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1 Introduction

Almost immediately after the discovery of quantum mechanics, physicists and metallur-
gist began the task of trying to understand the origins of alloy phase stability in terms
of the underlying electronic structure. Hume-Rothery [1] used the chemical concepts of
electronegativity and atomic size supplemented with the solid state physics notion of
electron to atom ratio to formulate a set of rules that could be used to rationalize the
complex array of phases that form when two elemental metals are mixed to form an
alloy. The Hume-Rothery rules and their progeny (2], [3] have proved very successful in
providing metallurgists and alloy designers with a basis for understanding alloy phase
stability.

In recent years however, building on a constructive interplay between advances in
basic theory, advances in computational techniques, and the availability of increasingly
powerful computers, the ad-hoc and semi-empirical approaches are being supplemented
by fully first principles methods. In these methods, no apriori attempt is mace to
identify the important physical mechanisms, rather, the system is viewed as a collection
of nuclei and electrons. The major advantage of such an approach is that predictions of
properties and identification of the mechanism that give rise to phase transformations
do not depend on input parameters, rather, they are consequences of the properties
of the underlying electronic structure responsible for metallic cohesion. The obvious
disadvantage of this approach is that it is very difficult to implement, in all but relatively
simple situations.

Almost of necessity any ab initio theory of alloy phase stability must include three
key elements: firstly, a theory of the many-electron interactions that is of sufficient ac-
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curacy to allow for the calculation of the small energy differences between different alloy
phases; secondly, a method for implementing this theory for the types of phases encoun-
tered in alloy phase diagrams, pure elemental metals, ordered intermetallic compounds,
substitutionally disordered alloys, and, ultimately, the liquid state; finally, techniques
for including the statistical mechanics of compositional rearrangements that occur at
finite temperature and are responsible for the most important entropic contribution to
the free energy of the disordered solid solution phases.

For the first, the local density approximation (LDA) to density functional theory
(DFT) [4][5)[6) provides a basis for obtaining energetics to sufficient relative precision
to allow one to ask questions of metallurgical interest e.g. calculation of the small
energy changes associated with allotropic transformations and intermetallic compound
formation. For the second, modern electronic structure methods allow the equations
of LDA-DFT to be solved to a very high level of accuracy for systems with underlying
periodicity. However, these methods are still limited to situations in which the basic
unit cell contains a small number of atoms, typically a few tens, ideally < 20. Thus,
disordered solid solution phases present a particular problem since there in no under-
lying small unit cell aid experiment measures thermodynamic averages. It was for
calculating these averages that the so called coherent potential approximation (CPA)
was developed [7][8]. The Korringa-Kohn-Rostoker (KKR)-CPA, that will form the
underpinning for these lectures, is the first principles implementation of the basic CPA
idea [9](10]{11] [12] within LDA.

Because of the limitations imposed by modern electronic structure methods as to
the size of systems that can reasonable handled, it is at the third element, of making the
link between the LDA based electronic structure methods and the statistical mechanics
of compositional rearrangements, that the difficulty in obtaining a first principles theory
of phase stability lies. In recent years several distinct approaches have been developed
for making this connection.

In one class of methods the energetics obtained from first principles calculations are
mapped onto a generalized Ising model which is then used in connection with either
the Monte Carlo method [13]14] or the cluster variation method (CVM) [15] to treat
the statistical mechanics of compositional rearrangements. In the Connolly-Williams
method [16][17] the interactions are obtained by mapping the first principles energetics
of a set of small unit cell ordered compounds to parameters of a generalized Ising model.
In the generalized perturbation method (GPM) (18] [19] the Ising model interactions
are obtained by expanding the electronic energy about the disordered state which is
treated using the LDA-KKR-CPA method.

An alternative approach that does not require the electronically mediated interac-
tion be mapped onto an effective Ising model is the mean field concentration functional
(MF-CF) method of Gyorffy and Stocks [20]. In the MF-CF method, the electronically
mediated quantum mechanical nature of the interactions is kept all the way through.
Clearly this cannot be done without serious approximation. In the MF-CF method
there are two major approximations. Firstly, statistical mechanics is treated only
within mean field theory. Secondly, the electronic structure of the disordered phase is
treated using the LDA-KKR-CPA.

The lectures of Dr. Zunger will cover the Connolly-Williams [16][17) approach. In
this method, the results of first principles calculations of the energetics of a set of,
small unit cell, ordered compounds are used to fit the parameters of a generalized Ising
model. The advantages of such and approach are twofold. Firstly, the calculations of
the energetics of the ordered compounds can be done very accurately. Secondly, once
the interaction parameters for pairs, triplets e.c. are known it is relatively straight
forward to calculate the thermodynamic properties of the system using either Monte



Carlo methods or the CVM. The difficulty with such an approach 1s that compiex
electronically mediated interactions are mapped onto an effective classical Hamiltonian.
Unfortunately, there is no apriori guarantee that such a procedure is either unique or
rapidly convergent. In addition, since the parameters are extracted from calculations
on small unit cell systems, there is possible that the interactiona contain contributions
(e.g. from the Madelnng energy) that will excessively favor such structures with respect
to the disordered phase.

In these lecture notes we shall review the LDA-KKR~CPA method for treating the
electronic structure and energetics of random alloys and the MF-CF and GPM theories
of ordering and phase stability that have been built on the LDA-KKR~CPA description
of the disordered phase. Thus, we take the point of view that much can be learned about
metallic alloys by first studying the electronic structure and energetics of ideal random
solid solutions, which, for entropic reasons, are the natural high temperature solid state
phases and then to investigate their instabilities to the either phase separation or to
the formation of specific ordered phases. We shall stress that a direct connection can
often be made between specific features in the electronic structure associated with the
random solid solution and the driving mechanisms behind specific ordering phenomena.
Consequently, our understanding of phase stability will be underpinned by the same
electronic structure that is responsible for determining the residual resistivity and other
properties of the disordered phase and that can be experimentally verified using optical
spectroscopies, positron annihilation and other probes.

These lecture notes are structured as follows. In section 2 we lay out the basic
LDA-KKR-CPA theory of the electronic structure and energetics of random alloys and
some examples of its applications to the electronic structure and energies of random
alloys are presented. In section 3 we review the progress that has been made over the
last few years in understanding the mechanisms behind specific ordering phenomena
observed in binary solid solutions based on the MF-CF and GPM theories of ordering
and phase stability. We will give examples of a variety of ordering mechanisms: Fermi
surface nesting, band filling, off diagonal randomness, charge transfer, size difference or
local strain fluctuations, and magnetic effects. In each case we will try to make the link
between the specific ordering phenomenon and the underlying electronic structure of
the disordered phase. In section 4 we will review the results of some recent calculations
on the electronic structure of 8-phase Ni Al, . alloys using a version of the LDA-KKR-
CPA codes that has been generalized to systems having complex lattices. In section 5
we provide a few concluding remarks.

2 Theory of Random Substitutional Alloys

2.1 LDA-KKR-CPA

The LDA-KKR-CPA method for calculating the energy and other properties of random
solid solution alloys rests nn three theoretical developments: the local density approxi-
mation to density functional theory, multiple scattering theory for solving the effective
single particle Schrodinger equation that is at the heart of the LDA-DFT self- consis-
tent field equations, and the coherent potential approximation for treating the effects
of disorder on the electronic structure i.e. for accomplishing the task of configuradional
averaging inherent in the calculation of observables.



2.1.1 Local Density Approximaﬁon and Random Alloys

Density functional theory (DFT) is, in principle, an exact method for calculating the
energetics of an electron system in the field of the atomic nuclei [4),[5), [21},[22],[6]. The
central result of DFT is that the total ground state energy, E[p), of a system of electrons
in the presence of the external field provided by the nuclei is a unique functional
E[p] = T[p)+ Ulp] + E:.[p] of the electron density, p(F), where T'[p], U[p] and E..[p] are
the kinetic, potentia.l and exchange correlation energies respectively. Furthermore, E[p)
takes on its minimum value for the correct ground state p(¥). This minimum principle
taken together with the constraint f_ d®r p(r) = N, the total number of electrons in
the system leads to a set of self-consistent field equations whose solution yield the
ground state charge density and hence the ground state energy. These basic equations
of DFT are made into a practical computational method by making the local density
approximation (LDA) in which the unknown, but exact, exchange correlation functional
for the inhomogeneous interacting electron gas appropriate to the solid is approximated,
at each point in space, F, by the exchange correlation functional, ELPA[p], appropriate
to an interacting but homogeneous electron gas having the density found at that point.

Given the specification of a solid in terms of a set of atomic positions, {R;}, and
corresponding nuclear charges, {Z;}, of the atoms occupying these sites, the practical
applications the LDA involves the solution of a set of Hartree like, Kohn-Sham self-
consistent field equations that take the form

[- V2 + vers (6 AR B AZD)] () = enthal®) (1)
where the crystal potential v.ss(T; p(F; { R:}; {Z;})) takes the form
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vess(F) = Z
and where p(F; { R;}; {Z;}) is given in terms of the eigen-solutions of eq. 1 as
p(F {R:};{Z:}) = E %n(F) f(€n — 1) (3)

where f(en — p) is the Fermi function. For pure metals and ordered intermetal-
lic compounds where {R;} and {Z;} define an underlying translational symmetry
the LDA equations can be solved by any one of a number of band theory methods
which use standard iterative techniques to make p(F; {R:};{Z:}) self-consistent with
vess(F; p(F; { Ri}; {Z:}))-

Unfortunately, the application of LDA-DFT to substitutionally disordered alloys
is not a straight forward matter. Although in a substitutional disordered alloy, the
atoms can still be though of as occupyxng an underlying periodic lattice the occupancy
of those lattice sites by the various atom types is random. For a binary A eB-¢) alloy
we can specify the occupancy of a give lattice site R; by a random variable §; that
takes values £ = 1 and £ = 0 according as the site is occupied by the A or B atomic
species. This is pictured schematically in fig. 1. The electron density and hence the
effective one electron potential entering the Kohn-Sham equations then become func-
tions, p(F; { R;}; {&}) and ves s (F; p(F; {Ri}; (&) of the set {£:} of occupation variables
that define a specific alloy configuration.

There are two major reasons why these equations cannot be handled in a direct
manner. Firstly, it is not possible to solve the LDA self-consistency equations for an
arbitrary configuration that has no translational symmetry. Secondly, computation of




Figure 1: Schematic representation of a disordered A B;_. binary alloy. The A and B
atoms randomly occupy the sites of an underlying periodic lattice.

observables involves the further step of averaging over the ensemble of configurations.
For the configurationally averaged total energy, E, this implies

E= Y PU&NHEA (&) (4)
{&)

where, in the Born-Oppenheimer approximat;ion, the probability distribution, P({&)),
is given by

P((e)) = g0 (6D (5
with
t (1)) )
{&})

For a homogeneously random alloy P({:}), is given by
P({&}) = I1p(&) (7

where for a A.B(;1—) binary solid solution the site probability, p(¢:), may be parame-
ierised in terms of the concentration ¢ of the A species as

P(fi) =cki + (1 —¢e)(1 = &) (8)

Clearly, for a random alloy the ensemble of configurations is prohibitively large.

In the gedanken scheme outlined above the procedure is clear, first solve the LDA
equations making p(%; {R:}; {Zi}) self-consistent with vegs(F; p(F; {Ri}; {Z:})), com-
pute the total energy, then average. In the LDA-KKR-CPA method this direct ap-
proach is avoided by a subtle inversion of the self consistency and averaging processes
that makes the partially averaged electron densities (p(F))i,a self-consistent with the
partially averaged single site potential {v;(F — Ri; [p(7))))ie- These partial averages are
define suc.\ that ith-site is occupied by at*-species whilst all other sites are averaged

over. The KKR-CPA method is then used to calculate (p(¥))i. (23]



2.1.2 The KKR-CPA Method for Electronic Structure of Random Alloys

In outlining the KKR-CPA method, rather than dealing with eq. 1, it is necessary to
deai with the corresponding equation for the single particle Green function G(F,P;¢)

[-—V’ + D va(F- R.;t) — e] G(F,"e) = §(fF—T) (9)

where v, (F — R.; &) is the effective potential associated with the_.n"‘-site. We shall
associate this with the single site partial average potential (v;(¥ — Ry; [p(F)]))i,a» more
specifically with the KKR~CPA approximation to it ©,,(F - R.; €n). Implicit in this is
the assumption that there are only o of these potentiais s.e. that the effective potential
that an electron feels at a given site depends only on tlie occupancy of that site and
the overall composition and does not depend on the local configuration of surrounding
sites. We also assume that it is sufficient to approximate the full non-spherical potential
by a muffin-tin form.

