
Centimeter
1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 mm

11111,°,,,,2+++Inches 1.0 +m
++IllmLllll_

+lil

IIIIl +'°+iltt+__o+_ LIUI,+
- Illll_II111+i1++1+





L,

PARALLEL FAST FOURIER TRANSFORMS
FOR NON POWER OF TWO DATA

Bart D. Semeraro

Mathematical Sciences Section

Engineering Physics and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN 37831

"The stdxnitt_ mantnscnot has been
authored by a contractor of the U.S.
Government under contract No. DE-

ACOS-840R21400. Accorain_. the U.S,
Government retmns a nonexclusnte,
royldly-free license to _ or ref_oduce
the _ form of this con_. or
allow others to do so, for U.S. Government
_."

* This research was sponsored by the Applied Mathematical Sciences Research Program, Office of
Energy Research, U.S. Department of Energy under contract DE-AC05-84OR21400 with the Martin
Marietta Energy Systems, Inc.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed,or represents that its use would not infringe privately owned rights. Refer-
¢nc¢ herein to any specific commercial product, process, or serviceby trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not neocssarily state or reflect those of the
United States Government or any agency thereof.

' . v_ ,t

O-._IITIUN OF THISDllelJT,,II_NTIS UNLI_ITF.J1

,i.'.,. .,,,,4



Parallel Fast Fourier Transforms for Non Power of Two Data

B. D. Semeraro

Oak Ridge National Laboratory
Mathematical Sciences Section

Oak Ridge, TN 37831-6367

Abstract munication. In the case of a hypercube architecture,

Swarztrauber and Walker demonstrated that power of
This report deals wi_ parallel algorithms for corn- two stages require only nearest neighbor communica-

puting discrete Fourier tw, nsforms of real sequences of tion. In the remainder of this paper we investigate
length N not equal to a power of two. The method communications induced by non power of two stages
described is an extension of existing power of two in the sequence and show a simple strategy for dealing
transforms to sequences with N a product of small with the associated difficulties. We begin with a dis-
primes. In particular, this implementation requires cussion of issues related to the evaluation of Fourier

N = 2P3q5r. The communication required is the same transforms of real data in section (2). Section (3) out-
as for a transform of length N = 2p. lines the FFT algorithm and introduces the matrix no-

The algorithm presented is intended for use in the tation used in describing the communication require-
solution of partial differential equations, or in any sit- ments in the various stages. Section (4) describes the
uation in which a large number of forward and back. parallel algorithm and the extension for non power of
ward transforms must be performed and in which the two data.
Fourier Coefficients need not be ordered. This ira.
plementation is a one dimensional FFT but the tech-

niques are applicable to multidimensional transforms 2 Real Fourier Transform
as well. The algorithm has been implemented on a 128

node Intel Ipsc/860. The discrete Fourier transform can take several

forms depending on the convention adopted for the
sign of the exponent and when the normalization takes

1 Introduction place. In this work the forward and backward Fourier
transforms are.

The algorithm described in this report is an exten-
k_W

sign of the parallel algorithm given by Swarztrauber Fj = _'_N--olfke -ij -rr (j = 0 .... \: -- 1), (1)
[2] and Walker [3] for computing power of two Fourier
transforms on a hypercube. The algorithm for ob- and,
taining the FFT of a real sequence is based on the

method by Cooley, Lewis and Welch [1] in which a f_ = .V
post processing step is used to construct the Fourier
coefficients of the real sequence from the coefficients respectively. Here the fk are assumed to be real and as

of a complex half length sequence. This algorithm is a result the Fourier coefficients, Fj, will be conjugate

unordered in that the Fourier coefficients are not in symmetric, (Fj = F,__j). We concern ourselves with
a natural order but in a hypercube or processor per- the evaluation of equation (1).

