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ABSTRACT
Recent modifications have been made to generalize the Embedded Atom Method (EAM) to

describe bonding in diverse materials. By including angular dependence of the electron density
in an empirical way, the Modified Embedded Atom Method (MEAM) has been able to
reproduce the basic energetic and stt;uctural properties of 45 elements. This method is ideally
suited for examining the interfacial behavior of dissimilar materials.

This paper will explain in detail the derivation of the method, show how the parameters of the
MEAM are determined directly from experiment or first principles calculations, and examine
the quality of the reproduction of the database.

Materials with fee, bee, hop, and diamond cubic crystal structure will be discussed. A few
simple examples of the application of the MEAM to surfaces and interfaces will be presented.
Calculations of pullout of a SiC fiber in a diamond matrix as a function of applied stress show
non-uniform deformation of the fiber.

INTRODUCTION
Empirical and semi-empirical computational methods for metals and covalent materials have

evolved rapidly in the past few years. These methods have recently been reviewed by Carlsson
(Ref. 13), in an MRS Symposium (Ref. 35), and at a special symposium of the World Materials
Congress (Ref. 37). The Embedded Atom Method (EAM) has been the mainstay of the new
methods used for metallic systems. Daw and Baskes (Refs. 13, 14) introduced this method over
a decade ago. The EAM, which is based on density functional theory, has successfully been
applied to the fee or nearly-filled d-band transition metals and also to bee metals (Refs. 1, 28).
A number of recent papers summarize the technique and its many applications (Refs. 5, 6, 14,
15, 17, 18, 21, 22, 23). Finnis and Sinclair (Ref. 20) derived a similar method based on a
second moment approximation to tight binding and originally applied it to the bcc or half-filled
d-band transition metals.

A basic limitation of the EAM is that it spherically averages the electron density which
precludes directional bonding. Baskes (Ref. 2) modified the EAM to include dir_ctional_, - ........,, e',_

M. I. Baskes,page 1 of 13

.DISTRIBUTION OF THIS DOOUMENT IS UNLIMITED ¢



bonding and applied it to silicon. The silicon EAM model was extended by Baskes, et al. (Ref.
8) to the silicon/germanium system where the Modified Embedded Atom Method (MEAM) was
developed. Most recently the MEAM has been extended to fcc, bcc (Ref. 3) and hcp (Ref. 7)
metals. Savino et al. (Ref. 34) developed a related method based on second order invariants.

All of these methods are mathematically similar and have in common the attribute that the
interaction between two atoms depends upon their local environment. It is mainly this fact that
accounts for the success that these methods have had in predicting effects at metallic surfaces
where the atomic environment is significantly different from the bulk.

This paper will review the derivation of the MEAM and its application to a large number of
elements showing its wide range of applicability. An underlying theme in the development of
the method is computational simplicity so that the interactions may be readily used for large
molecular dynamics or Monte Carlo simulations. MEAM functions for the Si/C system will be
developed and applied to the deformation of a SiC fiber in a diamond matrix.

THEORY
The total energy E of a system of atoms in the Embedded Atom Method (EAM) has been

shown (Ref. 16) to be given by an approximation of the form:

where the sums are over the atoms i and j.* In this approximation, the embedding function Fi is
the energy to embed an atom of type i into the background electron density at site i, _; ; and _ii
is a pair interaction between atoms i and j whose separation is given by Rij. In the EAM, Pi ig
given by a linear supposition of spherically averaged atomic electron densities, while in the
Modified Embedded Atom Method (MEAM), _i is augmented by angularly dependent terms
(Refs. 2, 3, 7, 8).. _leetus denote the term in brackets in Eq. 1, i.e., the direct contribution to the
energy from the im atom, as El. Of course, atom i also indirectly contributes to the energy
through its interactions with its n-eighbors. Then Ei may be written as follows:

Ei = Fi('_z) + ½E _u( Rij ). (2)
j_i

As in Baskes et al. (Refs. 3, 8) consider the case of a homogeneous monatomic solid with
interactions limited to first neighbors only. In a specific reference structure (usually the
equilibrium structure) for an atom of type i we have:

E_(R) = F,(p°(R))+½Z_d_zi(R) (3)

0
where Pl (R) is the background electron density for the reference structure of atom i, Zi is the
coordination, and R is the nearest neighbor distance. Here E_(R) is the energy per atom of the
reference structure as a function of nearest neighbor distance, obtained, e.g., from first principles
calculations or the universal equation of state of Rose et al. (Ref. 32). Here we choose the
latter:

