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' 1.0 BACKGROUND

During 1992, a seriesof hydrologiccharacterizationtestswere
conductedat the well 4A - 4T test facilitycomplex. Detailsconcerningthese
tests are describedin Swanson (1992). Two of the tests,a constant-rate
dischargetest conductedon March 30, 1992 and a slug interferencetest
performedon April 15, 1992, are the focus of this report.

Preliminaryanalysisresultspresentedin Swanson(1992)indicateda
significantdivergencein hydraulicpropertyestimates(i.e.,transmissivity
and storativity/specificyield) obtainedfor the pumpingtest and slug
interferencetest. The divergencein hydraulicpropertyestimatesis attri-
buted to severaldeficienciesin the originalslug interferenceanalysis. The
originalslug interferencetest analysiswas based on the procedurepresented
in Novakowski(1990),which is dependenton fully penetratingwells within
isotropicconfinedaquiferconditions. Subsequentto this analysis,analyti-
cal methodshave been developed,which providethe opportunityof extending
slug interferenceanalysisto a varietyof test conditionsincluding"

• Unconfinedaquifers
• Partiallypenetratingwells
• Anisotropicconditions
• Wellborestorageeffects(forthe pumpedwell).

In addition,it is also noted that an incorrectstresslevel, i.e., Ho
value of 0.536 m (1.76 ft), for the slug interferencetest was used in the
originalanalysispresentedin Swanson(1992).

As part of the re-analysiseffort,the resultsfrom the pumpingtest
conductedat well 4T and observedat well 4A were re-examined. While
significantchangeswere not expectedfrom the pumpingtest re-analysisfor
estimatesof transmissivityand specificyield, a revisedestimatefor
storativitywas anticipated.An amendedvalue for storativitywas expected
becausethe originalpumpingtest analysismethoddid not take into account
the effectsof wellborestoragein observationwell 4A. It is importantto
note that the storativityor elasticstoragecharacteristicsof the aquifer
exert a strong influenceon slug interferenreamplitude,as noted previously
in Novakowski(1990)and Spane (1992). For these reasons,the pumpingtest
resultsfor well 4A were re-analyzed.

2.0 PUMPINGTEST RE-ANALYSIS

The re-analysisprocedurefor the drawdownportionof the pumpingtest
at well 4A includedthe followinganalysiselements:

• An initialdiagnosticdrawdownderivativeanalysis

• A late-time,NeumanType B curve analysis

• A completeunconfinedaquifertype-curveanalysis,
includingwellborestorageeffects.
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2.1 DIAGNOSTICANALYSIS

Combineddrawdownand drawdownderivativeplots have been shown to be a
powerfuldiagnostictool in identifyingoperativeflow conditionsand factors
influencingdrawdownduring constantdischargepumpingtests (e.g.,Bourdet
et al. 1983, 1989; Spane 1993). Figure I showsthe combineddrawdownand
drawdownderivativeplot for observationwell 4A. The drawdownderivatives
were calculatedusing the DERIV programdescribedin Spane and Wurstner
(1993). Based on a diagnosticanalysisof the patternexhibitedin Figure I,
the followingoperativeflow conditionsduringthe test were interpreted:

• Combinedwellborestorageand delayed-yieldresponse
conditionsduring the early phasesof the test (i.e.,
up to =4 min)

• Unconfinedaquifer,Type B curve responsecharacteristics
between4 and 500 min

• Variabledrawdown/derivativepatternafter 500 min,
most likelyattributableto dischargefluctuations.

2.2 TYPEB CURVEANALYSIS

To providean initialestimateof transmissivityand specificyield,
drawdowndata duringthe test period indicativeof Neumanunconfinedaquifer,
Type B curve behaviorwere analyzed(i.e.,for test times _4 min). The
combinedType B drawdownand drawdownderivativeplot matchingprocedure
describedin Spane (1993)was used in the test analysis. Drawdowntype curves
were generatedusing the WTAQI programdescribedby Moench (1993). As
discussedin Moench (1993),the WTAQI programruns faster and does not exhibit
some of the test instabilitiesthat are sometimesexhibitedwith the DELAY2
programdescribedby Neuman (1975)for analysisof unconfinedaquiferpumping
tests. Associatedderivativeplotsof the Type B curveswere generated,as
discussedpreviously,using the DERIV program.