Given a set of effective single site potentials the KKR-CPA provides a direct method
for calculating the partially averaged Green function (G(F, F'; €))i.o [23] [24] from which
the partially averaged electron densities {p(F)); o required by the self-consistency pro-
cedure can be obtained [24]

(i = == [ SOIGEF; Piade. (10)

where O indicates the imaginary part. A detailed derivation of the basic equations
of the KKR-CPA Green function based on multiple scattering theory was given by
Faulkner and Stocks [24]. Here we will just quote enough of the results to provide the
necessary basis for the remainder of these notes.

According to Faulkner and Stocks [24] the Green function for an arbitrary array of
non-overlapping muffin-tin potentials corresponding to some specific configuration of a
random alloy can be written as

GF F;0) = X [ZL(Fa LR 2 Foni ) — ZE(Foi VB (Foi Numbrr] (1)

Lr
where Z}(Fn; €) and J}(T,; €) are the regular and irregular solutions of the Schrodinger
equation for a single muffin-tin scatterer with the vector £, =  — R,, being measured

relative the center of the n** muffin-tin sphere. In eq. 11 1LL (€) is the scattering path
matrix [25]

720 (€) = ta 1(€)bnmbLr + Z Z tﬂ'L(e)gI':i"(f)TE?L(f) (12)

nm#p LY

where g7, are the angular momentum matrix elements of the free particle propagator
connecting sites n and p. The scattering path matrix is the generalization to many
scatterers of the si..sie site t-matrix, t, ;. Whereas t, 1 converts an incoming partial
wave in angular momentum channel L into an outgoing scattered wave for a single
muffin-tin potential, 777} () converts the incoming L — th partial wave at site m into
the outgoing L' — th scattered partial wave at site n in the presence of all of the other
scatterers.

Clearly, in eq. 11, by focusing on the site diagonal Green function for the n* site,
holding the occupancy of this site at the a—th-species, and averaging over the remaining
sites yields the partially averaged Green function (G(F,T;¢)); o that we require. The
result is

(GFF i = 3 (227 (Fos Nrkdna 25 (i) = 25" (Foi I (P hbe] . (19)
L ’

~



Thus, the problem of finding the partially averaged single site electron density has been
reduced to finding a theory for the partially averaged scattering path matrix (77]:)n.a-
This is what the KKR-CPA is set up to do.

The essence of the KKR-CPA is to approximate the scattering properties of the
disordered array of real scattering centers, each characterized by a single site t-matrix
ta, by the scattering properties of an ordered array of effective scatterers characterized
by some effective t-matrix, tc(¢), and then to choose tc(€)(e) such that it gives the best
approximation to the real system. In the KKR-CPA best is defined in the sence that
this approximation is the best that can be achieved whilst considering only single-site
partial averages. As such the KKR-CPA specifically ignores effects associated with
specific local configurations.

The scattering path matrix, 79""(¢), for an array of effective scatterers is simply
given by the site diagonal element of eq. 12 where all the t-matrices are tc(€)'s. Since,
the underlying lattice is periodic the resulting equation for the ordered array of effective
scatterers can be solved using be lattice Fourier transforms to yield

,’,C,nm(e) = /&eiﬁﬂm [ta‘(e) - G(l.(.; C)]ml (14)

Where 70m(¢), t5'(¢) and G(k;¢) are matrices in (LL') and the latter are the KKR-
structure constants [23]. R, is the vector connecting sites n and m. If we now replace
the effective t-matrix at site n by the t-matrix for the a** species the corresponding site
diagonal scattering path matrix 7""(¢) describes the scattering from an & impurity
embedded in the effective medium. g

The CPA is then obtained by requiring that replacing a single effective scatterer at
some site n by a real scatterer produces no further scattering when averaged over all
of the species. Mathematically this statement reduces to the requirement

Y- caTm(€) = OM(¢) (15)
o
where 7" (¢) is given by the solution to the single impurity problem

remn(e) = [+ 79(e) (t5'(€) — £5(9))] " rOmn(e) (16)

Taken together eqs.15,16, and 14 form a self-consistency condition that determines the
effective KKR-CPA scatterer. We refer to these equations collectively as the KKR-
CPA equations.

Finally, making the associations

(™ )na = 72" (e) (17)

and
(p(F))n.a = p3(F) (18)
in eq. 13 yields the KKR-CPA approximation, 52(F), to the partially averaged single
site electron density that we require for the LDA self-consistency step. pa(F) is given
by
o _2 ¢F N, g =2 ann n,o o o=
PO =79 [ e[S 8 arE 2 (B - 2 Fs el P o]
(19)



Before closing this section we note that a couple of other quantities of interest can
be obtained straight forwardly from the partially averaged Green function. The single
site density of states is given by

ne(e) = i—g& /ﬂ dt, [LE [ZZ’“(F,.;c)‘rfl',',‘"(c)ZE"”(F,.;c) — 27 (Fn; c)JE"’(F,.;c)&LU]} .

- (20
from which the configurationally averaged total density of states can be obtained by
performing the final average over the species

fi(e) = Y can®(e). (21)
The Fermi energy can be obtained from the charge neutrality condition

TeZo= [ ':' deri=(e) (22)

where the ths of eq. 22 is simply the average nuclear charge in the system, Z.
The final quantity of interest for future discussions is the Bloch spectral function,
AB(k,¢), [24]

AB(k,e)=-1/x Y K(Ri-R;) /n ¥G(F + Ri; ¥ + Ry;e))dF. (23)
i i
The Bloch spectral function contains a complete description of the electronic structure

of a random alloy. It is the generalization to a disordered system of the band structure
of pure metals and ordered compounds. Indeed, for an ordered system it reduces to

AB(k,€) = 3 b(e — ¢ ) (24)

where Kk is the Bloch wave-vector and v is the band index. For disordered alloys the
ORNL-DWG 91.9202
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Figure 2: The Bloch spectral density function AB(K, €) at the Fermi energy € = ¢r along
various directions emanating from the center of the fcc Brillouin zone for a disordered
Cuo.vspdo.zs alloy-

é-function pesks of eq. 24 broaden into peaks with finite width and finite heights
whose position in k, ¢ space trace out the band structure. The finite widths are
interpretable as finite inverse life-times if viewed in energy space or inverse mean free
paths if viewed in k space. It should be stressed that while Kk is not a good quantum




Figure 3: The Bloch spectral density function AP (K, €) at the Fermi energy ¢ = ¢r along
various directions emarating from the center of the bee Brillouin zone for ordered B2
structure NiAl (left) and a hypothetical disordered bee NiosAlo.s alloy (right).

number for a given configuration {£:} it does correspond to the translational symmetry
of the average lattice. Specifically, AB(E,C) is periodic and has the Brillouin zone of
the unoccupied lattice. As examples of systems in which the cffects of disorder on
the electronic structure are very different, in figs. 2 and 3 we show the Fermi energy
Bloch spectral functions for disordered fcc Cug.7sPdo.a2s mq‘ hypothetical disorder=d bcc
NiosAlo:s. For Cuo.7sPdo.as the effects of disorder on AB(Kk, ¢) are small, the peaks are
well defined, and the corresponding mean free path is long. Under such circumstances,
it is possible to view the surface in k-space defined by the locus of the peak positions
of AB(E, €) as being the "Fermi surface” of the disordered_‘a.lloy. For NigsAlos the
effects of disorder on AB(K, ¢) are large, the weight in AB(k, ¢) is spread throughout
the Brillouin zone and it is no longer possible to speak of this alloy having a Fermi
surface in any meaningful sense.

2.1.3 Self-consistency and Total Energy

As indicated above, given a set of effective single site potentials the KKR-CPA provides
a direct method for calculating the partially averaged electron densities 5°(F) that are
required in order to develop a self-consistency procedure. All that now remains is to
specify how the configurationally averaged single site potentials, 9°(F) are related to
7°(F) and then to specify how the configurationally average energy E is to be obtained
from the self-consistent 5°(F) and v°(F).

Since the KKR-CPA method is itself a mean field theory of the effects of disorder
on the electronic structure, we have chosen to specify the single site potentials in a
mean field approximation. Specifically, the potential on an a site is taken to be the
exchange potential corresponding to p° () plus the solution of Poisson’s eq 1ation for a
electron density consisting of °(F) on the central site and the concentration averaged

electron density p(F) = Lo cap®(F) on all other sites. In the muffin-tin approximation
this results in [26]

2Za r 12 Rt
o(r) = -+ 811'/ dr' (r_;_ - r') Pa(r’) + 87r/o dr' v' pa(r’)

0



C._
+t2c(Pa(r)) — pec(po) + ;Po Qine. (25)
where (i, i8 the volume of the interstitial region

4
nint = nwy - "3"'R:|p (26)

and py is the average of the interstitial electron density
B

b= S efn o [Tarn0). (21)

int o=4

It should be noted that the muffin-tin potential given by (25) for the disordered struc-
ture has the same form as that for ordered structures [27], except that the interstitial
electron density po is replaced by po.

The LDA-KKR-CPA algorithm is now straightforward. Initial guesses of the par-
tially averaged electron densities 5 associated with each of the alloying species are used
to compute initial partially averaged potential functions 7*(Ff — Ry,; 5°, 5, fo) which are
to be used in the KKR-CPA calculation of new partially averaged electron densities.
The input and output 5* are compared, if they are not equal within some prescribed
tolerance then a new guess of the input 5* is made according to some appropriate
mixing prescription and the process is repeated until self-consistency is obtained.

Once the self-consistent 5*(F) have been obtained within the KKR-CPA all that
remains is to calculate the configurationally averaged total energy E. :In order to
establish a relationship between 5°(F) and E we begin with the observation [12] that
the grand potential ((T,V, u) is in general related to the configurationally averaged
density of states through the thermodynamic identity

T, Vip) _

a4 N(u) (28)

where u is the electron chemical potential and N(u) is the number of electrons

oo
N(w)= [ def(e) (e - u). (29)
Equation 28 can be integrated to yield an expression for  that is linear in # that can
be configurationally averaged within the CPA. Thus, the above procedure circumvents
the need to form the troublesome configurational averages of the square of the charge
density that occurs in the standard expression for the total energy. The result of this
procedure is

_ ® - # v [ dﬁ(ea {ta})
=~ [ de(e, mDf(e-w+ [* dut [7 def(e - W= (30)
where N is the configuration averaged integrated density of states,

N(e) = ‘/_; deii(e) (31)

The first term in eq. 30 is the familiar contribution of the eigenvalue sum plus
the electron hole entropy. The remaining term is the so called double counting term
written in an unfamiliar form. The important point is, once it has been decided to use
the CPA, that the relationship between the electron density and integrated density of
states is fixed because they are derived from the CPA Green function. Using single site

«n



L )
potentials specified by eq. 25 the second term on the rhs of eq. 3U can be integrateu
to obtain [12] an expression for . Taking T = 0 yields a configurationally averaged

energy of the form _
E= Z%Eg[ﬁaa Py ﬁol (32)
o

where E; is the expression derived by Janak [27) for ordered systems for a crystal
potential in the muffin-tin form, excepting that the pure metal charge densities of
Janak are replaced by the configurationally averaged ones defined above. A remarkable
feature of eq. 32 is, thanks to the use of CPA, that E retains the variational properties
characteristic of E[p) for pure systems. Namely

oF ,

= 33

a ﬁq 0 \ )
Furthermore, as is the case for normal LDA-DFT, taking the variation of the potential
energy U[p] with respect to the single site densities yields the effective potential that
enters the Schrédinger equation

o

ap
These latter are clearly some of the reasons for the success of the KKR-CPA theory
for the total energy [12].

= ca‘—’a(i') (34)

2.2 Electronic Structure and Properties of Binary Alloys

By now there are several KKR-CPA codes in existence. They have been used to
understand a large body of experimental measurements of the electronic properties
of disordered solid solutions. Here we mention just few that have come out of our
work. We do this to establish the overall correctness of the KKR-CPA description of
the electronic structure and, more importantly, to make the point that the electronic
structure provides an interpretation of experimental probes such as X-ray photoelectron
spectroscopy and residual resistivity, and further, provides a basis for understanding
the driving mechanisms behind ordering phenomena and alloy phase stability.

