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Radiation Transport Between Concentric Spheres*

Steven W. Haan
Lawrence Livermore National Laboratory
Livermore, CA

August 8, 1994
(original date March 9, 1983)

This is a note originally distributed in 1983. I am re-releasing it now, with a couple of
words changed, so that it can be used for test problems, distributed more openly, and so forth.
One could argue that it should be published, but I do not have time to reshape it into something I
would regard as suitable for journal publication. A different derivation of the same result is being
published in an appendix in D.W. Phillion and S.M. Pollaine, "Dynamical Compensation of
Irradiation Nonuniformities in a Spherical Hohlraum Illuminated with Tetrahedral Symmetry by
Laser Beams," submitted to Phys. Plasmas.

Consider two concentric spheres with a prescribed temperature distribution
on the inside of the outer sphere. What is the incoming flux distribution on the
inner sphere?

This problem is fundamental to hohlraum design, since the radiation on the
smaller sphere becomes more symmetric as its radius decreases. Greenl
calculated the limiting case of zero inner radius, and Kershaw? has done the Py
case for arbitrary radii. Garrison3 has done higher Py, for a slightly different,
simpler problem (in my notation below, he has cos6L, = 1). I will present
numerical results for P; through Pg for arbitrary radii.

Let the spheres’ radii be Rs and R.. Use a coordinate system with the z axis
at the point where the flux onto the small sphere is to be calculated (see Fig. 1).
In these coordinates, the temperature on the outer sphere is written T (6 , ¢). An

arbitrary T can be expanded as

oo { o
oT(e, (p)4= oT! 2 Z Epm &me PZ," (cos®)

{=0 m=~{

(1)

*This work performed under the auspices of the U. S. Department of Energy by Lawrence
Livermore National Laboratory under contract no. W-7405-Eng-48.
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where E0= 1.

We are usually interested in the case where T is symmetric about some axis.

Let ﬁo in direction 8¢ , Po be a unit vector along the axis of symmetry, and let o)
be a unit vector in direction 6, ¢. Expand the radiation pattern in P, moments

about its own axis of symmetry:

o*T(e,cp)4= oT? i t, P, (ﬁﬁo) ,
£=0

where t, = 1. The addition theorem for spherical harmonics says that

A A 4 im(¢p —
P, (Q- Qo)= Y (=D mPL,"m (cos 00) Pzn (cos 6) elm((p (p")

m=-{

Thus, for this special case the coefficients in Eq. (1) are given by

—im¢
— 0 (_1\" p—m (.
Ep = € (-1 Pz (cosBo) té

Referring again to Fig. 1, let 65, 61, and r be defined as shown. Let 8max be
the 6 for which 85 = ©/2. The flux onto the pole of the small sphere is

» 0T* cos@, cosb,

2

F= Td(p jd(cos 0) R, -

o cos 6,

Substitute the P} expansion, Eq. (1). The ¢ integral of ei™® vanishes unless m =

0, and so

R cos @, cose

o0 1
F=20T.Y, &, [d(cosf) L P, (cos)

=0 €08 O ey

)

©)

(4)

(5)

(6)



o0 1
F=20T!Y &, [d(cosO)R;} ©050,0056, p (cosB) (6)
r

t=0 €08 By

The law of cosines on the r, Rg, 1, triangle in Fig. 1 implies that

2 . p2_.2
cos @ = .._RL—‘F_RL__."_ (7)
2RR;,
: 2 _p2_ .2
cosf, = ﬁ_i%;_’_ 8)
s
2_p2,.2
cos@, = EL—EI%%L 9
L

Using these, and defining n and z as

n="s/, | (10
z=(r/ R)*, (11)
it is easy to show that
F=oT} 3 €, £ (12)
t=0
where
fo(m= Z:?i:fég [S‘—‘;";f- - 1] P, (“Zf,“z) . (13)



For the case where T is given by Eq. (2), the flux on the inner sphere is

F=0T! Y t, P,(cosb,) f,(n) . (14)
{=0
A procedure for determining f, is the following. Define

