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A BAYESIAN APPROACH TO CONTAMINANT PLUME DELINEATION
R. L. Johnson

Environmental Assessment
and Information Sciences Division
Argonne National Laboratory
Argonne, Illinois

ABSTRACT

Fundamental to accurate modeling of groundwater contaminant transport is an
understanding of the initial extent of contamination. The initial location of
contamination must typically be inferred from relatively little "hard" sampling data,
and related "soft" information. A combination of Bayesian analysis and spatial
statistics is used to generate initial estimates of contamination based both on "soft"
information (i.e., prior modeling results, past experience, etc.) and "hard" data (i.e.,
sampling results). A Beta distribution is used to represent the probability that
contamination is present for at any grid node. For every node, prior Beta probability
density functions are revised into posterior distributions as additionel data become
available. The result is a node by node probabilistic representation of plume extent
that can be updated as new information is generated, that indicates where additional
sampling would have the greatest impact on the uncertainty associated with plume
extent, and that can serve as the basis for Monte Carlo analysis of contaminant
transport. This approach is demonstrated with information from a subsurface
chromium plume beneath the chemical waste landfill at Sandia National Laboratory,
Albuquerque, New Mexico.

INTRODUCTION

Uncertainty is introduced into numerical transport modeling at a variety of
levels. Model selection, parameter identification, boundary and initial condition
specification—--all contribute to the overall level of uncertainty attached to the final
modeling results. This paper specifically addresses one source of uncertainty, that
associated with the specification of initial contaminant extent, and shows how a
combination of Bayesian analysis and spatial statistics can be used to quantify the
initial level of uncertainty associated with contaminant extent, and identify sampling
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locations that would have the greatest impact in reducing that uncertainty. The
methodology developed provides a node by node probabilistic representation of

plume extent that can serve as the basis for Monte Carlo analysis of contaminant
transport.

METHODOLOGY

Contamination events generally possess two key characteristics. First, they are
spatial processes that are dominated statistically by spatial correlation structures.
This simply means that the results from one sampling location will look very similar
to results from samples taken close by, but will have little connection to samples
separated by greater distances. Second, there typically exists substantial "soft"
information regarding probable plume extent, even if little hard sample data is
available. This information might be from past experience with similar sites, from
historical records documenting the release size, from non-intrusive geophysical
surveys, or from preliminary modeling results. Such "soft" information is often just
as important in defining the initial state of contamination as hard sample data.

The problem is quantitatively integrating "hard" sample data with soft
information in a manner that is consistent, that preserves hard sampling data, and
that accounts for spatial correlation of hard sampling results. Suppose for the region
of interest one defines a three-dimensional nodal grid, and at each node assigns a
probability density function to the probability n that contamination exists at that
node. For various reasons that will become clear, a good choice for this probability
density function would be a two parameter Beta distribution, Be(ct, B):

Be(a,p) = =® '(1-m)P! (©sm<1;a,p>0) (1)

Beta distributions range between 0 and 1, and can assume a variety of shapes
depending on the choice of o and . Figure 1 shows three shapes corresponding to

three different pairs of parameters. According to Lee, (1989), Beta distributions have
as mean:

- (2)
RTEY
and variance:
Var(r) = of 3)
(x+PB)(a+p+1)

A Bayesian approach differs from classical statistics by assuming that
parameters (such as the presence of contamination at a node) are unknown initially,
but have some known probability distribution called the prior probability density



Figure 1. Examples of Beta Distributions

function (pdf). As additional information becomes available regarding the actual
values of parameters, Bayesian analysis provides a quantitative means for merging
the new information with the prior pdf to produce what is known as the posterior
pdf via Bayes rule:

P(X|Y) = PCOP(Y|X) 4)

This states that the probability of X given Y is proportional to the product of the
probability of X and the probability of Y given X. In (4), P(X) functions as the prior
pdf, while P(X1Y) is the posterior pdf.