The combineddrawdownand derivativeplot match for the test is shown in
Figure.2. As indicatedin Figure2, a very closematch was obtainedfor the
combineddrawdownand derivativeplot for the identifiedtest period
exhibitingType B drawdownbehavior(i.e.,_4 min). Resultsof the analysis
indicateestimatesfor transmissivityand specificyield of 254 m2/d
(2,730ft2/d)and 0.025, respectively. A qualitativeestimatefor vertical
anisotropy(KD)of 0.15 is also suggested. These resultscomparefavorably
with preliminaryunconfinedaquiferanalysisresultsfor transmissivity
(269m2/d),specificyield (0.016),and verticalanisotropy(0.11)reportedin
Swanson (1992),which were obtainedfrom automatedtype-curveanalysisof the
entire.drawdownrecordusing the ISOAQXprogram(HydraLogic1989).
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' Figure I. DiagnosticDrawdownand DrawdownDerivativePlot for Well 4A.
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Figure 2. CombinedDrawdownand Drawd0wnDerivative,Type B Curve
Analysisfor Well 4A.
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• 2.3 COMPLETEUNCONFINEDAOUIFERTYPE-CURVEANALYSIS

An additionalanalysiswas also attemptedthat analyzedthe entiretime
drawdowndata set. The completedata analysisfollowedthe same procedure
describedin Section2.2 for the Type B curve analysis. The complete
unconfinedaquiferanalysisprocedure,however,includesthe effectsof
wellborestorage,which would be expectedto be exhibitedduringthe early
phasesof the test. Wellborestorageeffectswere accountedfor, utilizingan
undocumentedprogramthat simulateswellborestorageeffects,which is based
on the proceduredescribedin Fenske (1977). The undocumentedprogramcan be
used to accountfor pumpingand observationwellborestorageeffects. A
comparisonof resultsobtainedwith the Fenske-basedprogramindicatednearly
identicalresultswhen comparedwith predictiveresponses(i.e.,for pumping
well wellbore storage)generatedwith the Novakowski(1990)programfor
confinedaquifers,and the programprovidedin Dawsonand Istok (1991)for
unconfinedaquiferType A curve response.

To fully accountfor the effectsof wellborestorage,the "effective"
well radius,rew,for the pumpedand observationwells is required. As will
be shown,the effectivewell radiusfor the pumpedwell 4T is considerably
greaterthan for observationwell 4A. The early-timedrawdownpatternin the
vicinityof the pumpingwell (i.e.,within a distanceof =100 wellboreradii),
therefore,is expectedto be affectedmore by pumpingwell (ratherthan
observationwell) wellborestorageeffects.

For wells with sand/gravelpack installations,the effectivewell radius
can be calculatedusing the followingrelationshippresentedin Bouwer (1989):

rew= [(1-n)rc2 + n rw2]'/' (1)

where

rc = radiusof the well screen

rW = radialdistancefrom centerof well to the outsidesand/gravel
pack

.n= porosityof the sand/gravelpack.

For wel! 4A, given a well screenradiusof 0.051 m (0.1667ft), a radial
gravelpack distanceof 0.102 m (0.333ft), and an assumedporosityof 30%,
yields a rewfor well 4A of 0.070 m (0.230ft).

A calculationof r_W for the pumpedwell (well4T), however,is more
th,na_ural.e sand/gravelpack that was developedarounddifficultbecauseof the

the well, during previouswellboredevelopmentalpumping. As noted in Swanson
(1992),severalbarrelsof sand and siltwere removedfrom well 4T during the
developmentalpumpingphase. The presenceof an extensivezone of "enhanced"
permeabilitysurroundingthe immediatewellboreis indicatedalso by the

5
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' bi-linearresponseexhibitedat well 4T duringthe slug test (Figure3). As a
means of estimatingpossiblevaluesfor the r_W for well 4T, the radial

distance,r, to the outsideboundaryof the cleveloped"natural"sand/g_avel
pack calculatedbased on the known displacement,Vt = 0.027 m (0.96 ft ) and

initialstressresponse,Ho = 0 168 m3_0.55ft) observedat well 4T during theApril 14, 1992 slug test (seeFigure . For this calculation,the following
relationshipswere developed:

Vt = Vwc+ V_a (2)

where

Vt = slug test volume displacement(0.027m3)

Vwc= displacementvolumewithinwell screen

Vwa= displacementvolumewithin naturalsand/gravelpack zone

where

Vwc= _ rot2 Ho = 0.0067m; (0.237ft3)

where

rot= radiusof well 4T well screen;0.113m (0.370ft).

