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ABSTRACT

Recent modifications have been made to generalize the Embedded Atom Method (EAM) to
describe bonding in diverse materials. By including angular dependence of the electron density

" in an empirical way, the Modified Embedded Atom Method (MEAM) has been able to reproduce
the basic energetic and structural properties of 45 elements. This method is ideally suited for
examining the interfacial behavior ,ofdissimilar materials.

This paper will explain in detail the derivation of the method, show how the parameters of the
MEAM are determined directly from experiment or first principles calculations, and examine the
quality of the reproduction of the database.

Materials with fcc, bcc, hcp, and diamond cubic crystal structure will be discussed. A few
simple examples of the application of the MEAM to surfaces and interfaces will be presented.
Calculations of pullout of a SiC fiber in a diamond matrix as a function of applied stress show
non-uniform deformation of the fiber.
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THE MODIFIED EMBEDDED ATOM METHOD
is

INTRODUCTION

Empirical and semi-empirical computational methods for metals and covalent materials have
evolved rapidly in the past few years. These methods have recently been reviewed by Carlsson
(Ref. 13), in an MRS Symposium (Ref. 35), and at a special symposium of the World Materials
Congress (Ref. 37). The Embedded Atom Method (EAM) has been the mainstay of the new
methods used for metallic systems. Daw and Baskes (Refs. 13, 14) introduced this method over
a decade ago. The EAM, which is based on density functional theory, has successfully been
applied to the fcc or nearly-filled d-band transition metals and also to bcc metals (Refs. 1, 28). A
number of recent papers summarize the technique and its many applications (Refs. 5, 6, 14, 15,
17, 18, 21, 22, 23). Finnis and Sinclair (Ref. 20) derived a similar method based on a second
moment approximation to tight binding and originally applied it to the bcc or half-filled d-band
transition metals.

A basic limitation of the EAM is that it spherically averages the electron density which
precludes directional bonding. Baskes (Ref. 2) modified the EAM to include directional bonding
and applied it to silicon. The silicon EAM model was extended by Baskes, et al. (Ref. 8) to the

. silicon/germanium system where the Modified Embedded Atom Method (MEAM) was
developed. Most recently the MEAM has been extended to fcc, bcc (Ref. 3) and hcp (Ref. 7)
metals. Savino et al. (Ref. 34) developed a related method based on second order invariants.

All of these methods are mathematically similar and have in common the attribute that the
" interaction between two atoms depends upon their local environment. It is mainly this fact that

accounts for the success that these methods have had in predicting effects at metallic surfaces
where the atomic environment is significantly different from the bulk.

This paper will review the derivation of the MEAM and its application to a large number of
elements showing its wide range of applicability. An underlying theme in the development of
the method is computational simplicity so that the interactions may be readily used for large
molecular dynamics or Monte Carlo simulations. MEAM functions for the Si/C system will be
developed and applied to the deformation of a SiC fiber in a diamond matrix.



THEORY

The total energy.E of a system of atoms in the Embedded Atom Method (EAM) has been
shown (Ref. 16) to be given by an approximation of the form:

E = Fi(Pi)+'_Z(_ij(Rij ) (,t,
• j_i

where the sums are over the atoms i and j.* In this approximation, t.he embedding function Fi is
the energy to embed an atom ot type i into the background electron density at site 1, _ ; and _.jj is
a pair interaction between atoms 1 and j whose separation is given by Rii. In the EAM, p,.is
gNen by a linear supposition of spherically averaged atomic electron ffensities, while in the
Modified Embedded Atom Methgd (MEAM), __,is augmented by.angularly dependent terms
(Refs. 2. 3, 7, 8).._et us denote the term in brackets in Eq. 1, i.e., the direct contribution to the
energy from the im atom: as Ei. Of course, atom i also indirectly contributes to the energy
through its interactions with its neighbors. Then Ei may be written as follows:

E, = F,(pi)+½_Oo(Ro). (2)
j¢i

As in Baskes et al. (Refs. 3, 8) consider the case of a homogeneous monatomic solid with
interactions limited to first neighb.ors only.. In a specific reference structure (usually the
equilibrium structure) for an atom of type i we have:

E_(R) = F;(fi;°(R)) + ½gioii(g) (3)

where p°(R) is the background electron density for the reference structure of atom i, Zi is t.he
coordination, and R is the nearestneighbor distance. Here E .(R) is the energy per atom of the
reterence structure as a tunction ot nearest neighbor distance, obtained, e.g., from first principles
calculations or the universal equation ot state of Rose et al. (Ref. 32). Here we choose the latter:

E_'(R) =-E,:(I+ ot(-_-l]le-C_(R/r_-" (4)

with

O:2 = 9f_B
_ (5)

where Ec, re, f_, and B are the cohesive, energy, nearest-neighbor distance, atomic volume, and
bulk modulus, respectively, all evaluated at equilibrium in the reference state. The pair potential
for like atoms is tfien given by:

O,i(R) = E;'(R)- F,(p, (R))}. (6)

At equilibrium _(denoted by I. ), with the use of this form, El =-E,. , dE/drlr" =0, and "
d'-,_,ar'-I = 9_2B/r.. SOthat agreement is assured between the mod_land"" " • "" "" "" the input' cohesive
ene['gy, "_tomic vblume, and'bulk modulus. The pair potential for unlike atom pairs will be
discussed L,_low.

• Throughout the paper the subscripts (i,j,k) denote either an atom at a particular site or the
type of that atom.
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In the MEAM the embedding function F (p) is taken as

" F(p) = AE ctip-In p-- (7)
Po Po

" where A is an adjustable parameterand P0 is a density scaling parameter. See Baskes et al.
(Refs. 2, 8)for a j.iastification ot this tunctional form. TOe density scaling parameter was initially
(Ref. 3) taken tobe the coordination times the atomic density scaling f_iclor (see Eq. 11 below_
and more recently (Ref. 7) as the density in the equilibrium reference structure. The S!C
calculations presented below use the latter definition. For fcc and bcc reference lattices the
definitions are identical. For hcp and diamond cubic.there is a sx :.!11difference.

The background., electron density,. _,, is assumed., to .be_a function, of what. we. call partial
electron densmes. These parnal electron densmes contam the angular reformation in the model.
The reader should be cautioned tlaat even though the electron density may be thought ot as
qualitatively similar to a real electron density, there is no expectation that the electron densities
calculated fiere would be in agreement witla those obtained trom firstprinciples calculations. A
number of functional forms have been used previously (Refs. 2, 3, 4, 7, 8).

For example, the square of the electron density at a given site has previously (Ref. 3) been
defined as the sum of terms with s, p, d, and fsymmetry trom the neighboring atoms. 15y
including these angular terms in the background eIectron density, we introduce angular forces
into the model. Thus at a particular atom:

3

-_2 = Z t(h)p(h)2 (8)
h=O

• with h=O to 3 corresponding to s, p, d, and f symmetry, respectively, and for convenience we
take ((13)= 1. We note that m a c.rystal the s, p, id, and i"terms may be considered as measures of

volume, polarization, shear, and lack of inversJ6_nsymmetry, respectively. For example, as wevary the volume of a perfect fcc lattice, only pt' is not equal to zero and, thus, it ¢_tasimply be
• related to the volume. Similarly. as we shear the fcc lattice, contributions from ptz) arise. An

alternative exponential torm wltla tide same asymptotic behavior near the perfect lattice has also
been used (Ref. 7):

_ [½_t'"'(p'"'/pC0>)21
p = p_°)ek"°' J (9)