In fig. 4 we show calculated total and component densities of states and XPS
spectra for two concentrations of Cu.Pd;_. that were calculated by Winter ef cl. [28].
For each composition, the lower left of the four frames compares the calculated XPS
spectrum with experiment. It should be noted that the calculated spectra take proper
account of the optical matrix elements and that this is a import_feature in obtaining
the plr asing agreement between theory and experiment. avy

The residual resistivity is a particularly sensitive measure of the electronic structure
of a disordered alloy since it not only depends on the topology of the Fermi surface
but also on the extent to which it is smeared out by disorder. In fig. 5 we show
the calculated concentration dependence of the residual resistivity of Ag.Pd,_. alloys
obtained by Butler and Stocks [29] together with AP(k,er) in two planes of the fcc
Brillouin zone for the compositions ¢ = 0.25 (a,d), ¢ = 0.50 (be), and ¢ = 0.75
(cf). The calculations of the residual resistivity are based on a simple relaxation
time approximation. In theses calculations the residual resistivity is controlled by the
coherence length of the electrons on the well defined I'-centered sheet of Fermi surface
which is proportional to k-width of the Lorentzian like peaks. The overall agreement
between theory and experiment is then a measure the quality of the treatment of
disorder afforded by the KKR-CPA.
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Figure 4: Total, and component densities of states and XPS spectra for discrdered
Cu.Pd,_. at two concentrations (¢ = 0.95 left four frames; ¢ = 0.5 right four frames).
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Figure 5: Fermi energy Bloch spectral functions (left frames) and calculated residual
resistivity (right frame) for disordered Ag.Pd,_. alloys [29].



The relatively large departure between theory and experiment for Ag-rich alioys
results from the neglect of vertex corrections in the calculation. Subsequently, Butler
[30] developed a proper Kubo formula based theory of the residual resistivity that takes
account of the vertex corrections but is still based on the KKR-CPA. The results of
the calculations of Swihart et al. based on Butler's formulation are shown in fig. 6.
For Ag.Pd,_. alloys the calculated results are in excellent agreement with experiment.

Figure 6: Calculated and measured residual resistivities for Cu-rich Cu.Zn,._.,
Cu.Ga;-., Cu.Ge,_., and Ag-rich Ag.Pd;_. alloys [31]. The open triangles and solid
lines are the calculated values. The open symbols (squares for Cu alloys and circles
for Ag alloys) are for cold worked samples, while the solid symbols are for annealed
samples.

For the Cu-based alloys the calculated results are in excellent agreement with the
measured values for the cold worked samples. This is suggestive that the departure
for the annealed samples results from the presence of chemical short range order, the
effects of which are not considered in the calculations, and which is broken up by cold
work.

Having pointed to some of the successes of the KKR-CPA in understanding the
electronic structure of disordered alloys we now turn to the energetics.

2.3 Energies of Mixing

Given a theory of the total energy of the disordered state it is a relatively straight-
forward matter to calculate the energy of mixing AE™*, For a binary substitutional
AB,_. alloy AE™* is given by

AE™* = E — cEA ~ (1 - ¢)E® (35)

where E4 and EP are the ground state energies of the pure A and pure B metals.
The way the calculations proceed is entirely standard; for a given underlying crystal

-



structure, the energy is calculated as a function of lattice spacing for both pure metais
and disordered alloys. The ground state energy and equilibrium lattice spacing are
given, in plots of energy vs lattice constant, by the minirnum energy and corresponding
lattice constant. The ground state energies are ther used in eq. 35 to obtain the energy
of mixing. It is perhaps worth a ccmment on the significance of the energy of mixing
defined in this way since, ideally, the compositionally homogeneously disordered state
to which the LDA-KKR~-CPA energies correspond is only realizable at infinitely high
temperature but we are evaluating it at ' = 0K. Certainly, this energy does not have to
correspond to measured enthalpies of mixing since these measurements are often made
at moderate temperature. However, excepting in systems where short range order
effects are particularly pronounced one would not expect them to be wildly different.
Fig. 7 shows the results of our calculations of A E™* for the Cu.Zn; ... alloy system
[12] [32] for both fcc and bec structures. Since, structural energy differences cannot be
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Figure 7: Concentration variation of the heats of mixing for fcc (solid line) and bec
(dashed line) Cu.Zn, -, alloys [12], [32].

reliably obtained from calculations based on the muffin-tin approximation the values
of AE™ for the bec structure show in fig. 7 are referenced to the fcc by taking taking
the structural energy differences for the elemental metals from full-potential FLAPW
calculations.

The negative sign of AE™* implies an ordering tendency which, indeed, is a fea-
ture of the rather complicated Cu.Zn;_. phase diagram [33]. Interestingly AE™* is
not strictly parabolic and this suggests a complex phase diagram. Comparison of the
calculated energies of mixing in the disordered phase with available experimental mea-
surements (34] and with those obtained from assessed phase diagrams [35] suggests that
the calculated values that are approximately a haif of the ezperimental ones. Since,
as we shall see later, the calculated values produce a quite good description of the
phase diagram of Cu-rich Cu.Zn,.. alloys, this discrepancy may be more apparent
than real. However, recent calculations [36] of the total energy of the disordered state
that attempt to go beyond mean field theory in the potential reconstruction step and
include some account of charge correlations between neighboring sites suggest that this
discrepancy may be due to the use of the mean field potential reconstruction and the
fact that there is some small charge transfer. .

In fig. 8 we show calculated energies of mixing and equilibrium lattice spacing
for Al.Ag;_ alloys [37). The shape of the calculated energy of mixing curve deviates
strongly from the parabolic ¢(1 — c) shape assumed in regular solution theory and is
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Figure 8: Calculated concentration variation of the heats of mixing (left frame) and
equilibrium lattice spacing (right frame) of Al.Ag;—. alloys. In the lattice parameter
plot the short-long dashed line is included to highlight the deviation of the calculated
results (dashed line and squares) from Vegard’s rule. The remaining symbols give
selected room temperature experimental values (38].

again indicative of a complex phase diagram. The positive energies of mixing for Al-
rich alloy suggests that these alloys would want to phase separate, whilst the negative
values of AE™* for Ag-rich alloy suggests that these alloys would want to order at
low temperature. We shall return to this observation later. The calculated concen-
tration dependence of the equilibrium lattice spacing deviates slightly from Vegard's
rule with the sign of the deviation being positive for Al-rich alloys and negative for
Ag-rich. Comparison with the concentration dependence observed experimentally is
made difficult by the fact that for pure Ag and pure Al the calculated equilibrium
lattice constants deviate from experiment with opposite signs, however, it is the case
that the sense of the deviation from Vegard’s rule for the experimental results is in
agreement with the calculation.

3 Ordering and Phase Stability
3.1 LDA-KKR-CPA Based Theories

Having developed a theory of the electronic structure and energetics of the ideal ran-
dom solid solution we can now turn to the task of building a theory of ordering and
phase stability on it. Thus, we have to address the difficult task of accounting for the
statistical mechanics of concentration fluctuations within a first principles theory. In
the following subsections we will briefly describe and show results for two rather differ-
ent approaches, a concentration functional (CF) theory implemented within mean field
theory, and the generalized perturbation method (GPM). Whilst both methods are
based on the underlying LDA-KKR-CPA theory of the disordered state, the emphasis
is rather different. .

The mean field theory places stress on retaining the electronic interactions in their
full generality. The consequences of this approach is that it is only possible to treat
the statistical mechanics of concentration fluctuation within mean field theory. Thus
potentially important cluster effects within the configurational entropy are neglected.
However, as with most mean field theories the results of this approach not only provide
important insights into the physical mechanism that drive particular orderings but also
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provide a reference from which to judge the need for including a better treatment ol
the configurational entropy such as that provided by the Monte Carlo method or the
cluster variation method (CVM).

In the GPM, stress is placed on obtaining a better description on the configurational
entropy than that provided by the mean field or point approximation. Consequently,
the electronic interactions are mapped onto a generalized Ising model, and the elec-
tronic energy of specific configurations is partitioned between site, pairs, triplets, etc.,
nearest neighbors, next nearest neighbors, etc.. However, when coupled with the LDA-
KKR-CPA the GPM provides a first principles means by which these interactions can
be calculated. Once, calculated questions of short range order and phase stability can
be explored using the CVM and Monte Carlo method.

3.2 Mean Field Concentration Functional Theory

The first principles concentration functional tLeory introduced by Gyorffy and Stocks
[20] is based on an adaptation of the classical density functional theory of liquids {39}
to a lattice gas model of substitutionally disordered alloys. Though a powerful device
that produces a number of interesting results, the theory is much like the density
functional theory of the electron gas in that without the local density approximation,
which converts the theory into a practical computational method, little can be done
with it. For the concentration functional method, the approximation that makes the
method tractable is the mean field (MF) approximation.

The MF-CF method was set out in the original paper and has been restated sev-
eral times since, both in applications to alloy ordering [40], [41] and in connection
with the disordered local moment theory of ferromagnetic ordering in the 3d itinerant
ferromagnets {42]. Thus,we will only state the principle results.

The central result of the mean-field CF theory is that there is a mean field grand
potential, QMF (T, v, {a}),

M (T, {c}) = %*({a}) (36)
+ kBTZ(c.- In¢;+ (1 —¢)in(l - ¢))

- Zv.-c.-
]

that is a function of temperature, T, chemical potential difference, v, and all the local
concentrations {c;}, with ¢; = ({;), where the angle brackets imply thermodynamic
averages. Furthermore, that the thermodynamic grand potential is given by the mini-
mum of OMF (T, v, {¢;}) with respect to arbitrary variations in the local concentration
variables {¢;}

aQMF
9~ (37)
which leads to 90 00PA
— q -— )
(aq)—kBTlnl_q-r( 9e ) v;i=0 (38)

whose solution defines the equilibrium set {¢;}, of concentrations.

The interpretation of 2°PA({¢;}) in eq. 36 is that it is the CPA grand potential
corresponding to an inhomogeneous set of local concentrations {..} i.e. the probability
that a site, say n, is occupied by an A atom, namely c,, differs from site to site. We
refer to this as the inhomogeneous CPA [18],[20]. The reason for the CPA electronic



grand potential appearing in eq. 36 is that we are required by tnhe mean heid Lueory
to take averages with respect to the inhomogeneous product distribution

P{&)) = HP.'(&') (39)

where p;(&;), which now varies from site to site, and is given by
pi(§) = cibi + (1 — &)(1 = &) (40)

As remarked earlier, it is for performing averages with respect to a probability function
that is a product of independent site probability functions that the CPA was developed.

Although, this inhomogeneous KKR~CPA recipe implicit in eq. 36 can not be
implemented numerically, it is a very useful formal device because it can be expanded
about the homogeneous limit, i.e. ¢, = & Vi, and it allows the calculation of the

derivatives
s = (.O_Q.C_P:) (41)
' c; ci=TVi
" s - (22) @
Y ac‘ ac’ Civcj=CVi

where € is the uniform concentration of the high temperature disordered phase.

The significauce of S is provided by eq. 38. As was pointed out by Gyéfiry
and Stccks {20] the second derivative is the mean-field approximation to, the Orstein-
Zernicke direct correlation function [43] and it plays a variety of important roles in
the theory of compositional order. In particular Sg’ is related to the Warren-Cowley

short-range order parameter, a;;,

(6:€5) — (i)&i)
o= 43
that can be measured using X-ray, neutron and electron diffuse scattering experiments
[44]). Specifically a{q) is given by

1
T= Al - 257

where o(q) and S()(§) are the lattice Fourier transforms of ;; and Sg) respectively.

The important point about eq. 44 is that S?)(g) can be evaluated from information
available at the end of a KKR-CPA calculation. For the case where only the band
structure contribution to the grand potential is considered, the first term on the right
of eg. 30, explicit expressions are given in reference [40).

Before showing the results of calculations of S(®)(g) for a number of alloy systems.
a few preliminary comments are in order. Firstly, the configurational entropy that
appears in eq. 36 is simply the ideal entropy of mixing. Thus, effects that that
explicitly depend on higher order entropic contributions are neglected. However, by
taking this tack we are able to retain the electronic interaction in there full generality.
This allows us to identify the specific electronic mechanisms that are responsible for
the particular form of the SRO of clustering seen in any particular system. Secondly,
since the LDA-KKR-CPA method is a mean field theory of the effects of disorder on
the electronic structure the overall theory has a high degree of internal consistency.