*Throughout the paper the subscripts (ij,k) denote either an atom at a particular site or the
type of that atom.
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,11
with

a2 = 9D.B
(5]

where Ec, re, _, and B are the cohesive energy, nearest-neighbor distance, atomic volume, and
bulk modulus, respectively, all evaluated at equilibrium in the reference state. The pair potential
for like atoms is then given by:

0;i (R) = -_ {E_ (R) - Fi(_/° (R))}. (6)

At equilibrium (denoted by [ ), with the use of this form, El. = -E c , dE/dr[r ' = 0, and
d2E/dr 2 I. = 9D,B/r_z so that a_reement is assured between the _odel and the inpfft cohesivei e . c

energy, atomic volume, and bulk modulus. The pair potential for unhke atom pairs will be
discussed below.

In the MEAM the embedding function F (P) is taken as

F(p) = AE cp--p-In/9 (7)
P0 P0

where A is an adjustable parameter and P0 is a density scaling parameter. See Baskes et al.
(Refs. 2, 8) for a justification of this functional form. The density scaling parameter was
initially (Ref. 3) taken to be the coordination times the atomic density scaling factor (see Eq. 11
below) and more recently (Ref. 7) as the density in the equi!ibrium reference structure. The SiC
calculations presented below use the latter definition. For fcc and bcc reference lattices the
definitions are identical. For hcp and diamond cubic there is a small difference.

The background electron density, _, is assumed to be a function of what we call partial
electron densities. These partial electron densities contain the angular information in the model.
The reader should be cautioned that even though the electron density may be thought of as
qualitatively similar to a real electron density, there is no expectation that the electron densities
calculated here would be in agreement with those obtained from first principles calculations. A
number of functional forms have been used previously (Refs. 2, 3, 4, 7, 8).

For example, the square of the electron density at a given site has previously (Ref. 3) been
defined as the sum of terms with s, p, d, and f symmetry from the neighboring atoms. By
including these angular terms in the background electron density, we introduce angular forces
into the model. Thus at a particular atom:

3

= __t(h_p(h>2 (8)
i

h=0

with h=0 to 3 corresponding to s, p, d, and f symmetry, respectively, and for convenience we
take t(0) = 1. We note that in a crystal the s, p, d, and f terms may be considered as measures of
volume, polarization, shear, and lack of inversion symmetry, respectively. For example, as we
vary the volume of a perfect fcc lattice, only p(O) is not equal to zero and, thus, it c,_0 simply be
related to the volume. Similarly as we shear the fcc lattice, contributions from p_,Z)arise. An
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alternative exponential form with the same asymptotic behavior near the perfect lattice has also
been used (Ref. 7):

_ r½{,,,,Ip,h,/p,0, 1
p = pt°)eL *=' )_J (9)

The contributions to the density are given by:

p<O)= _"2.,p_c°)(/) (lOa)
i

(pcl))2 .{I) i ra= p (r) (lOb)

(p(2))2 ._ pa(2)(, )TJ 1 pa(2)(ri ) (lOc)

I_. ,,(3).,,r:r;r;]'p (., r--rr-j
Here, the pa(h) are radial functions which represent the decrezse in the contribution with

distance rI from the site in question, the superscript i indicates neighboring atoms to the site in
question, and the a, 13,and _/summations are each over the three coordinate directions with" r
being the distance from the site in question in that direction. The functional forms for the
partial electron densities (h=l,3) were chosen to be translationally and rotationally invariant and
equal to zero for crystals with cubic symmetry. Finally, the individual contributions are
assumed to decrease exponentially, i.e.,

pa(h) ( R) = Po e-O<"(RIr'-I) (11)

a

where /90 and 15(h)are constants. For alloys the coefficients t(h) were initially assumed to
depend on the properties of the atom at which the average electron density was calculated (Ref.
3). More recently (Ref. 26) it has been found that better agreement with defect properties in SiC
could be obtained if the properties of the atoms surrounding this atom were included. The latter
averaging procedure is used below for the SiC calculations:

t'") = _ t_h'po'°'/p '°, . (12)
i

The determination of the parameters has been discussed previously (Refs. 3, 7) in great detail.
Basically, analytic expressions are obtained for the elastic constants, vacancy formation energy,
and structural energy differences. Using these expressions and experimental data each
parameter (or sets of parameters) is uniquely defined. The relationship between the parameters
and the experimental input is summarized in Table 1. A number of the 13parameters are not
well determined for the fcc and bcc elements and nominal values are chosen for convenience.
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Table 1 - Parameters and their correspondence with experimental data.

