000124 (21)

-3 1 0.000711 6 0 2 2 0 0 (23)

-3 -52 0.000818 6 0 1 2 1 (29)

-4 -52 0.001643 6 0 3 2 8 1 5 (29)

-3 -21 0.001665 6 0 3 2 8 1 7 (31)

-4 -21 0.001711 6 0 0 (31)

-4 1 0.001724 6 0 2 2 0 0 (33)

0 1 0.001971 6 0 1 5 0.000410 (34)

-2 -12 0.001979 6 0 0 (36)

-4 -901 0.001982 6 0 0 (36) "

-101 -1 0.001982 6 0 7 "_d_If" -11 0.000098 -21 0.000046 -52 0.001212 \ (36)
-401 0.008083 -901 0.717018 -902 0.001170 -903 0.705632

-102 -I 0.001982 6 0 9 "_d_d" -11 1 -12 1 -21 1 -52 2 -401 _ -9011 \ (36)
-902 1 -903 1 -904 1

-103 -1 0.001982 6 0 3 "_d_d" -21 8 -52 16 -901 428 (36)

-101 -1 0.001982 6 0 2 "_d_Zf" 0 0.000523 1 0.001013 (36)

-102 -1 0.001982 6 0 2 "_d_d" 0 1 1 1 (36)

-101 0 0.001982 6 0 1 "%d%lf" -52 0.000387 (36)

-102 0 0.001982 6 0 1 "7,d_d" -52 1 (36)

-103 0 0.001982 6 0 1 "_d_d" -52 8 (36)

-'_31 1 0.001982 6 0 2 "_d_lf" -21 0.0_0046 -52 0.000825 (36)

-102 1 0.001982 6 0 2 "_dT_" -21 1 -52 1 (36)

-103 1 0.001982 6 0 2 "_d_d o' -21 8 -52 8 (36)

Table 20: Trace records produced by example PICL program
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Field name Field value Meaning

record type -101 a statistics record containing cumulative event
" times

event type -1 statistics are relative to tile wildcard event,
thus are summary statistics for the entire traced

portion of the program
timestamp 0.001982 statistics valid at time .001982
processor id 6 statistics valid for processor 6
process id 0 statistics valid for process 0
number of data fields 7 seven cumulative time statistics recorded

data descriptor "_d_,lf" each statistics data field is made up of an
integer identifying the event and a double
precision floating point time value

data field -11 0.000098 time spent in open0
data field -21 0.000046 time spent in send0

: data field -52 0.001212 time spent blocked waiting for a message inrecvO

data field -401 0.008083 time spent in clocksync0

data field -901 0.717018 time spent between traeenode and traceexit
'- (called implicitly inside closeO)

data field -902 0.001170 time spent in traeeeveats
; data field -903 0.705632 time spent in tracefi.les

Table 21' Example PICL trace record
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