Re-arrangingEquation2,

Vwa= Vt -Vwc = 0.020 m3; (0.723ft3)

Also note that from a modificationof a relationshipin Bouwer (1989)

Vwa= _ (rw2 - rc2)nHo (3)

For n valuesrangingfrom 15% to 30%, calculatedrWvalues range between
0.521 m to 0.378 m (1.71ft to 1.24 ft), respectively.Using these range of

or and n values in EquationI yields an estimatedeffectivewell radius,rew,0.229 m (0.75 ft).

The effectivewell radiusvalue of 0.229m would be expectedto provide
a valid predictionof wellborestorageeffectsfor test conditionswhere the
hydraulicpropertiesof the naturalsand/gravelpack zone are similarto that
of the surroundingtest formation. However,as shown in Figure3, the "double
straight-linepattern"displayedduringthe slug tess at well 4T indicates
that the developedzone aroundthe well possessesa significantlygreater
transmissivitythan the surroundingformation. This developedinner zone of
greatertransmissivitycausesthe surroundingtest formationresponseto react
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. more rapidly. In the petroleumindustry,wells with inner zones of enhanced
permeabilityare referredto as havinga negativeskin effect. As indicated
by Earlougher(1977),the effectivewell radius,r.W, for wells exhibiting
negativeskins is greaterthan the observedor caIEulatedwell radius,rW.

To estimatethe "enhanced"effectivewell radius,reew,at well 4T, an
analysistechniquepresentedin Bouwer (1989)was _dapted. When double
straight-lineconditionsare exhibitedduring slug testing,Bouwer (1989)
statesthat the observedinitialstressvalue (Yt)shouldnot be used in the
analysis,but ratherthe projectedinitialstressvalue (yo)as shown in
Figure4. The projectedyq stressvalue is what is actuallyimposedon the
test formation(i.e.,outsldethe innerdevelopedzone of enhancedpermea-
bility). The projectedYo value of 0.0475m (0.156ft) from Figur_3 and
known slug test stressvolume (i.e.,sluggingrod volume= 0.027 m°) can then
be used in the followingre-arrangementof the volumeequationfor a cylinder
to providean "enhanced"effectivewell radiusestimate.

r,e.= [Vtl(_yo)]_ (4)

Based on this procedure,an reW estimateof 0.427 m (1.4 ft) was
obtained. This estimatefor the "e_anced" effectivewell radiuswas used in
the re-analysisof the constant-ratepumpingtest (i.e.,completeunconfined
aquifertype-curveanalysis)and slug interferencetest.

Figure 5 shows the final resultof matchingthe observeddrawdown and
drawdownderivativewith a completeunconfinedaquifertype curve and deriva-
tive plot. As indicated,a closematch w_s obtainedfor the'combineddrawdown
and drawdownderivativeplot. Resultsfrom the completedunconfinedaquifer
curve analysis indicatedthe followinghydraulicparameterestimates:
transmissivity= 254 mZ/d (2,730ft2/d),specificyield = 0.025, storativity=
0.001, and verticalanisotropy- 0.10. These resultsare very similarto
resultsobtainedwith the Type B curve analysisand to those previously
reportedby Swanson (1992). It shouldbe noted,however,that the estimate
for storativityis consideredto be very qualitative,primarilybecauseof the
lack of early-timedata (i.e.,the first 25 seconds)and the lack of sensi-
tivityfor small drawdownmeasurements(notethe "stair-stepped"patternfor
drawdowns<0.015 m).

3.0 SLUG INTERFERENCETEST RE-ANALYSIS

As noted in Section1.0,the originalslug interferencetest analysis
was based on the analysisprocedurepresentedin Novakowski(1990),which is
dependenton fully penetratingwells within isotropicconfinedaquifer
conditions. Subsequentto this analysis,analyticalmethodshave been
developed,which providethe opportunityof extendingslug interference
analysisto a varietyof test conditionsincludingunconfinedaquifers,
partiallypenetratingwells, anisotropicconditions,and wellborestorage
effects. The analysisextensionis based on analyticaldiscussionspresented
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i" Figure4. Schematicof Slug Test DoubleStraight-LineEffect
(adaptedfrom Bouwer1989).
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• Figure5. CombinedDrawdownand DrawdownDerivative,CompleteUnconfined
AquiferType-CurveAnalysisfor Well 4A.
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' in Novakowski(1989),Peres (1989),and Peres et al. (1989),which demonstrate
that slug tests can be representedas a specializedform of constant-rate
pumpingtests. As noted in Peres (19B9),the slug test wellboresolutioncan
be "... obtaineddirectlyfrom the time derivativeof the constantrate
wellborestoragesolution... (andthat this r_lationship)is also valid for
any reservoir/wellsystemand holds at any positionwithin the reservoir."