In what follows we shall begin by considering alloy systems were it is sufficient to
approximate the electronic grand potential by the band structure contribution alone,

o(q) = (44)



i.e. systems were charge transfer effects contained in the double counting terms are
small. This need nct be an arbitrary approximation since the LDA~KKR-CPA charges
associated with the various species are outputs of calculations. Subsequently, we shall
comment on a system Ni.Cr,_. were it is necessary to include these effects.

Finally, as regards subsequent calculations of transition temperatures for ordering
and for phase separation the theory of the diffuse scattering intensity a(4g), as developed
above, does not satisfy the conservation rule

aii = 1/Qgz / dqa(q) = 1. (45)

This failure, results from the fact that MF-CF theory does not satisfy the fluctuation-
dissipation theorem. This generic failure of mean field theories has been known for a
long time, together with a method, introduced by Onsager [45] and further developed by
Brout and Thomas {46}, of improving the mean field theory such that the fluctuation-
dissipation theorem is satisfied. The MF-CF theory can be similarly corrected [47],
(48], [49] the resulting expression for afq) takes the form

_ 1
) = T e = o5 — &)

where A. is a normalization constant that enforces the conserv:tion rule 45. In what
follows, we <hall refer to this variously, as the Onsager cavity field corrected theory or
the mean spherical approximation. This correciion makes a significant improvement
to phase transition temperature at little extra computational cost. Thus we will use it
as a matter of course. ‘

(46)

3.2.1 Fermi-surface nesting

The first application of the mean field concentration functional theory outlined above
was to Cu-rich Cu.Pd,_. alloys [20]. These alloys are members of a large class of
systems [50),[51] (and references therein) that either show concentration dependent
diffuse scattering in the disordered phase or long period ordered structures (LPOS) or
both. For the Cu.Pd,.. Gyorfly and Stocks related the position and wavelength of
the concentration dependent diffuse scattering peaks observed in electron diffraction
experiments (see fig. 9) to the direction and length of spanning vectors connecting
well defined, flat, parallel sheets of the alloy’s Fermi surface. One of the major points
about that work was that, even in disordered alloys, specific parts of the Fermi surface
can survive alloying with the peaks in the Bloch Spectral function remaining sharp
across the whole concentration range, and that these pieces of Fermi surface can then
drive ordering phenomena. Furthermore, since in non-isoelectronic alloys, the Fermi
surface dimensions are depend strongly on the concentration (electron to atom ratio)
the ordering phenomena are also strongly concentration dependent. For Cu.Pd;._.
alloys the particular part of the Fermi surface that gives rise to this Fermi surface
nesting mechanism is normal to the I'-K direction and can be clearly seen in fig.2. The
specific nesting vector connects the flat part of the Fermi surface in one Brillouin zone
with its equivalent in an adjacent one.

Subsequent calculation of S)(§) using the full KKR~CPA expressions gave the dif-
fuse scattering patterns shown in fig. 9 [20],[40],[41]. Also shown are the corresponding
electron diffraction patterns taken from the wark of Oshima and Watanabe that clearly
show the four fold SRO diffuse scattering peaks splitting around the (110)-superlattice
position. Furthermore, they show the rapid concentration dependence of this split-
ting. The large white areas in experimental diffraction patterns are the Bragg peaks
associated with the underlying fcc symmetry of the disordered phase.
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Figure 9: Calculated Warren-Cowley SRO parameter a(q) in the plane containing
the reciprocal lattice points 000, 020, 022, and 002 for various Cu.Pd, .. alloys (upper
frames) and corresponding Electron diffraction patterns taken from the work of Oshima

and Watanabe.



At low temperature Cu-rich Cu.Pd,_. alloys order into a series of one ana iwo
dimensional LPOS [50),{51]. Recently, Ceder et. a![51) have used the calculated MF-
CF values of S®(§) to calculate the phase diagram of the LPOS. In this work they
make the assumption that S®)(q) can be interpreted as a Fourier trans‘ormed pair
potential, v(q), and then use it in a mean field free energy expression to calculate the
range of stability of the LPOS. Their results are summarized in fig. 10 and in table 1
[20],{40],[41]. The notation for the LPOS is that of Fisher and Selke [52]. As can be
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Figure 10: Left frame: Phase diagram as calculated within the Bragg-Williams ap-
proximation using the LDA-KKR-CPA effective interactions. Phases with modulation
period larger than 4 are not labeled because their region of stability is small. Right
frame: Enlargement of the Cu-rich region showing the LPOS with longer periods.

seen from table 1 there is excellent agreement between the list of structure that are
calculated to exist and those that have actually been observed.

3.2.2 Concentration Dependent Interactions

As we saw in the previous subsection, the rapid concentration dependence of a(§)
for Cu-rich Cu,Pd,_. alloys implies that the underlying interactions are very concen-
tration dependent. However, Fermi surface nesting is not the only way such extreme
concentration dependence can arise.

As we remarked earlier 2.3 Ag.Al,_. is a particularly interesting alloy system in
that the calculations of the energies of mixing, AE™?*, are positive for Al-rich alloy
suggesting that these alloys want to phase separate, and negative for Ag-rich alloy
suggesting that these alloys want to order at low temperature. This conjecture is
supported by explicit calculation of a(g). In fig. 11 we show calculated SO diffuse
scattering maps for Ago2Alos and AgosAlpz. Clearly, for the Al-rich alloy the peaks in
a(q) are at the fundamental Bragg positions commensurate with the alloy exhibiting
a tendency to phase separate at low temperature. For the Ag-rich alloy the peaks in
a(q) are at (1/2,1/2,1/2) positions, the super-lattice positions corresponding to the
CuPt-structure, indicative that these alloys would show this type of ordering tendency




Figure 11: Calculated Warren-Cowley SRO parameter a(q) for AgosAloa (upper) and
AgoaAlgs (lower) alloys. The plot is for the plane containing the reciprocal lattice

points 000, 200, 022, and 222. The calculations are for a
above the miscibility gap.

temperature that is just
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Table 1: Calculated and observed LPOS in Cu.Pd;_. alloys. The structures that
whose stability was analyzed are listed in column 1. Column 2 (3) indicates whether
the structure is found to be stable in the calculations (experiments)

at low temperature. It is very satisfying that the results of calculations of S3)(q) are
bear out what was expected cn the basis of the energy calculations.

The experimental phase diagram is quite complex. For Ag-rich alloys phases that
are based on kcc and hcp lattices dip down to low temperatures. These are phases that
we have not considered since our calculations were performed for an underlying lattice
that is fcc. Thus, the ~xistence of the fcc based CuPt structure is masked. For Al-rich
alloys the situztion is more interesting. The experimental equilibrium phase diagram
shows, at room temperature, a two phase field between an fcc a-phase disordered solid
solution of Ag in Al and a hcp related phase, based on the chemical composition AgyAl,
which is the equilibrium phase for Ag content > 40 atomic percent [33), [53]. However,
it is known [53] that within the two phase field that there is a metastable miscibility
gap and that this is responsible for driving the formation of Guinier-Preston(GP)
zones [54] [55], [56). GP-zones provide a fundamental strengthening mechanism in
many commercial Al-based alloys, for exar.iple alloys based on Al with a few percent
Cu find, amongst a wide set of uses, application in aircraft skins. In AlAg alloys, the
GP-zones are coherent precipitates that form under appropriate annealing conditions
and are comprised of essentially pure Ag even though the parent phase is very Al rich
(53]. Presumably, the miscibility gap found in our calculations for fcc phase is the
one that is responsible for providing the driving mechanism for the formation of the
GP-zones.

3.2.3 Band Filling

There are fairly general arguments based on the tight binding model that suggest alloys
between late transition metals with roughly half filled d-bands should order whilst those
with nearly empty or nearly full d-bands should cluster in the disordered phase and,




therefore, paase separate at low temperatures {57, 58, 59, 60, 61]. The exact positions
of the crossover from clustering to SRO depends on the details of the Hamiltonian,
but the trend is robust. Further, experimental binary alioy phase diagrams involving
transition metals from the same series show ample evidence of this general trend [33].

The Pd.Rh(;_.) alloy system is a particularly good example of this band filling effect.
These late 4d-transition metals are of almost equal size, and there arc only small strain
and charge transfer effects. In such a system it is expected that the eigenvalue sum
should dominate the energetics and the clustering predicted by tight binding models
should not be obscured by some other mechanism. The phase diagram of Pd.Rh(;_,)
is very simple, below melting it is a solid solution until the iemperature drops into the
miscibility gap when it phase separates into Pd-rich and Rh-rich phases.

The CPA energy of mixirg is positive indicating that Pd and Rh would prefer not
to mix but to form clusters. Figure 12 shows the calculated short range order diffuse
scattering pattern obtained on the basis eq. 44. Clearly, the peaks in the diffuse

(002)

Figure 12: Calculated Warren-Cowley SRO parameter a(q) for PdoasRho7s. The plot
is for the plane containing the reciprocal lattice points 000, 020, 022, and 002. The
calculations are for a temperature that is just above the miscibility gap.

scattering are at the reciprocal lattice positions of the underlying fcc lattice, indicative
of phase separation and consistent with the energies of mixing.

In this lecture we bypass concerns about detailed agreement with experiment and
concentrate on the way in which clustering arises in the CF theory and its relation to
band filling. To this end we specialize the CF expression for the diffuse intensity at
q = 0 which indicates the strength of clustering. If we neglect matrix elements and
approximate the energy integral in the full expression for S?)(§, T) by the contribu-

tion from the first Matsubara pole wy = xkgT which, for Pd.Rh,_. is the dominant
contribution, then

SM(G=0,T) ~ [ dKIGOPA(K, er + un)RCOPA(K, er + wor) (47)



where G€PA(q, z) is the lattice Fourier transform of the CPA Green 1uncuon ai vuc
complex energy z = ¢r + w;, the imaginary part of which is the Bloch spectral function
A(G, €) defined in eq.23. Even though we evaluate S(3)(q, T') using the full KKR-CPA
formula [40] the approximate form of eq. 47 it instructive because it relates the diffuse
scattering to the spectral function, features of which, as we have pointed out earlier,
are measurable using photoelectron spectroscopies and determine such properties as
the residual resistivity. Thus a link is made between physics related measurements of
the underlying electronic structure and the metallurgical interesting phase stability of
the system.
Using the relation dG/de = —GG, eq. 47 can be written in the form

S(k=0,T)~ [ dgA’ (48)
Qpz

where -
- d3G(q, er + wn)

de

The Bloch spectral function A(E; ¢) for Pd_Rh;_. at ¢=0.5 is plotted in fig. 13
along with the integrand occurring in eq. 48. A(k;e) is also shown for the direction
I' — X as a function of energy for energies above the Fermi level. The inset shows the
bands of pure Pd along ihis direction [62]. Note, just above ¢f, the uppermost 4-band
flattens out to meet the zone boundary. In the disordered alloy, the large negative
contributions seen in A’ occur because ¢r is within v of the intercept of the uppermost
d-band with the zone boundary, where v is the energy half width of A(kyer).

A schematic depiction of how this occurs is shown in fig. 14. For the case of a band
(top-frame) where v is small (right frames) A(k; ¢r) is é-function like and is contained
within the BZ (middle-frame) consequently the integral over the BZ of its derivative
(lower-frame) is zero. For a band where 4 is large on the scale of the dispersion (left
frames) A(lz; €r) may be asymmetrical and intersect with the BZ boundary. In this case
the integral over the BZ of its derivative is large giving rise to large (clustering) con-
tributions to S?(§, T). Clearly, as can be seen in fig. 13 this is the case for Pd.Rh;_..
Quite generally, we can assert that large clustering contributions to S)(q, T') will ap-
pear when ¢F is just below an extremum of a band for an appreciable part of the BZ.
Obviously, this situation occurs most readily when ¢ is close to the top of the d-band.

At high temperatures S®(k = 0,T) goes to zero and the system is random as
dictated by entropy. However, as the temperature is reduced S(’)(E = 0,T) grows
and clustering type SRO becomes stronger. Eventually, the denominator in eq. 44
will go to zero indicating that the system is unstable to phase separation; infinitesimal
fluctuations in concentration reduce the free energy. This is the spinodal temperature,
T,. Ablove the spinodal a(q) is peaked at the I'-point as in fig. 12 and this peak
grows as T is reduced, becoming singular at T,. The concentration dependence of T, is
shown in fig 15 along with the immiscibility phase boundary. The phase boundary was
obtained by applying the common tangent construction to the calculated free energy.
The free energy of the solid solution as a function of concentration was found by making
a polynomial fit in ¢ to S@(k = 0,T) and integrating twice over c. The calculated
phase boundary is in reasonable accord with experiment [33] although the calculated
transition temperatures are greater than experiment by about 200 K.