iiii iii i ii ii iiii i

Parameter Experimental Input

Ec sublimation energy
re atomic volume
oc bulk modulus

A structural energy difference

13(0), t (2) shear moduli

13(1) internal relaxation for hcp

13(2), 13(3) shear moduli for hop
t (1) vacancy formation energy

t (3) stacking fault energy or c/a for hcp

RESULTS AND DISCUSSION
We begin this section with a diagram of the periodic table that shows the elements for which

MEAM functions have been developed. These functions are now available for the 45 elements
denoted by shaded squares. As you can see in Fig. 1, MEAM functions exist for most of the

_ iii_iii!iii_!__Jlilliil m_l_ I i I I I i

_ _' Mn

...............i_ii#::_i_i_

I I i ..l mi i I I
I I i

Th U

Impurities HCP FCC 3CC DIA CUB

Figure 1 - Periodic table of the elements showing the current status of MEAM
function development. The shaded squares denote those elements for which
MEAM functions currently exist,

technologically interesting elements. We are currently in the process of developing MEAM
functions for the additional elements whose names are present in unshaded squares. It should be
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noted that once functions are available for a pair of elements it is relatively simple to produce
the pair interactions so that alloy or compound calculations may be performed. We have no
current interest in the other elements in the table.

To examine the ability of the MEAM to represent the properties of "real materials" a number
of examples are presented. The MEAM parameters used here are those previously presented
(Refs. 3, 7). As a first example the surface energy of a number of materials is shown in Fig. 2.
Here we plot the calculated surface energy of a (100) face using MEAM vs. the experimental
value of an "average" surface extrapolated to 0 K. Also included in the "experimental" data set
are calculated estimates from de Boer, et al. (Ref. 19). As the figure shows the agreement with
experiment is quite good for most of the elements. In contrast, EAM calculations of surface
energy (Ref. 24) are frequently in disagreement with experiment by up to 40%.

4O00

0 1000 2000 3000 4000

Experimental surface energy (mJ/m 2 )

Figure 2 - Comparison of experimental (Refs. 19, 27, 36) and calculated surface
energies for various elements. The elements shown are those denoted in Fig. 1.

As a second example calculated structural energies are shown in Fig. 3. The energies shown
in the figure are those obtained after minimization with respect to lattice constant. The
calculations are compared to an estimate of structural energy differences derived from analyses
of experimental phase diagrams (Ref. 33), stacking fault energies (Refs. 25, 29, 31) and first
principles calculations (Ref. 30).
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Figure 3 - Comparison of "experimental" and calculated structural energy
differencesforvariouselements. The elementsshownare thosedenotedin Fig. 1.
See text for how the "experimental"values are determined. The inset showsthe
detail forvery small energy differences.

The final example is that of a small SiC fiber embedded in a matrix of diamond. The
MEAM potentials for silicon and carbon have been modified slightly from those previously
developed (Ref. 3) to include use of the exponential form for the average electron density and
more recent elastic constants of carbon (Ref. 38). The parameters for the new potentials are
given in Table 2.

Table 2 - Parameters for the MEAM

Values listed are the cohesive energy Ec (eV), the equilibrium nearest neighbor distance re

(A), the exponential decay factor for the universal energy function (x, the scaling factor for the
embeddin ener A, the expon tial decay factors for the atomic,densities _ , the weighting
factors fogthc argYle densities t_, and the density scaling factor p_.

(0)' (1) (2)" (3) '(1) (2) ' (3) Po
Ec re o_ A P p p p t t t

C 7.37 1.54 4.38 1.0 4.1 4.2 5.0 3.0 5.0 9.34 -1.0 2.5
Si 4.63 2.35 4.87 1.0 4.8 4.8 4.8 4.8 3.3 5.11 -0.8 1.0

SiC 6.43 1.89 4.37 .....
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In Table 3 the elastic constants and vacancy formatici, energy calculated from these functions
are compared to experiment. Agreement is excellent.

Table 3 - Elastic constants and vacancy formation energies for C and Si.

The experimental elastic constants are from Refs. 10 and 38 and the first principles
calculations of vacancy formation energies are from Refs, 9, I 1, and 12.