1 -1 1- 252 N
(=75 [z [S——-—g—)——l}z (15)

(1-ny? z

These are easily evaluated to be (m>2)

Ibm)=1 (16)

_(=m)  (1+n)_(=n)
1) =S {10 L 7

- { — [+ )™ - =n) (4 )]

4n -1 (18)

_ —'—1;—1 (l+n)m+l _ (1-n)m+l ]}

Next define
S. (1) =1 l-fzdz _(_1_—_111)1 -1 (L"'__nz_lijm ] (19)
m 4n2 (l_")l ZZ 217



Note that

m

- 1 m 2\" _1\ym-n
S"'(")"(zn)"' Y (n) (147?) 0™ I_.(n) (20)

n=0

Also, comparing Egs. (13) and (19), you can see that f, is easily written in terms

of Sm; for example, since

P4(x)=—;- [35x4—30x2+3] : (21)

f4 is

f, =é— [355,-305,+3] . (22)

One could now substitute Im from Egs. (16)-(18) in Eq. (20), and substitute the
result into the analogues of Eq. (22). However, the resulting expressions are not
illuminating and it is easy to make mistakes. So Ijust used the computer: for
each 1, first I use Egs. (16)-(19) to evaluate I;,, m 26; then I calculate Sy, from Eq.
(20); finally, I form the appropriate linear combinations to give f,. This relies on
considerable computer accuracy for n near 0 and 1 since cancellations are

important. Ihad to use double precision to get fg at small 7.

The results are plotted in Fig. 2 and tabulated in Table 1. What I see as

significant observations are:



(i) f2 increases quite rapidly with m, reaching 0.5 already by n =0.3. Soa 0.2
mm capsule in a 1 mm hohlraum feels less flux smoothing than one might have
thought, and experiences a 50% decrease in P; flux if the ablation surface moves

in.

(ii) The coefficients f4 and fg change sign atn = 0.2. Since this is in the
ballpark of our capsule-to-case scale factors, and since intrinsic P4 and P¢ are

usually present, this may be important.

(iii) Both f4 and fg are non-negligible at n 20.1. We should definitely try to
desien our hohlraums so that the large-radius P4 and P¢ moments are as small as

possible.
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Figure 2. Amplitudes of spherical harmonic moments vs. the ratio of the radii.