A=

(49)

3.2.4 Band Filling, Off-diagonal Randomness and Relativity

One of the strengths of first principles approaches to studying phase stability is that
they have the possibility to allow us to understand ordering/ clustering in alloy systems

~
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Figure 13: Calculated A(l-c‘; ¢) for PdgsRhgs alloys at the Fermi energy for various
direction in the BZ and for the I' — X direction for various energies above ¢rp. The
lower plots show the k dependence of the A’ the dominant contribution to $?)(§,T)
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Figure 14: Schematic of alloy bands (upper), A(K; er) (middie), and A’ (lower) for the
case of an alloy band structures that are sharp (right) and broad (left) on the scale of
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Figure 15: Calcuiated phase boundary (solid line) and spinodal temperatures (trian-
gles) and free energies at various temperatures (dashed lines) for Pd.Rh,_. alloys



where different underlying mechianisms are competing. 1he Nit't alloy sysiem proviaes
a nice example of this where the competition is between band filling, off-diagonal
randomness and relativity.

Despite the fact that the Ni.Pt,_. alloy system is comprised of two elemental metals
from the end cf there respective transition metal series (3d for Ni and 5d for Pt) these
alloys exhibit SRO in the disordered phase [63] and form ordered structures (L1;, L1o)
upon slow cooling to low temperatures [33] rather than clustering and phase separations
as would be expected on the basis of band filling arguments. Aware of this exception
to the rule, Treglia and Ducastelle [64) studied Ni.Pt;_. using a tight-binding model
Hamiltonian and concluded that there was no simple way of avoiding the prediction
that Ni.Pt(;_) should cluster in the disordered phase.and phase separate at low tem-
peratures. In the end, they suggested that spin-orbit coupling, which was neglected in
their non-relativisiic treatment of the problem, might give rise to a repulsion between
the Pt atoms and hence override the usual band filling argument. To substantiate or
reject this interesting hypothesis was the purpose of two recent reconsiderations of the
problem by Pinski et al. [65) and Lu et al. [17], [66]. Unfortunately, these calculations
resulted in apparently conflicting results. The first suggested that the ordering ten-
dency in the NiPt(;_.) system is due to a size effect that results from the very different
d-band widths of Ni and Pt (off-diagonal randomness in the language of tight binding
models), whilst Lu et al. [17) concluded that a relativistic effect but not specifically to
do with the spin-orbit coupling was responsible.

In fig. 16 we show the calculated Warren-Cowley short-ranged order parameter

(0,0,0) (1,0,0) (2,0,0)

Figure 16: a(q)in the g, = 0 plane for NigsPtos for a temperature about 10% greater
than the theoretical ordering temperature. The peaks are at the X-points of the FCC
Brillouin zone, indicating the tendency for the alloy to order along the (100) direction,
i.e., into the L1o structure at low temperatures [65)

a(q) for NigsPto s obtained by Pinski et. al. [65]. a(q) peaks at the X-point consistent
with the L1, low temperature ordered phase. These calculations are based on a entirely
non-relativistic treatment of the electronic structure. Thus, Pinski et. al. conclude
that relativity was not responsible for driving the ordering, rather, it was the off-
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diagonal randomness that is a consequence of the size difference between Ni ana 1t
that suppresses the band filling mechanism.
Lu et al. [17], [66] calculated the formation energy

AE(Vay, Vai Vi) = E(NiPL Via,) = 2ENi, Vi) + E(PLVR)] (50)

where V, is the equilibrium volume of the system indicated by the suffix a = Ll,,
Ni and Pt respectively. The calculations were performed using state-of-the-art self-
consistent, scalar-relativistic and non-relativistic FLAPW calculations [17), [66]. They
found that non-relativistically AFE is positive implying phase separation at low tem-
peratures, but scalar-relativistically it is negative and, therefore, consistent with the
observed ordering tendency. They therefore concluded that relativity, specifically the
mass-velocity and Darwin terms (since they also neglected spin-orbit coupling) was
responsible for the ordering tendency.

Subsequent to the original work, there have been further comr ments from both sides
of this debate [67] [68]. Gyérffy et. al. [69] have suggested a possible resolution of
these apparently conflicting results. Here we will not recount this debate, rather, we
will sum up the essence of the resolution offered by Gyorffy et. al.. Firstly, relativity
is a necessary component in the resolution since it has the effect of reducing the size
of the Pt atom. This results from the inclusion of the mass velocity and Darwin terms
in the scalar relativistic calculations, which has the effect of pulling down the energy
of the 6s-states relative to the 5d-states and making them more compact. Gyorffy
et. al. argue that without this effect the size difference between (non-relativistic) Pt
and Ni would be so large as to induce strain fluctuations (see below) that would favor
phase separation. Thus, the effect of relativity is to reduce the effective size of the Pt
atoms, thereby allowing Ni and Pt to mix. However, once the Pt and Ni atoms are of
sufficiently similar size to allow mixing at high temperature, as they are in the scalar
relativistic calculation, the mechanism identified by Pinski et. al., namely the widely
differing d-band widths of Pt and Ni, would then drive the ordering.

This latter conjecture is based on the observation that the d-band structure in
the density of states of Ni.Pt;_. alloys is largely unaffected by the inclusion of the
relativistic effects, even spin-orbit coupling. Since, it is this structure that is respon-
sible for the driving mechanism identified by Pinski et. al. the inclusion of relativity
does not suppress this mechanism. To illustrate this point, we show LDA-KKR-CPA
calculations of the densities of states of disordered Niy sPto 5 alloys calculated both non-
relativistically and fully relativistically. The latter calculations were performed using
a version of the LDA-KKR-CPA method described earlier that is based on solving the
Dirac equation rather than the Schrédinger equation [70).

3.2.5 Charge Transfer Effects

So far we have ignored all contributions to S()(q) save those resulting from the band
structure contribution to the grand potential. In systems that exhibit significant
charge transfer this is not sufficient. Recently, the basic MF-CF theory of Gyorffy
and Stocks [20] has been extended by Johnson, Staunton, and Pinski {48] to include
the neglected double counting contributions, namely, those from the electrostatic and
exchange-correlation energy.

One may broadly speak of the electrostatic contributions to S5()(q) in terms of
‘charge transfer’, AQ = (Q4 ~ Z4) — (Qp — Zp), where AQ is the net gain of charge
if a site in the homogeneous alloy is occupied by an A atom or the net loss if a B
atom is placed at that site. This can be a | zge contribution and it describes the
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Figure 17: Non-relativistic (left) and relativistic (right) SCF-KKR-CPA densities of
states (DOS) for NigsPtos. Solid line: total DOS. Dashed line: Ni-contribution. Dot-
ted line: Pt-contribution. Charge self consistency reduces the effects of the mass-
velocity and Darwin terms, and the relativistic and non-relativistic DOS’s look sur-
prisingly similar, confirming, indirectly, the validity of the non-relativistic approach to
NiPt.

electrostatic interaction between these equal and opposite charges and, in wave-vector
space, is largest for those values of q which are compatible with a simple A-B ordering
concentration wave.

The charge rearrangement terms result roughly from how the electrostatic interac-
tion is screened through an adjustment of the occupation of the electronic states. So,
if the averaged density of states at the Fermi energy, fi(cF), is large, charge screening
effects are important. If the difference of the averaged densities of states associated
with A and B sites i.e. An(er) = |ns(er) — np(eF)] is sizable then screening results
in the re-occupation of electronic states associated with one type of site rather than
the other.

For those alloys characterized by both small effective ‘charge transfers’ AQ and
small densities of states at the Fermi level, n4(er) and np(er), the compositional cor-
relations are dominated by the band-filling term S2,,,(q), such is the case for CuPd
alloys where SRO is determined by Fermi surface nesting [40]. In systems which also
have small effective charge transfers, AQ = 0, but differ in that they possess both a
sizable 7i(er) and An(er), it turns out that the charge arrangement is still sensitive
to the compositional environment and there is an important contribution to the inter-
change energy S(*)(q) from charge re-arrangement and screening contributions. This
can be considered loosely as an effect coming from ‘local’ Fermi energy adjustments as
the number of electronic states available varies with atomic composition.

For alloys in which the atomic species have differing electronegativities and therefore
non-negligible AQ, once again we find that this category can be further sub-divided
according to the nature of the electronic structure in the vicinity of the Fermi energy.
For systems with large AQ but small An(er), the dominant functional form in these
cases is roughly a sum of the band-filling energy S2,,,(q) and a screened electrostatic
interaction between charges +AQ and ~AQ with a screening length [,.,, i.c.

2
) = $@)-Treony (51)

If long-range order develops, it is evident that the Coulomb term becomes the Madelung



energy associat.d with ordered charges on a Bravais I~ttice. In ordered alioys, tne
Madelung energy can, of course, be quite substantial. It should be evident from the
above equations that the electrostatics can also be important for the SRO effects in
the high-temperature alloy.

Indeed, as found by Johnson, Stounton, and Pinski, the SRO in NiCr alloys re-
sults from a competition between a ciustering, band-filling S2,,,(q) and an ordering,
electrostatic contribution in the nickel-rich alloys [48]. The sum of those contributions
yield an a{q) which has peaks at (1,1,0). This rather surprising result comes from
the band-filling, q=0 peaks in S? being canceled from the tails of the electrostatic
q = (1,1,0) peak, and the electrostatic peak being diminished, not canceled, (reduc-
ing the transition temperature) from the tails of the band-filling contribution to S(?),
In NiCr, then, there is a subtle cancellation between different electronic contributions
giving rise to a robust result for the SRO.

3.2.6 Magnetic Effects: Ordering in Fe . V,_.

Before closing this section we make a few remarks regarding alloy phase stability in
alloys that are magnetic. This is a large subject that we will not attempt to cover
here. The progress that had been made within extensions of the KKR-CPA and CF
approaches was the subject of the lectures of Prof. Staunton at the Alloy Phase Sta-
bility NATO ASI held in 1989 [42]. Thus, we will only review some results on the
Fe.V,_. alloy system that have been obtained since that time and serve to highlight
the quantitative nature of the theory and the importance of the magnetic effects in
influencing the phase stability. ’

The generalization of the LDA-KKR-CPA method to alloy systems that are fer-
romagnetic using spin-polarized local density theory is quite straight forward and has
produced results for the ground state total and partial magnetic moments that are
in good quantitative agreement with magnetization and neutron scattering measure-
ments [71),{72], [42], [73],[74]. Similarly, the concentration functional theory of ordering
and phase stability can be generalized to the case of ferromagnetic systems. Here we
assume that we are addressing the problem of chemical ordering in a system that is
magnetically ordered i.e. the ordering/phase separation temperature is below the Curie
temperature. In which case we have, at icast formally, to consider the electronic grand
potential to depend not only on the set of local concentrations {¢;} but also the a set
of local magnetic moments, {y;}, [42]. As a consequence, Sg) consists of two terms
[42], [75),(74]

Sy = S + LSk (52)
where RPA(a, ()
e _ Gy 1
S‘J ( ac‘acJ ) Cicy=EVi (53)
cup _ (90°PAGe), ()
S - » 1P
N ( ac'a“ ;" ) ci e =E Vi (54)
o _ [Oug\
T (3°:’ } cic, =E Vi (55)

The new response furction, 7ij» measures the change in the magnitude of the local
moment at site 5 due to a change in the concentration at site J. Experimentally, both
a(q) and 7(q) can be measured using spin-polarized neutron scattering [76).
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Figure 18: Warren-Cowley SRO parameter o(§) along the [100](left) and [111] (right)
directions in the bec Brillouin zone for bee ferromagnetic Feo.sesVo.1as- The triangles
are the calculated a(g) the crosses are the neutron scattering results of Cable et. al.

[77]

Staunton ef. al. have used the theory outlined above to calculate a(q) in ferromag-
netic Fe,V,_. alloys. One of their most striking results is shown in fig. 18 which for
Feo.sa5Vo.135s compares the calculated and experimental [77] a(q) along the [100] and
[111) directions in the bee Brillouin zone. In addition to being in striking agreement
with experiment the calculation can be pulled apart to provide an understanding of the
origins of the various features in the curve. The zone boundary peak along the [100] di-
rection in indicative of the B2 (CsCl) structure ground state. Along the [111]-direction
the first peak is due to sort-ranged interactions out to the third neighbor, whilst the
second peak results from a (111) Fermi surface nesting feature in the majority spin
Fermi surface [75).