From a Bayesian perspective, Beta distributions are conjugate priors in the
context of Bernoulli trials and the binomial distribution (Lee, 1989). Binomial
distributions provide the probability of observing a given number of successes within
a specified number of trials. Conjugate priors are priors that retain their same
underlying pdf after Bayesian updating. In the case of a binomial trial where X
successes were obtained in N trials, a prior for m of the form Be(a, B) would become
Be(at + X, B + N - X). N here functions as the total additional information supplied to
the prior. As N grows large, E(n) approaches the classical maximum likelihood
estimator for m, X/N, and Var(rn) is steadily reduced.

When one considers only the presence or absence of contamination,
environmental sampling resembles a binomial trial---N number of samples taken, of
which a certain fraction actually encounter contamination. There are two main




differences, however, between Bayesian analysis as derived for binomial trials and
Bayesian analysis used for updating nodal grid pdfs. The first is that for a nodal
grid, the probability of contamination at a given node becomes either zero or one
once that point has been sampled. The second is that environmental samples are not
independent. For samples that are spatially close, one must assume that some spatial
autocorrelation exists. For a given node with prior pdf Be(a,, ;) and a set of sample
locations where hard information exists regarding the presence or absence of
contamination, the issue is how to update the nodal prior pdf in a way that is
consistent with the derivation of Beta distributions as conjugate priors for binomial
trials. The approach taken in this paper employs indicator kriging. Indicator kriging
as described by Journel (1983) provides a non-parametric estimate of the probability
of contamination at a location x, given a set of sampled points with binary outcomes-
--zero if clean, one if contaminated. Indicator kriging assigns an "optimal" set of
weights to sampled data to construct a linearly interpolated value:

N
Z(xp) = 3, wZ(x) (5)
i=1

where Z(x,) is the interpolated estimate at x,, w; are the kriging weights used, and
Z(x,) are the observed indicator values at locations x, through xy.

These weights are "optimal" in the sense that they provide unbiased linear
interpolations with minimum interpolation error. Ordinary indicator kriging derives
these optimal weights via a set of linear equations:

N
?E;Ciiwi t Wha T Djo for j=1,..N (6)

Ewi =1 (7)

where C; is the covariance between points x; and x; the w are the kriging weights,
and D, is the covariance between sampled point x; and the point where interpolation
is taking place, X,.

Indicator kriging has several advantages over ordinary kriging. Indicator
kriging typically relies on a more robust estimated variogram than ordinary kriging,
partly due to the fact that it is immune to outlying sample values. Indicator kriging
can be applied to data that are only qualitative, such as might be generated by field
screening sampling technologies. Finally, indicator kriging makes no assumptions
about the distribution of contamination, or the global stationarity of the
contamination event.

To update a prior Beta distribution at location X, that has not been sampled
with information from neighboring sampled locations requires estimates of N, the



total amount of information available at x,, and X', the portion of N' that represents
contaminated "hits". One way to measure N’ is to use the estimation error
providedby indicator kriging:

N
Var g, = Coo — QWD + W) (8)

i=1

Here n is the average of the x; involved in the interpolation. Var,,,, the estimation
error, varies between 0, when the value at x, is known with certainty, up to 2*C,y,
which implies that the sampled points provide no information at x,, N" can be
related to Var gy, by:

2C,,
Va’aﬁm

N = = (9)

and X simply becomes Z(x,)*N. Note that N" and X' do not depend on the actual
values of Var,,,, and C,, but rather on their relative sizes.

Figure 2 shows how one builds and updates a conceptual image of
contaminant location using this technique. The first step is to capture existing soft
data regarding contaminant location in the initial choices for o and . The
parameters o and B can be chosen initially for each node so that for every node, E(n)
matches one’s estimate of the likelihood of contamination at that node, and Var(n)
reflects one’s confidence in that estimate. Higher levels of confidence require larger o
and B. In the unfortunate case where no soft data exists, one can begin by assuming
"non-informative priors” for each grid node. Examples include Be(1, 1), which is
uniform on the interval [0, 1] with mean 0.5, or Be(0, 0), which also has mean 0.5, but
concentrates its density near 0 and 1.

Updating the nodal grid with hard sampling data requires knowledge of the
covariance function or variogram for the hard data. Because the derivations of both
X" and N are independent of Cy,, the two main determinants of the variogram are its
functional form, and its range. If sufficient hard data exist, a variogram can be
estimated directly from the data. If hard data are negligible, a good rule of thumb is
to select the variogram’s range equal to the expected width of contamination. It is
possible to select anisotropic variograms that reflect a contaminant plume’s spatial
orientation or preferential flow directions. The variogram itself can be treated in a
Bayesian fashion, following a process similar to that described by Massman and
Freeze (1989).