Cl 1 (eV//_3) c12 (eV//_3) c44 (eV//!_3) E_v (eV)

Calc. Expt. Calc. Expt. Calc. Expt. Calc. Theory
C 6.77 6.74 0.77 0.78 3.66 3.61 6.5 7.2
Si 1.01 1.03 0.41 0.40 0.46 0.48 3.0 5- 6

The reference state for the alloy system is taken to be the diamond cubic structure (9) of SiC.
The parameters for the equation of state are given in Table 2. Using a method similar to that
described in Baskes (Ref. 3), the following expression is obtained for the Si-C pair potential:

 s,c=¼{2es,- Fc(4°)- Fs,<Os°)},
where

._,. l,a(3) t^a(3)l^a(O)x2n0 atu] "g'si _HSI PSi 1

Pc = 4Ps_ e (14)

and

.^. /.a(3) +_a(3) / ,,..a(O) )2

_.o = 4Pc,,,,e_,C,.c ,.c (15)

The elastic constants of SiC using the aboye potentials are calculated to be: bulk modulus 1.32
eV//_3; shear modulus (c44) 1..28 eV/]_3; and second shear modulus 0.89 eV/,/k3. By
construction the cohesive energy, lattice constant, and bulk modulus agree exactly with
experiment.

Calculations were performed to simulate the deformation of a SiC fiber in a diamond carbon
(C) matrix. The geometry is shown in Fig. 4. Both the SiC and C are single crystals with a
(100) orientation. The computational cell is about 40/_ long in the axial direction which is 11
unit cells of C and 9 unit cells of SiC. Choosing this ratio of cells allows almost perfect
matching of the periodicity of the C and SiC. The SiC fiber is 10/_ in diameter. The
surrounding C matrix is effectively infinite in radial extent with C atoms outside of a 20/_
diameter cylinder held fixed in space. The fiber/matrix cell is allowed to relax to its minimum
energy configuration. To restrict interactions to first neighbors, screening is included as in Ref.
7. Axial forces are then applied to each atom of the SiC fiber and the atoms are allowed to relax
to their minimum energy configuration.
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Figure 4 - GeomeW of the SiC fiber in a C matrix.

In Fig. 5 we see the resulting displacement of the fiber and matrix atoms. The displacement is
relatively constant across the fiber and decreases rapidly in the matrix. A significant amount of
shear occurs in the fiber near the fiber/matrix interface. If we assume that the applied force, f,
acts directly on the matrix, in a continuum model the predicted displacement in the matrix, d, at
a radial position, r, is given by:

d_f(R-r) (16)
AoC.

where R is the positionof the fixed boundary(10,_) andAo is the area (6.32,_2/atom) that the
force actson. The predicteddisplacement,asshownin Fig. 5, is in excellentagreementwith the
atomistic calculation. At the higher forces the displacementnear the interface is somewhat
underpredictedby thecontinuumcalculation.
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Figure 5 - Axial displacement as a function of radial position. The fiber
boundary is at 5 ./L _urves are labeled by the applied axial force (eV/_atom).
The solid lines represent the displacements predicted by a rigid continuum
model (Eq. 16).

We have investigated the uniformity of displacement in the fiber and matrix. In a continuum
model one would expect a uniform displacement field throughout the length of the
computational cell. In the atomistic calculation, however, the SiC/C boundary structure varies
as we move along the axial direction potentially leading to regions of different adhesion. In
essence we have introduced g;_ _cations into the interface to account for the mismatch in the
SiC and diamond lattice constazts. We clearly see this effect in Fig. 6 (a). Here we show the

axia! displacement as a functio;, of axial position for the case of the applied axial force of 0.3
eV/7_datom.Away from the interface the displacements are relatively uniform as expected from
continuum theory. However, the displacements in the SiC fiber near the interface (r=2.75 and
4.25 A) vary by almost a factor of two. A region of large displacements occur near the center of
the periodic fiber. The fact that the displacements show a minimum at the boundary of the
periodic cell is related to the specific boundary structure. At this axial position the C and SiC
share a common plane most likely leading to higher adhesion and hence smaller displacements.

Similarly the SiC/C boundary structure varies circumferentially. In Fig. 6 (b) we see that the
axial displacements do not vary much as a function of circumferential position away from the
boundary, but at r---4.25A the displacements are significantly smaller at 90° and larger at about
300°.
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SUMMARY
The derivation of the Modified Embedded Atom Method (MEAM) has been presented

including a short description of how its parameters are determined. Surface energies and
structural energies of a large number of elements are shown to be in good agreement with
experiment. Parameters for new MEAM functions for the Si/C system have been determined
that fit the properties of Si, C, and SiC quite well. Calculations of a SiC fiber in a diamond
matrix show that application of uniform axial forces to the fiber produces non-uniform axial
deformation which has been attributed to v;_'iation in adhesion at the SiC/C interface.
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