The contributions to the density are given by:

p(O)= Zp,¢O)(ri) (10a)
i

Z[_ r_il2
(p_l,):2 = p_(i)(ri).__ - (10b)

t_ i_ i

r;r;l= '(r'
(p(2))2= p.(2,(r,)r__T] _½ p,,(2 ) (lOc)

i i iq 2
r;_rpr_|

(p(3))2: Z ZP"(a'(ri)--_3 J • (lOd). a,[J,rL i

p a(h) are radial functions which represent the decrease in the contribution withHere, the
distance r1 from the site in question, the superscript i indicates neighboring atoms to the site in
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bquestion, and the _, [3, and 7 summations are.eac.h over the three coordinate directions with ,;_
.eing the distance trom the site in question in that .direction. The functional forms for the partial

electron densities (h=l,3) were chosen to be translationally and rotationally invariant and equal
to zero tor crystals with cubic symmetry. Finally, the individual contributions are assumed to
decrease exponentially, i.e.,

p,,(h)(R) =/3o e-/J!h'(R/r_-t) (11 ) .

where Po and [3(h) are constants. For alloys the coefficients t(h) were initially assumed to
depend on the properties ot tlae atom at which the average electron density was calculated (Ref.
3). More recently (Ref. 26) it has been found that better.agreement with defect properties in SiC
could be obtained if the properties ot the atoms surrounding this atom were included. The latter
averaging procedure is used'below for the SiC calculations:

t(h)=Zt_h)po(°)/p(°'. (12)
i

The determination of the parameters has been discussed previously (Refs. 3, 7) in great detail.
Basically, analytic expressions are obtained for the elastic constants, vacancy, tormagon energy,
and structural energy differences. Using these expressions and experimental _ata each parameter
(or sets ot parameters) is uniquely defined. _he relationship between the parameters and the
experimental input is summarized in Table ,. A number of the _ parameters are not well
de[ermined for tile fcc and bcc elements and nominal values are chosen for convenience.

Table 1 - Parameters and their correspondence with experimental data.

Parameter Experimental Input
Ec sublimation energy
re atomic volume

bulk modulus o
A structural energy difference
[3(0), t (2) shear moduli
[_(1) internal relaxation for hcp

(2) [3(3) shear moduli for hcp
t (1) vacancy formation energy
t (3) stacking fault energy or c/a for hcp



RESULTS AND DISCUSSION

, We begin this section with a diagram of the periodic table that shows the elements for which
MEAM functions have been developed. These functions are now available for the 45 elements
denoted by shaded squares. As you can see in Fig. 1, MEAM functions exist for most of the

N

IMg__:Casr _ __Galn ASsbPS

, , :ii!i2!ii:_ _:_.................

Pr Nd Gd Tb Dy Ho Er

Th U

4

E30 @
" Impurities HCP FCC BCC DIA CUB

Figure 1 - Periodic table of the elements showing the current status of MEAM
function development. The shaded squares denote those elements for which
MEAM functions currently exist.

technologically interesting elements. We are currently in the process of developing MEAM
functions for the additional elements whose names are present in unshaded squares. It should be
noted that once functions are available for a pair of elements it is relatively simple to produce the
pair interactions so that alloy or compound calculations may be performed. We have no current
interest in the other elements in the table.

To examine the ability of the MEAM to represent the properties of "real materials" a number of
examples are presented. The MEAM parameters used here are those previously presented (Refs.
3, 7). As a first example the surface energy of a number of materials is shown in Fig. 2. Here
we plot the calculated surface energy of a (100) face using MEAM vs. the experimental value of
an "average" surface extrapolated to 0 K. Also included in the "experimental" data set are
calculated estimates from de Boer, et al. (Ref. 19). As the figure shows the ag_'eement with
experiment is quite good for most of the elements. In contrast, EAM calculations of surface
energy (Ref. 24) are frequently in disagreement with experiment by up to 40%.

As a second example calculated structural energies are shown in Fig. 3. The energies shown in
" the figure are those obtained after minimiz _tion with respect to lattice constant. The calculations

are compared to an estimate of structural energy differences derived from analyses of
experimental phase diagrams (Ref. 33), stacking fault energies (Refs. 25, 29, 31) and first

- principles calculations (Ref. 30).