A detaileddescriptionof the proceduresfor slug test conversionis not
presentedhere. The reader shouldconsultthe aforementionedreferencesfor
analyticaljustificationof the slug test conversionmethod. Brieflystated,
however,slug test data were convertedto equivalenthead (pumpingtest)
drawdowndata by integratingthe observedslug test head data over the
observedtest time, as indicatedin Peres et al. (1989). Multiplicationof
the observedslug test head data by the observedtest time yieldsthe
logarithmicderivativeof the equivalenthead chan£efor a constant-rate
pumpingtest.

Figure 6 shows a comparisonof the drawdownand drawdownderivative
responseobservedat well 4A duringthe constant-ratepumpingtest with the
convertedequivalenthead and headderivativeresponseobtainedduringthe
slug interferencetest. As indicatedin Figure6, similarpatternshapes are
exhibited. To equatethe two test responses,however,the stresslevels for
the two tests need to be normalized.

As noted in Novakowski(1989)and Peres et al. (1989),the instantaneous
.... dischargerate, Q_, (gal/min),imposedby a slug test can be calculated

directl_by the d3_splacementvolume,Vt. For a displacementvolumeof
0.027 m (0.96 ft ), a Qivalue of 27.2 L/rain(7.]8gal/min)is indicated. To
normalizethe slug test derivedresultsto the drawdownobservedduring the
constant-ratepumpingtest, the equivalentheaddrawdowndata were multiplied
by a factor of 3.41, which representsthe ratioof the two dischargerates
(i.e.,92.7 L/min/27.2L/min). As indicatedby the normalizedequivalenthead
response,a close correspondencebetweenthe pumpingtest drawdownand
equivalenthead/slugtest resultsis indicated. It should also be noted that
the time period of slightdrawdowndeparture(i.e.,after =7 min) representsa
time period duringthe test when the slug interferenceresponsehad decayedto
a value of 0.0006m (0.002ft) or less. No great significance,therefore,
shouldbe placed on this slightdeviation.

3.1 TYPE-CURVEANALYSIS

For generatingpredictedslug interferenceunconfinedaquifertype
curves for the given well sitetest conditions,predictedpumpingtest draw-
down curves were first generatedusingthe WTAQI program,using given test
site conditions(e.g.,ro, Q, re,)and selectedhydraulicparametervalues
(e.g.,T, S, Sy, KD). Effectsof wellborestoragewere accountedfor using
the programdescribedin Section2.3,which is based on the Fenske (1977)
method. Drawdownderivativeswere calculatedusing the DERIV program
presentedin Spane and Wurstner(1993). Slug interferenceresponseswere then
generatedby dividingthe calculatedpumpingtest derivativeby the test time.
The well 4A test responsewas analyzedby matchingthe generatedslug inter-
ferencetype curvesto the observedslug interferencedata. The type-curve
analysisprocedurecontinuediterativelyby varyingthe value for input

parametersT, S, Sy, and Ko until a visuallyacceptablematch was obtained.

11
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• Figure6. Comparisonof PumpingTest Drawdownand DrawdownDerivativesand
EquivalentHead and Head DerivativeSlug Interference

Test Responsefor Well 4A.
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" Figure 7 shows the resultingbest-fitunconfinedaquifertype curve
match. Emphasisin the analysiswas primarilyplacedon matchingthe observed
responsein the centralportion (i.e.,the "hump")of the slug interference
response. Less emphasiswas placedon matchinglate-time(i.e.,_7 min),
becauseof the extremelysmall (i.e.,(0.0006m) and somewhaterraticnature
of the observedmeasurements. As indicatedin Figure7, a close match was
obtainedfor most of the observedslug interferenc_response. Results_f the
analysisindicateestimatesfor transmissivityand storativityof 242 m_/d
(2,600ft2/d)and 0.0005,respectively.A more qualitativeestimatefor
verticalanisotropy(K_)of 0.14 and for specificyield of 0.028 is also
suggested. These resultscomparefavorablywith resultsobtainedfrom the
unconfinedaquifertype-curv_analysespresentedin Sections2.2 and 2.3.

302 SENSITIVITY ANALYSIS

Slug interferencetest responseis a functionof the appliedstress,
test well/aquiferrelationships(i.e.,well diameter,radialdistance,aquifer
thickness,well penetrationcharacteristics),and test formationhydraulic
properties(i.e.,T, S, S, and Ko). If it is assumedthat the appliedstress
and test well/aquiferrelationshipsare known for the test, an infinitenumber
of predictiveresponseshapes are still possible. The numberof predictive
responsescan be greatlyreduced,however,if expected(common)bounds can be
appliedfor some of the formationhydraulicproperties. Limitsused for slug

interferencetype curves generatedfor the _nalysisof thew_ll 4A test
responseincludedSx = 0.005 to 0.4, S = 10TM to 10"I,KD = uu_. to 1.0, and
T = 101to 104m2/d (102to I0s ft2/d).