E F1 F3 F4 FS F6
0.01000 0.67165 0.25802 0.00508 -0.04158 -0.C0156 -
0.02000 0.67661 0.26610 0.01037 -0.04133 -0.00311 0.015S83
0.08000 0.68155 0.27422 0.01582 -0.04083 -0.004S5S 0.01526
0.04000 0.68645 0.28239 0.02146 -0.04027 -0.00%616 0.01497
0.05000 0.69133 0.29060 0.02726 -~0.03946 -0.00764 0.01460
0.06000 0.69518 0,29885 0.03329 -0.03845 -0.00908 0.01416
0.07000 0.70101 0.30715 0.03847 -0.03724 -0.01048 0.01364
0.08000 0.70581 0.31548 0.04584 -0.03583 -0.01178 0.0130%
0.08000 0.71059 0.32336 0.05239 ~-0.03420 -0.01304 0.01240
0.10000 0.71533 0.33227 0.05811 -0.03235 -0.01421 0.01168
0.11000 0.72005 0.34072 0,.06602 -0.03028 -0.01529 0.01091
0.12000 0.72474 0.34920 0.07310 -0.02798 -0.01527 0.01003
0.13020 0.72941 0.35772 0.08035 -0.02545 -0.01714 0. 00922
0. 14000 0.73405 0.36627 0.03780 -0.02268 -0.01788 0.00832
0.15000 0.73866 0.3748S 0.09542 -0.01966 -0.01850Q 0.00738
0.186000 0.74324 0.38346 0.10321 -0.01640 -0.01897 0.00642
0.17000 0.74780 0.39210 o.11117 -0.01233 -0.01929 0.00545
0.18000 0.75233 0.40076 0.11830 -0.00912 -0.0194S 0.00448
0.19000 0.75583 0.40945 0.12761 ~0.00508 -0.91942 0. 00351
0.20000 0.76130 0.41816 0.13508 -0.00079 -0.01921 0.00256
0.21000 0.76575 0.42589 0.14472 0.00377 -0.01881 0.00163
0.22000 0.77017 0.43565 0. 153583 0.00861 -0.01819 0.00075
0.23C00 0.77456 0.44442 0.16250 0.01372 -0.01735 -0.00008
0.24000 0.77892 0.45321 0.17164 0.01911 -0.01628 -0.00085
0.2%000 0.78326 0.46202 0.1809%4 0.02478 -0.01497 -0.0015%
0.286000 0.78756 0.47054 0.19040 0.03074 -0.01341 -0.00215
-0.27C00 0.79184 0.47967 0.20001 0.03699 -0.01157 -0.00264
0.285000 0.79609 0.48851 Q.20978 0.04353 -0.00946 -0.00301
0.2€000 0.80031 0.49737 Q.21970 0.05035 -0.00707 -0.00325
0.30000 0.80451 0.50623 Q.22978 0.05743 -0.00437 -0.00334
0.310Q0 0.80857 0.51510 0.24000 0.064¢1 -0.00137 -0.0C325
0.32000 0.81281 0.52398 0.25037 0.07263 0.00196 -0.00298
0.33000 0.81691 0.53236 0.26033 0.0380G65 0.00562 -0.Q0251
0. 34000 0.82099 0.54174 0.27153 0.0389s 0.009681 -0.,Q01382
0.35000 0.82504 0.5%50562 0.28232 0.09761 0.01337 -0.000389
0.36000 0.82305 0.55949 0.29325 0.106S54 0.01858& 0.00029
C.37000 0.83304 0.56837 0.30430 0.11577 0.02376 0.00175
0.38000 0.83700 0.57724 0.31549 0.12331 0.02923 0.00351
0.33C00 0.84082 0.58610 0.32681 0.13316 0.03593 0.003557
0. 40000 0.84482 0.59496 0.32324 0.14531 0.04134 0.00797
0.4:1000 0.84263 0.60330 0.34930 0.15575 0.04801 0.01072
0. 42000 0.85252 0.61253 0.36147 0.16852 0.05509 0.01384
0.43000 0.385€32 0.62145 0.37325 0.17757 0.052G60 0.01735
0.44C00 0.86009 0.63025 0.38515 0.18893 0.07053 0.02127
0. 45000 0.386333 0.63904 0.39715 0.20039 0.07633 0.02562
0.45000 0.386753 0.64730 0.40924 0.21254 0.08776 0.03042
0.47000 0.87121 0.65654 0.42144 0.22479 0.09704 0.03569
0. 48000 0.87485 0.66526 0,43373 0.23732 0.10678 0.04144
0.4€000 0.87346 0.67395 0.44610 0.25015 0.11699 0.04771
0.50009 0.33203 0.68281 0.4585¢6 0.2632% 0.1276% 0.05449
0.53000 0.88557 0.69125 0.47110 0.27663 0.13881 0.06182
0.52000 0.88903 0.69938%5 0.48371 0.29031 0.15043 0.06972
0.53000 0.8925% 0.70841 0. 49639 0.30425 0.16254 0.07819
0.540U0 0.82593 0.71694 0.50814 0.31345 0.17512 0.0872S
0.33000 0.89239 0.,72543 0.52194 0.3322i 0.18318 0.095893
0.55000 0.90275 0.73383 0.53479 0.34763 0.20174 0.10724
0.57000 0.90%08 0.74223 0.54770 0.36253 0.21578 0.11818
0.58000 0.90337 0.750564 0.56064 0.37730 0.23330 0.12978
0.39000 0.91252 0.75894 0.573562 0.39323 0.24529 0.14205

Table 1. Amplitudes of the Pl moments. (continued on following page)
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