4000

0 1000 2000 3000 4000

Experimental surface energy (mJ/m2 )

Figure 2 - Comparison of experimental (Refs. 19, 27, 36) and
calculated surface energies for various elements. The elements
shown are those denoted in Fig. 1.
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The final example is that of a small SiC fiber embedded in a matrix of diamond. The MEAM
potentials for silicon and carbon have been modified slightly from those previously developed
(Ref. 3) to include use of the exponential form for the average electron density and more recent
elastic constants of carbon (Ref. 38). The parameters for the new potentials are given in Table 2. "

Table 2 - Parameters for the MEAM

. Values listed are the cohesiveenergy Ec (eV), the equilibrium nearest neighbor distance re (/_.),

the exponential decay factor tor ttie universal energy (unction o_, the scalj_ factor tor tlae
embedi:ling energy A, tlae expor_tial decay factors tor the atomi_ oensities 13 , the weightingfactors for the atomic densities tt , and the density scaling factor P0'

(I) [3 13 (1) (2) (3) Po
Ec re _ A i3 (0) [3 (2) (3) t t t

C 7.3 1.5 4.3 1.0 4.1 4.2 5.0 3.0 5.0 9.34 -1.0 2.5
7 4 8

Si 4.6 2.3 4.8 1.0 4.8 4.8 4.8 4.8 3.3 5.11 -0.8 1.0
3 5 7

SiC 6.4 1.8 4.3 .........
3 9 7

In Table 3 the elastic constants and vacancy formation energy calculated from these functions
are compared to experiment. Agreement is excellent.

Table 3 - Elastic constants and vacancy formation energies for C and Si.

The experimental elastic constants are from Refs. 10 and 38 and the first principles calculations
of vacancy formation energies are from Refs. 9, 11, and 12.

Cll (eV/_ 3) c12 (eV//_3) c44 (eV/_ _) Eir,,(eV)

Calc. Expt. Calc. Expt. Calc. Expt. Calc. Theory
C 6.77 6.74 0.77 0.78 3.66 3.61 6.5 7.2
Si 1.01 1.03 0.41 0.40 0.46 0.48 3.0 5 - 6

The reference state for the alloy system is taken to be the diamond cubic structure ([3) of SiC.
The parameters for the equation of state are given in Table 2. Using a method similar to that
described in Baskes (Ref. 3), the following expression is obtained for the Si-C pair potential:

l{2Es'_c Fc(fi,°) Fs_-°)} (13)0+,c-- - -- , (Psi ,

where

... /+al'+l,_e!_), a[{}_
--0 atU) _tsD tPsi /Ps_ )2
pc = 4Psi e (14)

and

12



,..,, l.a(3)_^a(3)/pa(O))2

_'0 a[u) _(, tHC (?=4p¢ e (15)

" Tl_e,,elastic constants of SiC using the above potentials are calculated to be: bulk mod_u,s 1.32
eV/A-_; shear modulus (c44) 1..28 eV/A-_; and second shear modulus 0.89 eV/A j. By
construction the cohesive energy, lattice constant, and bulk modulus agree exactly with

. experiment.
Calculations were performed to simulate the deformation of a SiC fiber in a diamond carbon

(C) matrix. The geometry is shown in Fig. 4. Both the SiC and C are single crystals with a (100)
orientation. The computational cell is about 40 ,_ long in the axial direction which is 11 unit
cells of C and 9 unit cells of SiC. Choosing this ratio of cells allows almost perfect matching of
the periodicity of the C and SiC. The SiC fiber is 10 ,_ in diameter. The surrounding C matrix is
effectively infinite in radial extent with C atoms outside of a 20 A diameter cylinder held fixed in
space. The fiber/matrix cell is allowed to relax to its minimum energy configuration. To restrict
interactions to first neighbors, screening is included as in Ref. 7. Axial forces are then applied to
each atom of the SiC fiber and the atoms are allowed to relax to their minimum energy
configuration.

o

c

" I_ SiC
40 A _k- = I rigid boundary

period ;jat-lO A radius

l 'II

- Figure 4 - Geometry of the SiC fiber in a C matrix.