muted order. The Cooley, Lewis and Welch algorithm for corn-
Fast algorithms for evaluating the Fourier trans- puting the Fourier transform of an N element real se-

form of a sequence of N elements rely on N being quence begins with the transform of a half length com-
factorable into a product of small prime numbers. In plex sequence constructed from the real input data.
the power of two transform N = 2k and there are k Each element of the complex vector h is taken to

stages to the algorithm. When data is distributed over be hj = f2j + if_.j+l, where j = 0 .... _I - 1, and
several processors each stage may require some com- M = N/2. The k th element of the Fourier transform



of this vector is, • Calculate the Fourier coetficients of the original
sequence by combining the coefficients of the half

M-1 length complex sequence via equation (3).
H_ = Z hje-iJk_"

a-r

j=0 • The original sequence is overwritten by the Jude-
M-1 M-I pendent Fourier coefficients Fj. This is possible

-ijk._
= y_ f2je-'Jk_r +i Z f,.j+le • because only the positive half of the frequency

j=o j=o spectrum needs to be stored and because F0 and

= Feb + iFo_. FM are real. This allows F_t to be stored in the
imaginary part of F0.

where Fe and Fo are the Fourier transforms of the
Notice that this algorithm for computing theeven and odd components of the original N element

Fourier transform of a real sequence depends on the
real sequence and k = 0...M- 1. The k *h element of efficient calculation of the Fourier transform of a com-
the transform of the original sequence is,

plex sequence. The next section describes fast meth-
N-l ods for evaluating the Fourier transform of such a com-

Fk = fie -ijA_'w plex sequence.
j=o
M- 1 M - 1

= _ f2_e-'Jk_r+e-'k_ y_ f_i+le-iJA_ 3 Fast Fourier Transform
j=O j=O

= Feb + e-ik'_Fo,. The calculation of a Fourier transform by direct ap-
plication of equation (1) is equivalent to a dense ma-

where F** and Fo, are again the transforms of the trix vector multiplication F = _Vf, in which wjA =
even and odd components of the original sequence wjA and w = e-_._. Evaluation of the Fourier *.runs-
and k = 0... N - 1. These components can be ob- form by this method requires 0(N 2) operations ibr a
rained from the components of the half length trans- sequence of length N. Fast methods for evaluation
form by taking into consideration that the transforms of the Fourier transform reduce the number of opera-
of the even and odd components of the original se- tions by taking advantage of special properties of the
quence are conjugate symmetric. Using this infor- Fourier matrix W.

mation it follows that F_, = (HA + H__A)/2 and Consider the permutation of the linear system of
Fo, "= -i(Hk - H___)/2. Substitution into the ex- equations F = Wf in which tl_' even and odd equa-

tions are grouped together. F' = PF = (Fe,Fo) T,pression for the transform of the original sequence
gives, where P is the permutation matrix which performs the

odd-even sorting of the equations and F, = F._A, ['_ =

F_ = [(HA + H__A) - F2A+I,k = 0 ...... 'vl - 1. The rows of the Fourier ma-

le -_A_ (H_ - H__A) ] /2. (3) trix are also permuted by P giving W' = PW. Theeven and odd components of equation (1) can be writ-
ten:

This expression only needs to be evaluated for k =
M- 1

0 ..... M since the Fourier coefficients of the original
e-iJk ,_ (f jFez + fj+M ),

sequence are conjugate symmetric. The positive Ire- 2-.,
quency spectrum of the original sequence can be over- j =0

M - 1
written onto the original vector.

The algorithm for computing the Fourier transform Fo_ = Z e-iJA_ e -J _ (fj - fj +M ),
j=Oof an n element real sequence f can be summarized as

follows: where M = N/2. The matrix form of this expression
is:

• Calculate the Fourier transform of an M = N/2

element complex sequence h with hj - f_j + (Fe) ( WM 0 ) ( / I ) ( _1 )if2j+l, j = 0 ..... M - 1. This step requires that Fo = 0 [VM D w -D._t . "
the number of elements in the original sequence f
is even. Notice that no reordering of the original The elements of the matrix IV._t are wjk = w(M) _k

-- t*]lr

sequence is necessary to form h. and w(M) = e .-x't-. This matrix is the A/ element



Fourier matrix. Multiplication of a vector by W._/ 4 Parallel Transforms
is equivalent to performing an M element Fourier

transform. The matrix DM is diagonai with elements In this section we examine the comnmnications uec-

dj = e T essary to perform a fast Fourier transform of an N el-
The above expression represents the factorization ement complex vector f in parallel. It was shown in

of the matrix W' into a block diagonal matrix, the previous section that a fast Fourier transform can

be performed as a sequence of butterfly operations.