3.2.7 Strain Fluctuations

In all of the forgoing it has been assumed, teven in the disordered state, that the
atoms occupy the sites of well defined underlying periodic lattice. Clearly, this will
only be a good approximation for alloys for which in the language of Hume-Rothery
the size difference is small. In alloys where this is not the case the average lattice
is still periodic, as is made manifest by the fact that disordered alloys still have well
defined X-ray diffraction Bragg scattering peaks, however, local relaxations occur. This
situation is pictured schematically in fig 19 where we have envisioned the local lattice
relations around large and small atoms. The lattice surrounding large atoms expands
locally whilst the lattice surrounding small atoms responds by coatracting.

As we have mentioned above [69], and, as has been discussed by others (78],[79],
[80), [81] these local relaxation, or strain fluctuations, can give rise to important effects
in alloy phase stability. Furthermore, they can now be measured very accurately using
synchrotron radiation and anomalous scattering techniques [82],[83).

In a recent publication Gyorffy et. al. considered the problem of including strain
fluctuation within the concentration functional theory outlined above [69]. Although
no calculations have yet been performed that include strain fluctuations, for the sake
of completeness we reproduce the major theoretical points here.

The theory is based on a straightforward generalization of the mean field theory
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Figure 19: Schematic of local lattice relaxations around large and small atom on an
underlying periodic lattice

described in section 3.2 in which they consider the electronic grand potential for the
inhomogeneous concentration configuration {¢;} on a relaxed lattice. That is to say
each lattice point R is assumed to have moved to the relaxed position R; = ﬁ? +
u; under the influence of the compositional (Kanzaki) forces in order to minimize
the free-energy NP4 ({¢;}, {i;}). Describing the total displacement field by the set
{t:}, going through the arguments of Gyorffy and Stocks [20] and using the chain
rule for differentiating with respect to the local concentrations, they find the following
expression for the direct correlation function

S =55+ XS 9 (56)
a
where a = r,y and z and
20CPA({ 1 [sI.
aqacj iy =E Vi
o 20CPA( [~ (3.
S:Jf"l = (a ﬁ ({c.},{u.})) (58)
aq au? Cicy=2 Vi
6u9)
Toii = | 3 59
W (8Cj Civey=E Vi (%)

The effects of the strain fluctuations on the short range order are described by the

new response functions SS“’ and 77, . Gyorffy et. al. developed a theory for 42, in
the limit where the displacements, {U;} are regarded as small and their effect on er A
is taken into account only in the Harmonic approximation. Under these assumptions
they found

Vo = 1 (6, S (60)
L8
where the static force constants ®.5(1, ) are given by

O*CPA({e), {E:})
8u?8uf

Balirj) = ( (61)

) &=E;Vs u@ ;u"i =0;Vs




The rest of the theory proceeds along lines entirely anaiogous 10 Lhat 101 O;, («vjyiay,

and the end results are complicated response function formulas (for S:;u’ and ®.4(t, 7))
which have to be evaluated using the results of a LDA-KKR-CPA calculations for a
homogeneous solid solution with concentration & Choosing the homogeneous solid
solution as the reference state and lattice Fourier transforming eq. 56 leads to

(@) = §°(q) + 3_ 5 (@) (d), (62)

Clearly, S®)(q) picks up contribution from the stain fluctuations (in this respect the
situation is entirely analogous to the magnet contribution discussed above). It was this
stain fluctuation contribution to which we appealed to resolve the dilemma regarding
NicPt;_. alloys discussed above. Thus, when implemented, this theory should cast light
~ on a number of interesting alloying phenomena as well as providing a interpretation for
the growing body of experimental measurements of local lattice relaxations in alloys
obtained using anomalous X-Ray scattering [82],[83].

It is worth reiterating one of the points made by Gyorffy et. al. [69] with regard to
the way that the strain fluctuations have been included. Given the way elastic forces
propagate in solids the strain fluctuation contribution to S{?)(q) is bound to be long
ranged. Indeed, in the elastic dipole limit, we may expect contributions which fall off
as S,gjz) = lﬁ.,-,-l"’ exp (—¢ /ﬁ.,,) From this point of view, the first principles mean-field
theory method advocated here is particularly promising since it requires calcy!ations in
G-space and treats the small and large § limits on an equal footing. In this respect, it is
quite different from supercell or finite cluster based methods [84]. These considerations
are also relevant to the applicability of the Connolly-Williams type of approaches.
Clearly, to account for large elastic interactions, the effective Hamiltonian must include
long-ranged forces for which both the CVM and the Monte Carlo method become
difficult to implement. Fortunately, as was recently demonstrated by Marias et al.
[85], under these circumstances the mean-field theory becomes a better and better
approximation.

3.3 Generalized Perturbation Method

The GPM is based on a perturbation expansion of the electronic energy associated
with specific alloy configurations about the reference medium provided by the homo-
geneously disordered alloy [18, 86). Thus, for some specific configuration of the alloy
{&:}, the electronic grand potential 2{¢;} is decomposed into a concentration dependent
but configuration independent contribution §}(c) and a composition and configuration

contribution Q'({{}) as )
0{&} = () + A ({&))- (63)

As is illustrated in fig 20 the homogeneously disordered alloy is a sensible reference
medium in that the energy difference between the disordered state and the energy of
any short ranged ordered state and globally ordered states will, in general, be small.
In systems that undergo order-disorder transformations this is clearly the case since
this energy is the order of the ordering temperature which typically are in the range
0-2000K (0-13 mRy/atom), which can be compared with t' pical cohesive energies of
metals which are in the range 100-700 mRy/atom [62).

Since the LDA-KKR-CPA method provides us with a first principles theory of
the energetics of the homogeneously disordered phase it makes sense to make the
association §}(c) = 2°PA(c) where CPA(c) is the LDA-KKR-CPA approximation to
the electronic grand potential of the homogeneously disordered alloy.

o
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Figure 20: Schematic representation of the energy of mixing and of some particular
ordered phase as a function of the atomic fraction of the B-species

A detailed derivation of the GPM method and the related embedded cluster method
(ECM)is given in references [87, 19]. Reference [83] compares the GPM method wiih
the Connolly Williams method dev:loped in the lectures in this volume by Dr. Zunger.
We will not repeat the derivations here but will simply outline the method, quote the
important formulae, and show some illustrative results.

As in previous section we will assume that for the electron system it is sufficient
to work at T=0 K. Whence, €P4 = ECPA _ yN where ECP4 is the LDA-KKR-CPA
energy of the random alloy eq. 32, p is the electron chemical potential and N = N (er)
is the integrated density of states at the Fermi energy u = er. The configuration
dependent contribution of the energy can be written as an expansion in concentration
dependent n**-order effective cluster interactions, V,,” n 88

E({c}) = E°PA(c) + = o E 6c.5cJ 3 2 V,,k6c.6c,6c;, +.. (64)

3k

where §c; = {; — c. The many-site interchange potentials V2, V3, etc. are then given
in terms of quantities that are available at the end of a KKR—CPA calculation of
the random solid solution [87], [19]. If we consider only the band structure energy
contribution to ECPA

00
E°PA — uN(w) = - [ deN(e, w)(e - 1) (65)
the n**-order effective cluster interaction is given by
V.= —%ImTr U " deB(e — p) (AXy T AX TR AX,.T"'"‘)] (66)
-0

where the quantity AX, gives a measure of the on site interaction which involves the
difference in scattering strengths of A and B impurities embedded in a CPA lattice. It
is given by
AXn= X2 - XxB (67)
with
= [1- A - ) T (e - ) (68)
In ﬁg 21 we illustrate schematnca.lly the conten¢ of eq. 66. For example the 2" order

pair wise interaction Vo 1 consists of an interaction at site 0 propagating in the CPA
medium to site 1, interaction at site 1, and returning to site 0.
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Figure 21: Schematic representation of the way the GPM-multisite interactions are
built up for the second and fourth order pairwise interaction and the third and fourth
order triplet interactions.

Equations 66, 67 and 68 neglect contributions to the interchange potentials that
result from consideration of the double counting terms in ECP4A. Again this approx-
imation should be valid in systems where charge transfer is small. In most of the
example systems considered below this is the case. The one exception is NiAl and we
will comment on the consequences of this later.

It should be noted that nowhere do we build in any explicit approximation to
either the concentration dependence, the complexity (pair, triplet, ...), or the range
of the interactions other than that implicit in the CPA. Thus these factors have to be
investigated for each alloy system considered. In fig. 22 we show illustrative results

vZ)(mRyd/aom-spin)

Figure 22: Range of pairwise interactions in Pd.V,_. and Pd.Rh,_. alloys.

for the concentration dependence of the pair wise interactions out to fourth nearest
neighbore Pd(;_)Rh. and the range dependence at fixed composition for PdgsVo.s and
PdosVos all on a underlying fcc lattice [87]. Clearly, in Pd(;_) V. all of the interactions
are strongly concentration dependent. At c = 0.5 the pairwise interaction converge
rapidly for both alloy systems. For PdV (PdRh) the first neighbor interactions are
ordering (phase separating) consistent with the phase diagram and for PdRh with the

LY



mean field celculations shown previously. kor PdVv & grouna siale alaiysis suows vuy,
to be the stable structure for ¢ = 0.25 as is observed experimentally. At ¢ = 0.3
the calculations favor an L1lo structure whilst the published phase diagrams show a
solid solution. However, a B19 structure has been reported [87). Interestingly, this
structure can be thought of as a monoclinic distortion of the Llg structure. For most
of the systems that have been investigated the triplet and higher order interactions
are generally small. However there are some notable exceptions. For example in fcc
Nig.7sAlo.3s the nearest neighbor triplet interaction is 2.6 mRy/atom. Whilst, this
is small compared with the nearest neighbor pair interaction (14.2 mRy/atom) it is
large compared with the second (-1.0 mRy/atom) and third (-1.7 mRy/atom) neighbor
pairwise interactions.

In the remainder of this subsection we will show the results for calculated phase
diagrams for two model systems Cu(.c)Zn. (32] and Al;_)Ni. [89) These systems
serve to illustrate some of the successes and some of the remaining difficulties with
the current implementation ~f the GPM method that neglects the double counting
contributions.

8.3.1 Phase Stability of Cu-rich CuZn Alloys

The Cu(3.qZn, alloy system has been one of the most studied and is an example of
one of the Hume-Rothery electron compounds. Hume-Rothery related the position of
the a — A (fcc-bec solid solution) two phase boundary to the electron to atom ratio ¢.

Figure 23 shows the effective pairwise interactions for fcc and bcc alloys. These
interactions correspond to the energies of mixing shown in fig. 7. For both bcc and
fcc, the interactions show a strong ordering tendency at all concentrations. Interactions
more distant than second neighbor are an order of magnitude smaller than those shown.
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Figure 23: Concentration dependence of the first V; and second V; neighbor pairwise
interactions for fcc- (solid) and bce- (dashed) based structure Cu(;-¢)Zn. alloys.

A ground state analysis including pairwise interactions out to fourth (fifth) neigh-
bor fcc (bce) indicate that the L1; (DOs) structure are stable at ¢ = 0.25 and 0.75
and the L1o (B2) structure is stable at c=0.5. Figure 24 shows the calcrlated [32] and
assessed [33] Cu(;-.)Zn, phase diagrams. The calculated phase diagram was obtained
using the tetrahedron-octahedron (irregular tetrahedron) zpproximation CVM for fcc
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(bcc) based alloys using the interactions shown in fig. 29 and a semi-empirical Liice
tion for the vibrational entropy based on Debye theory [32]). The latter only affects the
phase diagram for temperatures > 400°C. At least for Cu rich alloys where the observed
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Figure 24: Theoretical Cu-Zn phase diagram (left) compared with the assessed one
(right). The dotted lines indicate metastable boundaries. :

phases are either fcc or bee based, regions accented by the bold numbers, the calculated
phase diagram bears a striking resemblance to the assessed one. There are a couple
points worthy of mentioning here. Firstly, at ¢ = 0.5 the calculated order-disorder
phase transformation temperature (510°C) between ordered B2 (#') and disordered
bee (B) CuZn round c=0.5 is in good agreement with experiment (~ 470°C). Secondly,
the convex curvature of the a — # two phase field results from the inclusion of the
vibrational entropy, without this semi-empirical correction the two phase field bound-
aries are essentially vertical [32]. There are a number of other interesting features of
the calculated phase diagram, for a detailed discussion of these reader is referred to
[32] and [90].