To examinethe sensitivityof the predictedslug interferenceresponse
to varioushydraulicpropertycombinations,individualtype curves were
generatedby systematicallyvaryingselectedparameterestimates. Figures8
through12 show the resultsof the sensitivityanalysis. As expected,
variationin the selectedhydraulicpropertyvaluescausessignificantchanges
in theshape and amplitudeof the predictedslug interferenceresponse• The
followinggeneralobservationsare providedthat summarizethe sensitivityof
the predictedslug interferenceresponseto hydraulicpropertyvariation
(i.e.,given well 4A test site conditions).

• Transmissivityis the principalparametercontrollingthe
transmission(i.e.,arrivaltime) of the interferenceresponse
(Figure8).

• Storativityexerts a significantinfluenceon the amplitude
and shapeof the initialslug interference"hump"(Figures9
and 10).

• Wellborestorageeffectsdampen and delay transmissionof the
initialslug interferenceresponseobserved(Figure10).

13
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Figure8. Sensitivityof PredictedSlug InterferenceResponsefor Well 4A to

VaryingTransmissivity(S = 0.0005,S/Sy= 0.018, K0 = 0.14).
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Figure9. Sensitivityof PredictedSlu._InterferenceRespon for Well 4A to
VaryingStorativity(T= 242 m/d, S/Sy= 0.018,K_s=e0.14)

(wellborestorageeffectsare included).
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Figure10. Sensitivityof PredictedSlug _InterferenceResponse=forWell 4A to
WellboreStorageEffects(T = 242 m_/d,S/Sy= 0.018,Ko 0.14).
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Figure 11. Sensitivityof Predicted_SlugInterferenceResponsefor Well 4A to
Varying S/Sy ',T = 242 m_/d, S 0.0005, _ = 0.14).
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' Figure12. Sensitivii:yof PredictedSlug InterferenceResponsefor Well 4A to
VaryingKo (T - 242 m/d, S - 0.0005,S/Sv = 0.018).
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• The storativity/specificyield ratio affectsprimarilythe
' slope of the recessionallimb of the initialslug interference

"hump"response(Figure11).

• Verticalanisotropy,like storativity,exerts a significant
influenceon the amplitudeand shape of the initialslug
interferenceresponse(Figure12);however,the predominantregion
of influenceis the peak amplitudeand recessionallimb of the
interferenceresponse.

4.0 SUMMARY

A generalprocedureis outlinedfor generationof slug interferencetest
responseswithin anisotropic,unconfinedaquiferswith partiallypenetrating
well configurations. The procedureis based on conversionof available
unconfinedaquiferconstant-ratepumpingtest type curves,which have been
modifiedto accountfor the affectsof pumpingwell wellborestorage. Results
of sensitivityanalysesindicatedthat variationsin T, S, S., IC.exert sig-

e * • Y

nificantinfluence(in varylngdegrees)on the transmlsslon,amplitude,and
shape of the slug interferenceresponse.

A comparisonof hydraulicpropertyestimatesobtainedfrom the re-
analysisof the constant-ratepumpingand slug interferencetests (shownin
Table I) indicatesa close correspondenca.The close correspondencein
hydraulicpropertyestimatessuggeststeat slug interferencetests can provide
similarcharacterizationresults,under favorabletest conditions.

Table I. Com)arisonof HydraulicTest AnalysisResultsfor Well 4A.
- _ ................

Re-analysisresults Previousanalysisresultsa
,,,, ,,,

Test analysis T T
mZld S Sy Ko mZld S Sy Ko

,,

Constant-rate
pumpingtest

Type B curve 254 NA 0.025 0.15 NA NA NA NA
analysis

Complete 254 0.001 0.025 0.10 269 0.0045 0.016 0.11
unconfined
aquifercurve
analysis

, ,,,,, ,

"Slug inter- 242 0.0005 0.028 0.14 763 NA 0.012 NA
ferencetestb

,,,,

aPreviousanalysisreportedin Swanson(1992).
bpreviousanalysisbased on the fully penetratingconfinedaquifer

solutionmethod presentedin Novakowski(1990);re-analysisbased on the
partialpenetrationunconfinedaquifersolutionmethod presentedin this
document.

NA = not applicable.
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