WM 0 _ In particular, if the length of a complex is
sequence

o WM / ' a power of two, N -- 2p, then tile transform can be

and a power of two butterflv operator, performed with p power of two butterfly operations. If
" N has factors other than two. then tile fast transtorm

(I I ) (I ) ( I I ) wiilincorporate butterfly operations corresponding toDM --DM -- Drn I -I " those factors. These butterfly operations can occur
in any order. For example, if N = 18, two power

R.ecursive application of this factorization process to of three butterflies can be performed followed by a
the resulting linear system gives the power of two FFT. power of two. Or, a power of two can be performed be-
If the length of the original sequence is a power of tween two power of three operations. Both sequences
two the number of operations required to evaluate the of events will yield a Fourier transform of the original
transform is reduced from O(N "z) to O(N log 2 N). data. Itowever, tile Fourier coefficients will be ordered

Similar factorizations exist for powers other than differently in each case.

two. These factorizations allow the treatment of se- The primary aspect of the parallel transform is the
quences of length N for which N is not a power of two. communication required to perform tile sequence of
Of particular interest are situations in which N is a butterfly operations. For the hypercube the interpro-
product of small prime numbers. The power of three cessor communication required to perform a sequence
butterfly operator is, of power of two butterfly operations is relatively sire-

( I ) ( I I I ) ple. Swarztrauber[2]showedthatd+lparalleltrans-

DM I a_'I --hi missions are required to perform a sequence of power

D]f I -hi a 2I of two butterflies on a d dimensionalcube. In addition,
each transmission is a nearest neighbor communica-

where, M = N/3, a = e-_, and the jth element of the tion. The situation is more complex for a non-power
diagonal matrix DM is e -ii _. The power of five but- of two butterfly operation.
terfly operator is the product of the diagonal matrix, We illustrate the communications involved by con-

sidering the example problem or"transforming an N

DM is naturally ordered and evenly distributed among the

processors. Assume that N = '2v.3q .5 _ and that p >_ 3.
D_ O aM The FFT of this data will then require p.q • r stages

D_ consisting of p power of two butterfly operations, q
power of three butterfly operations, and r power of

and the butterfly matrix, five butterfly operations.

I I I I I \ Applying the techniques of section 3. the matrixI b2I b4I -bI _baii form of the EFT can be written

I b4I -b3I b21 -bI
I -bI b_'I _b3i b4i F = WB_.Blf, (4)
I -baI -bI b4I b2I

where B1 and B2 are the first stage and second stage

where, ,_I = N/5, b = e-/_, and DM is defined as butterfly operators respectively, F is the vector of
above. These butterfly operators are the basic oper- Fourier coefficients in index reversed order, and t.V
ations in the fast Fourier transform of a sequence of represents the product of the remaining butterfly op-

length N = 2P3q5". In the next section we explore erations.
the types of communication induced by the butterfly The distribution of the elements of the input vee-
operators, tot f across the four processors can be viewed as a



partitioning of the vector, A permutation matrix P is obtained by exchang-
ing rows of the identity matrix. Multiplication by P

f0 "- P0 will result in the exchange of the corresponding ele-
fl ments in a vector. Premultiplication of a matrix by P
f2 "- P1 will exchange rows and post multiplication by P willf_

f = f4 ' exchange columns of the original matrix. In addition
f5 '-- P2 p2 _ I. The permutation matrix corresponding to the

reordering required to perform the first stage butterfly
f6 _"/'3 computation described above isfr

where each fj is a subvector of length N/8. The first
two subvectors are located on processor P0. The sec-
ond two are located on processor Pt and so on as in- I

I
dicated above. PI =

If the first stage of the calculation is a power of I
two butterfly; then the conformal partitioning of the I
matrix Bl is given by

I I _ J
I I Multiplication of f by this matrix gives the following

I I reordering

I x fo --Po
Do -Do f4

D1 -D, f2 -- P1
D2 -D2 f,_ f6

Da -Da fl .- p.