3.3.2 Phase Stability of Ni-rich NiAl Alloys

During the last few years NiAl alloys have been at the centex of a great deal of alloy
development work based on modifications to two of the ordered compounds Llg struc-
ture NijAl and B2 structure NiAl. Although single crystals of Ni3Al are quite ductile
as cast polycrystalline material is extremely brittle but can be ductilized by the addi-
tion of a few hundred parts/miilion of boron. B2 structure NiAl, however, has so far
resisted all attempts to make it ductile in any useful way. In addition to being a candi-
date structural material, B2 NiAl is also interesting as a possible shape memory alloy.
For Ni concentrations around 62.5 percent 8-phase NiAl transforms Martensitically to
the 7R structure. It is observed that the transition temperature is very composition
dependent ranging from 0 K for ¢ ~ 0.60 to well above room temperature for ¢ ~ 0.66.
Consequently, these alloys are interesting candidates as controllable transition tem-
perature shape memory alloys. In addition to being interesting engineering materials
these alloys exhibit a number of interesting pre-Martensitic phenomena. As a result,




they have become one of the model systems for studying Martensitic transformation.
We shall have more to say on this in 4.2.

In figure 25 we show the calculated results for the LDA-KKR-CPA mixing energies
and the corresponding GPM first and second neighbor pairwise interactions for both
fcc and bec NiAl alloys [89]. In addition the formation energies of ordered structures
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Figure 25: Concentration dependence of the LDA-KKR-CPA energies of mixing (left
frame) and GPM first (V1) and second (V;) neighbor pairwise interactions for fcc- (solid)
and bcc- (dashed) based structure Al;_)Ni. alloys. The various points identified by
structural notation are the formation energies corresponding to that struc‘ture.

that result from a ground state analysis using the GPM pair wise interactions together
with the energies of mixing are also displayed. In referencing the mixing energies of
the fcc and bcc structures to one another we used the empirical structural energy
differences between fcc and bec of Saunders et al. [91] (7.68 mRy/atom for Ni, 5.70
mRy for Al) for the end points with a linear interpolation between. The structural
energy differences for Ni and Al calculated with the muffin-tin approximation LDA-
KKR-CPA code are smaller than the semi-empirical ones (3.46 mRy/atom for Ni, 3.50
mRy for Al). Since the muffin-tin approximation is notoriously poor when used to
calculate structural energy differences we opted for the semi-empirical values. We note
that use of the calculated values results in a phase diagram that is much worse than
that shown below.

For Ni-rich alloys, the experimentally observed structures [33] are orderings on fcc
or bec lattices or, as in NisAls, a closely related structure. A careful analysis of the
ground state energies obtained using the GPM interactions (see fig.25 )reveals that at
¢=0.5 bcc based B2 is stable with respect to fcc based L1, whilst at ¢=0.75 fcc based
L1, is stable with respect to bcc based DOj3 [92), [89]. At c=0.625 the most stable phase
is, in the notation of Finel and Ducastelle [93], phase 9. However, closer examination
reveals that this structure is closely related to the experimentally observed structure
of NisAl; namely PtsGa;. The Pt;Ga; structure is a bet structure with a ¢/a-ratio
intermediate (c/a = 1.24) between that of bce (c/a = 1.0) and fec (¢/a = /2) when
the latter is viewed as bct.

In fig. 26 we reproduce the phase diagram calculated by Sluiter et al. [89) using
the cluster variation method (CVM) [94] with calculated GPM fcc and bec interchange
energies and KKR-CPA heats of mixing together with ezperimental structural energy
differences [95). The calculated phase diagram closely resembles the experimental one
[33). The B2-L1, two phase region is in good agreement with experiment, the calculated
order-disorder temperature of the L1, phase is 1770°C which is just above the melting
point as was surmised by Cahn et al. [96]. Of course the liquid phase and the ordered
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Figure 26: Ni-rich portion of the Ni-Al phase diagram computed by Sluiter et al..

NisAls phase are both missing from the calculated phase diagram since neither can be
represented by the current GPM-CVM methods. It should be noted that the calculated
order/disorder temperature for the B2/bcc phases of 5345°C is much greater than the
melting temperature of the B2 phase. f

4 Complex Lattice Alloys

Up to this point we have only considered alloy systems that can be treated as solid
solutions on an underlying simple lattice (fcc, bec). In this final section we turn our
attention to alloys where it is necessary to consider systems as being composed of
several underlying sub-lattices. Some of the many situations where this is appropriate
are illustrated schematically in fig. 27. These include states of partial long range order,
off-stoichiometric compounds, and binary compounds with ternary additions. In the
following we will refer to these as complex lattice or multi-sublattice alloys.

The extension of the LDA-KKR~CPA method described in section 2.1 to complex
lattices is atraight forward [97], [98], [99]. the central point is that the single site
effective t-matrix t& now depends on the sublattice index s. However, as befits the
single site nature of the CPA t& is diagonal in the site index. Thus, the KKR-CPA
equations for each sublattice, s, take the form

2 catarr(e) = TeLie) (69)

where 777,(¢) is the (n,n)-th element of the effective CPA medium’s scattering path
matrix for the s-th sub-lattice, 70777.(¢) is the scattering path matrix for the effective
CPA medium with the effective t-matrix ¢ at the n-th site replaced by the t-matrix,
t*, corresponding to a real a-type scatterer. The index a runs over the different type
of atoms on the s-th sublattice and c,,, is the concentration of the a-th species on the

s-th sub-lattice. The concentrations c,,, are defined such that

Yo=1 (79)

~n
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Figure 27: Two dimensional depiction of a binary A.B(;-) alloy. We have identified
two sublattices (1,2) and two atomic species (A = unshaded; B = shaded), (a) dis-
ordered AgsBos solid solution for which the long range order parameter 5 = 0, (3)
a partially ordered alloy 0 < 7 < 1 (c) ordered AB intermetallic compound n = 1,
(d) off stoichiometric compound in which the excess A atoms form antisite defects on
the second (B) sublattice, (e) addition of a third alloying element to a ordered binary
compound



The form of the remaining KKR-CPA equations 14 and 16 1s unchangea 1rom uie singic
sub-lattice case excepting that all of the matrices are now matrices in site and angular
momentum indices e.g. G(k; €) has elements G},

In the remainder of this section, we will summarize the results of applying the
complex lattice LDA-KKR-CPA to S-phase Ni.Al,_. alloys. In the next subsection
we consider the ordering energy and the evolution of the ordering energy as a function of
the long range order (LRO) parameter. In the final subsection we study the electronic
structure and Fermi surface of off-stoichiometric NiAl alloys in the concentration range
where the S-phase undergoes a Martensitic phase transformation and comment on the
possibility that the pre-Martensitic phenomena that are osbserved in this system are
driven by Fermi surface nesting as recently suggested by Zhao and Harmon {100).

4.1 Ordering Energies

Although the energy difference between the ideal disordered phase of an allov and a
related ordered phase is not generally experimentally measurable it does provide an
important measure of the strength of the ordering interactions present in the system.
The order-disorder energy AE°~* for a binary A.B(1_) may be defined as

AE4(X,z) = E°(X) - E%z,c¢) (11)

where z refers to the structure of the disordered lattice and X refers to some ordered
structure based on this lattice and E%(z,c) and E°(X) are the corresponding ground
state (T = 0°K) energies. Clearly, when AE°¢ is large the alloy is strongly ordering
-and the order—disorder temperature is high.

As is pictured schematically in fig 27 we treat the ideal stoichiometric NiAl B2
(CsCl) structure ordered phase as two interpenetrating simple cubic lattices having
sub-lattice compositions NijoAlgp and NigoAl;o. In order to minimize the relative
error when subtracting the large energies of the individual phases we also treat the
disordered phase NipsAlos as comprising two interpenetrating simple cubic lattices
each with composition NigsAls.

In fig. 28 we show the energies of bec disordered NigsAlps and ordered B2 structure
NiAl In fig. 28 the minima of the energy versus lattice spacing curves give the ground
state energies, E°(B2) and E“(bec, c) respectively, the difference, E°(B2) — E¥(bee, c),
then gives the order-disorder energy A E°~¢(B2, bec) = 47.7 mRy/atom. The minima
in the two curves occur at different lattice spacings. The predicted equilibrium lattice
spacings are 5.45 a.u. and 5.40 a.u. for the disordered and ordered phases respec-
tively, corresponding to a volume expansion of approximately 3% on disordering. The
experimentally determined lattice spacing for stoichiometric NiAl is 5.455 a.u. [101].

The LDA-KKR-CPA not only allows one to treat the fully disordered and fully
ordered states but also opens up the possibility to study the evolution of the energy as
a function of the long range order (LRO) parameter. If we consider the disordering of
NiAl by random exchanges of Ni and Al atoms between the Ni and Al sub-lattices, as
pictured schematically in fig. 27, we may model the LRO state by two interpenetrating
simple cubic sub-lattices having compositions Ni(;_)Al. and Ni Al ) for concentra-
tions c in the range 0 < ¢ < 0.5. If we define the LRO parameter as = (2¢ - 1) then
7 = 1,¢ = 1 corresponds to the ordered B2 structure and n = 0,c = 0.5 corresponds
to the homogeneously disordered state.

In fig. 29 we show the energy of NigsAlos plotted as a function of the LRO pa-
rameter. The zero of energy is taken to be the energy of the disordered state. It
is interesting that the # dependence of the ordering energy departs strongly from the
quadratic dependence that would be expected if the interactions were entirely pairwise.
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Figure 28: Ground state energies of ordered and disordered NiAl
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Figure 29: Ordering energy of B2 NiAl alloys as a function of the long range order
parameter. The ordering energy for B-phase Nig g 625Al0.375 is show by a solid dot



The reason for this may lie in the effects of charge transfer since the degree ot charge
transfer between the Ni-sublattice and Alsublattice depends approximately linearly on
n. Fig. 29 also shows (solid dot) the energy of ordered S-phase Nige25Alo.375 plotted
with respect to the energy of the corresponding disordered bcc phase.

In fig. 30 we show the densities of states for various values of the LRO parameter.
Because of the large differences in the scattering cross-sections of Ni and Al sites

“ws
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Figure 30: Densities of states of B2 NiAl alloys as a function of the long range order
parameter. The total densities of states are given by the solid line. The heavy dotted
lines give the densities of states on the Ni-sub-lattice and the light dotted lines give
the densities of states on the Al-sub-lattice. In each curve the larger contribution arise
from Ni.

throughout the whole range of band energies, the DOS curve for the disordered alloy
is relatively structureless. Clearly, upon ordering the weight in the DOS close to ¢ is
reduced and the weight at low energies is increased resulting in stabilization of the B2
structure. R

The changes in the densities of statep_;mn’ fig. 30 result in a significant rear-
rangement of charge. In fig. 31 we show how the charge within equal volume Voronoi
polyhedra associated with each sublattice evolve as a function of LRO. In the disor-
dered state ~ 0.3 electrons/atom are transferred from Al to Ni sites. As the LRO
builds up the atoms on their correct sub-lattice transfer even more charge whilst anti-
site atoms become more neutral. The net effect is to increase the Madelung energy
over and above that associated with simple ordering of the charges associated with the
Ni and Al sites in the disordered alloy. This effect is also stabilizing.

Before closing this section, we note that the order-disorder energy obtained from
this direct calculation, A E°-4(B2, bcc)=46.7 mRy/atom, is larger by a factor of two
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Figure 31: Evolution as a function of the LRO parameter of the charges inside equal
volume Voronoi polyhedra associated with the Ni-sublattice (denoted by roman 1) and
the Al-sublattice (denoted by roman 2). Open squares(circles) give the charges asso-
ciated with Al(Ni)-atoms on the Al-sublattice. Solid squares(circles) give the charges
associated with Al(Ni)-atoms on the Ni-sublattice.

than that obtained from the GPM interactions. If we consider only pairwise interactions
out to third neighbor, the ordering energy for B2 is given by [102]

AE°~%(B2,bcc) = -V; + %V, + g-va. (72)

Using the values of section 3.3 yields AE°-4(B2,bcc) = 20.3 mRy/atom. Clearly if
the GPM interaction and disordered state energies are internally consistent the two
methods should yield the same order/disorder energy. However, the GPM interactions
were calculated on the basis of the band structure contribution Egg to the total energy
alone, neglecting double counting corrections (contributions that were included in the
energy calculations), thus it is not necessarily surprising that the results differ. That
the two valuee differ so much is presumably due to the relatively large charge transfer
fourd in ihis aVoy aysien.. What is surprising is that an internally consistent picture
emercges fror: the GPM vas . %~ charge transfer terms are neglected and they are used
in conjunction with the KX.. - 'A disordered state energy defined above. A resolution
of this dilemma may lay de~ -z a charge self-consistency scheme that goes beyond
the simple mean field theoy, 4 so far. Work is in progress on this matter [36], [103).
This in turn may require ' charge transfer effects are also included in the GPM in
order to regain a goed desciijition of the phase stability.