In Fig. 5 we see the resulting displacement of the fiber and matrix atoms. The displacement is
" relatively constant across the Tiber and decreases rapidly in the matrix. A significant amount of

shear occurs in the fiber near the fiber/matrix interface. If we assume that the applied force, f,
acts directly on the matrix_in a continuum model the predicted displacement in the matrix, d, at a
radial position, r, is given by:

13



d =f(R-r) (16)
a0c

here R is theposition of the fixed boundary (10/_) and AO is the area (6.32A2/atom) that t,he
rce acts on. The predicted displacement, as shown in Fig. 5, is in excellent agreement with the

ato .mi.'sticcalculation. At the higher forces the displacement near the interface is somewhat under
predicted by tlae continuum calculation.

0.25

0.20- ',, 0.3

--

*"015-= O0......: "O''O''Q '", /_'
E " • _ i _ ,.i"_ ;, --,
q) _: ",

" • .I

0 0..,.., " ",
"4. " _',

'ca , ''._ "-'0.0. _, "'"o 0 10-<>..

'; k> .

m 0.05- 0.1 "0,, ,0,,_ ]

.0.00 i I
0 2 5 8 10 12

radial position (A)

igure 5 - Axial displacement as a function of radial pgsition. The fiber boundary is at 5
• Curves are labeled, by the applied axial force (eV/A/atom). The solid lines represent

the displacements predicted by a rigid continuum model (Eq. 16).

We have investigated the uniformity of displacement in the fiber and matrix. In a continuum
model one would expect a uniform displacement field throughout the length of the computational
cell. In the atomistic calculation, however, the SiC/C boundary structure varies as we move
along the axial direction potentially leading to regions of different adhesion. In essence we have
introduced dislocations into the interface to account for the mismatch in the SiC and diamond

lattice constants. We clearly see this effect in Fig. 6 (a). Here we show the axial displacement as
a function of axial position for the case of the applied axial force of 0.3 eV//_/atom. Away from
the interface the displacements are relatively uniform as expected from continuum theory.
However, the displacements in the SiC fiber near the interface (r=2.75 and 4.25 ,_,) vary by
almost a factor of two. A region of large displacements occur near the center of the periodic
fiber. The fact that the displacements show a minimum at the boundary of the periodic cell is
related to the specific boundary structure. At this axial position the C and SiC share a common
plane most likely leading to higher adhesion and hence smaller displacements.
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Similarly the SiC/C boundary structure varies circumferentially. In Fig. 6 (b) we see that the
axial displacements do not vary much as a function of circumferential position away from the

• boundary, but at r=-4.25/_ the displacements are significantly smaller at 90° and larger at about
300 ° .

. (a)
0.30

._...
/' ....0.....

0.25 - 0.25 '" ............

-_ 0.20-

• 4" ',,
U

a O.15 - ; "0...0.-'_-,_. ; Ex,
m ; "

0,,- "0 4.25 "Q,
__ 0.1 O- ",,Cr..,0.c=

0.05- 5.75

. 0.00 i l l
0 10 20 30 40

axial position (A)=L

(b)
0.30

,., 0.25- .... 0.25

C

E 0.20 - 2.75
O
m

.ca O.15 - ,0,,

oO'" 4.25 "__= o,.. o ..o-"o--.a... d.m ••• •o

• 0.10- "0"

5.75 ,,_.,
&..._...._,.-_- -&---&....&...._

O.05 i I Io

0 90 180 270 360

angle (o)

• Figure 6 - Axial displacementoaS a function of (a) axial position and (b) angle for an
applied axial force of 0.3 eV/A/atom. Curves are labeled by radial position (A). The
fiber radius is 5 _.
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SUMMARY

The derivation of the Modified Embedded Atom Method (MEAM) has been presented
including a short description of how its parameters are determined. Surface energies and
structural energies of a large number of elements are shown to be in good agreement with
experiment. Parameters for new MEAM functions for the Si/C system have been determined
that fit the properties of Si, C, and SiC quite well. Calculations of a SiC fiber in a diamond -
matrix show that application cf uniform axial forces to the fiber produces non-uniform axial
deformation which has been attributed to variation in adhesion at the SiC/C interface.
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