Notice that the multiplication of f by the first block fs "
row of Bl requires the addition of the subvectors ]'3 '-Pa
(fo,fl) T to the subvectors (f4,fs) T. These elements f7
are on different processors and so some communica- Pre and Post multiplication of BI by P1 gives,

tion is required before the sums f0 + f4 and fl + ]'5 ( I I
can be evaluated. A reordering of the elements of f is Do -D0
required which will allow the computations involved in I I

the multiplication of f by B1 to be done locally. Since D2 -D,.
the data involved resides on only two processors, the B_ = I I

required communication can be carried out as an ex- D1 -Dl
change of data between the processors. For example, I I

processor P0 can exchange fl with f4 on processor/'2. D3 -D3
Swarztrauber [2] used a class of orderings called index-
digit permutations to derive the reorderings required Referring to equation (4), the matrix form of the par-
to do power of two butterfly operations, allel evaluation of the first butterfly operation is,

An important aspect of Swarztrauber's algorithm
F = i,_rB2Blfcan be illustrated by viewing the index-digit permuta-

tions as permutation matrices ope:ating on equation = I_VP12B,P_ B1P_ f

(4). The feature we wish to illustrate and exploit is = _VPIB_B_f'

that for certain situations only a subset of the total = iVP1B_fa
number of butterfly stages require communication. In

other words, a point in the algorithm is eventually where f' and BI are defined above. Notice that B_ is
reach at which the remaining computation is simply block diagonal and that the structure of each block is
a local FFT of length N/p, where p is the number of that of a power of two butterfly operation. The com-
processors.We illustratethisby completingthe de- municationrequiredto perform the butterflyopera-

scriptionoftheSwarztrauberalgorithminthecontext tioncan be thoughtofas beinginducedby a permu-

ofourexample, tationmatrixwhich transformsBl to blockdiagonal
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form. The vector fa = B_f' is the result of the first under the transformation P_P2P!_VP1P2P1. This al-
butterfly operation reordered by application of &. lows us to write the matrix form of the Swarztrauber

The second stage power of two butterfly matrix B._ FFT as,
has the form

P1 • P'=,.• P[ F = W Pt B'-,'[½B_Pl f

I I _ F' = WP1B"P.,B IPlfI I - -

Do -D0 where, F' is the vector of Fourier coefficients in pro-
D1 -D1 cessor permuted order.

I I In this example the FFT has three stages. Tile first
I I stage is an interprocessor communication induced by

D0 -D0 the multiplication of f by Pl followed by a parallel
Dt -Dl butterfly computation. The second stage is an inter-

processor communication induced by the multiplica-
The matrix B_ has the same block structure as B2 but tion of the result of the first stage by P._ followed by
differs in the location of some of the elements. B' is, the parallel second stage butterfly operation. The fi-

I I _ nal stage is an interprocessor communication induced
[ I by the multiplication of the second stage result by P1.

Do -Do This final reordering is followed by a set of local FFTs
Do -Do of length N/4. The length of the local FFTs is not

I I restricted. It is in this final local stage that tile non
I I power of two but_edly operations are performed.

,,

D1 -D1
D1 -D1

5 Summary
This butterfly matrix is reduced to block diagonal

form by application of a second permutation matrix The algorithm for computing the FFT of an N ele-
P2. This operation will induce communication in the ment sequence in parallel on a hypercube architecture
reordering of fa. The matrix form of this procedure is is extended to handle non power of two factors by re-
written as stricting those factors to the local part of the FFT.

, The parallel stages still consist of power of two but-
F = I,_VP1B_fa terfly operations. On a d dimensional cube N must be

- ¢¢P1 ' "- B_P_'fa divisible by 2d+l. An important aspect of this algo-
- I,;Vptp2r_,,t, rithm is that the interprocessor communication is not-- *'*2 Ja

= I?VP1P=fb, effected by non power of two factors.

where fb = P2P1B2Blf, is the result of the first two

butterfly operations reordered by the application of Pl References
followed by P2.
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