4.2 Pre-Martensitic Phenomena in S-phase NiAl alloys

Away from ideal stoichiometry B-phase Ni.Al,_. alloys having compositions in the
range 0.60 < ¢ < 0.68 transform Martensitically from the bcc-based B2 structure into
fcc-derived structures. These alloys are interesting both from the technological point
of view, in that for certain compositions they are candidate shape memory alloys,
and from the point of lending themselves to fundamental studies of Martensitic phase
transformations.




For ¢=0.625 the alloys transform into the 7R structure, (4haanov novaiiou jaus,
[105]), lower Ni-content alloys transform into the 3R or Llo structure. The Martensitic
transition temperature Ty is strongly concentration dependent varying from near 0°K
at low Ni-content to well above room temperature for high Ni-content [106], [107].
Above T a number of pre-Martensitic phenomena are observed. Chief amongst thesa
are "tweed” observed in transmission electron microscopy, the associated "streaking”
observed in selected area electron diffraction [107], and the phonon anomalies observed
in neutron scattering experiments {108}, [109].

In fig. 32 we reproduce the inelastic neutron scattering experiments of Shapiro et
al. [108], [109], [107]. .
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Figure 32: Concentration variation of the ¥4-TA; phonon branch (upper left) and
of position of the dip in this branch (lower left and inset) in B-phase Ni,Al,_,, al-
loys. Temperature dependence of the dip in the £,-TA; branch in Nig¢25Alg.375 (right)
[108],[109), [107]

"These plots revealed a concentration and temperature dependent dip in the (cc0)
transverse acoustic branch of the phonon spectrum. At ¢ = 0.50, the dip is very shallow
and is at a distance go % 0.12(2x/a) along the (<c0) direction. The dip moves to larger
values of go with increasing concentration. At c = 0.625 the dip is at go ~ 0.16(2x/a).
For Nig.e25Alo.37s the dip becomes more pronounced as the temperature is lowered to-
wards T Since the phase transformation is first order, the phonon frequency does not
go to zero at Ty = 80K as it would in an ideal soft phonon transformation. However,
it is clear that this anomaly is closely connected with the phase transformation. In-
deed, for Nig.e25Alo.375 the reciprocal of gq is close to the wavelength of the Martensitic
7R structure into which it transforms. Thus, understanding the mechanism that gives
rise to the pre-Martensitic phonon softening can be expected to provide clues to the
mechanism that drives the Martensitic transformation.

Recently, Zhao and Harmon [100] have. performed a detailed study of the phonon
spectra of Ni-rich B2-phase NiAl alloys. These calculations are based on first principles
calculations of the electronic structure of B2 NiAl which are then fitted to a non-
orthogonal Slater-Koster tight binding Hamiltonian. This model Hamiltonian is then
used to evaluate the electron phonon matrix elements using the method of Varma and



Weber {110}, [111). In fig 33 we reproduce the calculated phonon spiciia ve ciee
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Figure 33: Left frame: Phonon dispersion curves of B-phase Nig g25Al.375 for which a
temperature of 1000 K has been used in the Fermi distribution function in order to
simulate the effects of disorder in smearing the Fermi surface. Right frame: the Fermi
surface showing the nesting feature. The k, — k, with three different values of k, (0.25,
0.38, and 0.487 /a are shown, and the arrow indicates two nested surfaces. After Zhao
and Harmon [100]

and Harmon together with the Fermi surface that they obtained. Zhao and Harmon
identified a Fermi surface nesting vector (marked by the arrow) that was responsible
for the dip that they obtained in there calculations.

For pure metals and for ordered systems the methodology followed by Zhao and
Harmon is quite sound since it is based on standard band theory technology. Unfor-
tunately, for disordered alloys and off-stoichiometric compounds it is much less well
founded. In order to be able to treat the off-stoichiometric Niggz5Alo.375 compound,
Zhao and Harmon made use of the rigid band model. They based their calculations
on the e’ ctronic structure of stoichiometric NiAl assuming that the only effect on the
electronic structure of adding excess Ni is to change the position of the Fermi energy.
They choose valences of 1 and 3 for Ni and Al respectively (arguing that, in Ni, the
other nine d-electrons that are normally considered valence electrons are in a fixed
d® core-like configuration), modify er accordingly, and use this modified ordered com-
pound band st:ucture to perform the calculation of the phonen spectra. The problem
with this approach is that the effect of off-stoichiometry, i.e. the creation of anti-site
defects, is not only to modify the position of ¢r, but also to smear out the electronic
structure in a complex energy and k dependent manner. Thus the whole question of
the existence of a band structure and Fermi surface is thrown into question.

As we have pointed out earlier a much better way to calculate the electronic struc-
ture of off-stoichiometric compounds is, at the outset, to face up to the fact that they
are disordered and to use the LDA-KKR-CPA method. At the present time, there is
no first principles theory of the dynamical matrix for disordered alloys similar to that
of Varma and Weber. However, since the mechanism identified by Zhao and Harmon

o~



rests critically upon the picture of the electronic structure and Ferm: surtace obtainea
using the rigid band model, we can inquire into its validity. Specifically, if the effect
of adding disorder into the problem is to smear out those parts of the Fermi surface
responsible for the nesting, this would negate the mechanism identified by Zhao and
Harmon.

We have calculated the electronic structure of Nig ¢25Alo.375 using the complex lattice
LDA-KKR-CPA method. We assume that the structure is B2 and that the excess Ni
goes onto the Al-sublattice. Thus the system is describe by two interpenetrating simple
cubic lattices, one is occupied entirely by Ni, i.e. has the composition Ni; oAlgo, the
second has Ni and Al randomly distributed with compoaitiq‘n Nig.25Alo7s. Once the
self-consistent crystal potentials have been obtained the A2(k, ¢) was calculated using
a generaliza’ on of eq. 23. AB(I?, ¢) along a number of directions in the k., k, plane
for a number of values of k, is displayed down the left hand side of fig. 34. For
k. = 0, AB(k,¢) is quite sharp in all directigns, although, it is sharpest along the
I-X direction and less sharp along I'-M. As k, is increased AB(k,¢) remains sharp
along (100)-directions for k, < 0.3(2x/a) whilst along (110)-directions it is rapidly
smeared out by the disorder on the Al-sublattice. If we interpret the loci of the peaks
in AB(k,¢) as the Fermi surface and the width as the inverse mean free path of the
electrons, clearly the Fermi surface is well-define around the X-points in the Brillouin
zone and much less so elsewhere. ' .

On the right of fig. 34 we show a summary plot of the loci of the peaks in AB(k, ¢).
What is clear from this plot is that the Fermi surface is quite well-defined over a’
substantial region of the Brillouin zone around the (100)-direction. Since it is the Fermi
surface in the neighborhood of this direction that, according to Zhao and Harmon, is
responsible for the nesting, this is an important observation. Furthermore, in this
region the Fermi surface is quite flat normal to the k, = constant plane for values of
k. around 0.15(2x/a).

In fig. 35 we plot the Fermi surface in the k, = 0.15 plane in the extended
zone scheme. We have also indicated the part of the Fermi surface that is well-
defined and a spanning vector that can give rise to nesting. The spanning vector is
~ 0.18(110)(2x/a), this is identical to that of Zhao and Harmon. Both are somewhat
larger than the actual lock-in vector for the 7R structure of 1/7(110)(2x/a).

Even though we do not have a first principles theory of the phonon spectra in
disordered off-stoichiometric compounds our results do lend strong support to the con-
clusions of Zhao and Harmon that the pre-Martensitic phonon softening observed in
B2 phase Nig¢z5Alo.a7s is Fermi surface driven. Such an observation has important
consequences for future theories in that is implies that the interactions giving rise to
the pre-Martensitic behavior are long ranged. Thus we can conjecture that it will not
be possible to describe this behavior on the basis of simple pair and short ranged inter-
atomic potentials without the explicit inclusion of these subtle band structure effects.
Since the effects of disorder on the electronic structure are extremely energy and k
dependent, it is also clear that its effects will have to be considered at the outset. The
extent to which such conclusions apply to the Martensitic phase transformation itself
remains to be seen. That disorder is importan® in understanding the nature of the
atomic displacements that precede the Martensitic transformation has already been
provided by molecular dynamics studies based on embedded atom potentials [112]. In
this work it was demonstrated that the characteristic "tweed” diffraction pattern is
obtained for random positioning of the Ni and Al atoms on the disordered sublattice
but it is not if the NiAl atom. are placed in some ordered array. Thus, it appears
that a theory that includes both compositional and displacement fluctuations will be
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Figure 34: Left: AB(k, ¢) along various directions in k; = constant planes in one
octant of the simple cubic Brillouin zone fo:-" off-stoichiometric NigessAlo.ars. Right:
The loci of the peaks in AB(I-E,e) in various k, = constant planes. Starting from the
basal plane the curves are for increments in k, of 0.05, i.e. twice the density shown on
the left. The two uppermost curves are both for k, = 0.4 since AB(K, ¢) has two peaks.
For values of K, > 0.4 the peaks are so ill-defined that we did not plot their loci. The
shaded area around the X-point indicates the region over which the Fermi surface is

well-defined.
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Figure 35: Fermi surface of off-stoichiometric B2-structure Nige25Alo.375 in the k, =
0.15 plane over four adjacent Brillouin zones. The shaded region indicates where the
Fermi surface is well-defined. We have marked by « a possible nesting vector.

required in order to fully understand these complex phenomena.

5 Conclusions

We have reviewed the local density approximation, first principles Korringa, Kohn,
Rostoker coherent potential approximation theory of the electronic structure and en-
ergetics of substitutionally disordered alloys. We have also reviewed the mean field
concentration functional and generalized perturbation method theories of ordering and
alloy phase stability that have been built on the LDA-KKR-CPA description of the
disordered state. Results of calculations of short range order parameters and phase
diagrams for a number of alloy systems have been presented that illustrate different
ordering and clustering behavior. We have placed emphasis on understanding the driv-
ing mechanisms of ordering phenomena in terms of the underlying electronic structure.
A number of mechanisms have been identified (Fermi surface nesting, band filling, off-
diagonal randomness, relativity, charge transfer, magnetism, strain fluctuations, etc.)
that provide a modern, first principles, basis for understanding ordering/clustering
and alloy phase stability and for the interpretation of the Hume-Rothery rules and
ideas based on tight-binding models. An important ingredient in this understanding is
that features in the electronic structure of the disordered state tliat drive the ordering
processes are also amenable to verification by experimental probes of the electronic
structure of the disordered state. Thus, for example, the topology and smearing of an
alloys Fermi surface that, on the one hand, determines its residual resistivity, can be
responsible for the development of LPOS on the other.

To date, we have not made any numerical applications of the strain fluctuation the-
ory presented in these notes. With the development of the anomalous X-ray scattering




technique [82)|33) that can now measure (0Cal ALOMIC AISPIALCIICILY il UISUi ULty duivy >
to a high degree of precision this promises to be a fruitful area. This is nowhere more
likely than in the INVAR problem where concentration. magnetic, and displaccment
fluctuations are intricately coupled and in §-phase NiAl where concentration and dis-
placement fluctuations appear as precursors to the Martensitic phase transformation.

Faulkner et. al. [113] have developed a new direct Monte Carlo approach that is
based on the calculation of the energetics of specific local configurations embedded in an
otherwise homogeneously disordered solid solution. The cluster energies are obtained
from the embedded cluster method [19] which, in turn, is based on the LDA-KKR-
CPA treatment of the disordered phase. In many respecis the new method can be
viewed as a next step beyond the MF-CF theory, in that, there is no need to partition
the electronic energy between sites, however, by going directly to the Monte Carlo
method the statistical mechanics is treated essentially exactly, rather than the point
approximation of MF-CF theory. Although only in the early stages of development the
results obtained are very encouraging.
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