Evaluating the need for additional sampling depends, of course, on the relative
impact additional sampling information would have on overall modeling uncertainty.
One simple measure is the number of nodal points whose expected probability of
contamination falls above or below specified certainty levels. Since each node has
assigned a probability density function corresponding to the probability of
contamination being present, synthetic contaminant plumes can be constructed by
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Figure 2. Logic Flow Diagram

Monte Carlo sampling from each pdf at each node. Alternatively, synthetic plumes
can be constructed simply by selecting all nodal points whose expected probability of
contamination is above a specified certainty level.

EXAMPLE

The U.S. Department of Energy (DOE), through its Office of Technology
Development (OTD), supports the development and demonstration of emerging
technologies for environmental assessment and remediation. One program, the
Mixed Waste Landfill Integrated Demonstration (MWLID), demonstrates in-situ
characterization technologies for landfills in arid environments that contain complex
mixtures of metal, organic and radioactive wastes. In 1992, the MWLID focused its
attention on an unlined chromic acid pit within Sandia National Laboratory’s
Chemical Waste Landfill. Because of a large but unknown amount of plating solution
that was disposed of into the unlined chromic acid pit, a chromium plure now exists
within the unsaturated zone beneath the pit. Past studies had indicated minimal
sorption of chromium in the local soils, meaning that it moved freely with soil water.
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Figure 3. Unlined Chromic Acid Pit

Of primary concern is the travel time to the water table for this plume given base
conditions, and various remediation alternatives. The current plume extent is crucial
to determining plume travel times.

Figure 3 focuses on the unlined chromic acid pit, displaying the locations of
various soil bores that have been completed to characterize the extent of
contamination. These soil bores ranged between 20 and 36 meters deep, with
samples taken at regular intervals. A regular grid was superimposed on the site
consisting of 28,830 nodes---31 in the east-west direction, 31 in the north-south
direction, and 30 deep, with a 1.2 meter separation between nodes. The demarcation
in Figure 3 shows the lateral extent of the grid. Based on data from borings
completed in the past decade, prior pdfs were assigned to each node. Beta
distribution parameters o and B were set on the borders so that the probability of
contamination there was unlikely, and uniformly to o = B = 0 throughout the
remainder of the nodal grid, for a probability of contamination equal to 0.5. The
nodal grid was then updated first with 1987 sampling data from seven bores lying on
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Figure 4. Nodal Classification as a Function of Sampling Program

an east-west transect of the pit, then with data from the two TEVES bores, and finally
with data from the three UCAP bores. The variogram used for updating was
determined from an analysis of the 1987 sampling data.

At each step of this process, the number of nodes with probabilities above and
below specified certainty levels was determined. Figure 4 shows the impact each
sampling program had on the classification of nodal points at the 60% certainty level.
Nodes with a probability of contamination between 0.4 and 0.6 were classified as
uncertain. Figure 5 shows the percent of nodal points with probability of
contamination greater than or equal to different probability values based on sampling
data from all three sampling programs. As is obvious from Figure 5, the certainty
level selected for determining initial contaminant conditions has a strong bearing in
this instance on the presumed initial extent of contamination.

CONCLUSIONS

For many contaminated sites, soft information about the extent of
contamination is often in greater abundance than hard sample data. This soft
information can include historical records of the contamination event, experience with
other similar sites, preliminary modeling results, etc. Soft data can be more
important than hard sample data when delineating the potential boundaries of
plumes. Using a combined Bayesian/geostatistical approach, the proposed
methodology provides a means of quantitatively merging soft information regarding
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Figure 5. Nodal Classification as a Function of Certainty Level

contaminant location with hard sample data. The result is a nodal grid containing
node by node pdf’s that represent the probability of contamination at each node, and
that can be further updated as additional hard sample data becomes available. This
nodal grid is useful for determining where additional sampling would have the
greatest impact on the uncertainty associated with plume extent, and can serve as the

basis for Monte Carlo analysis of contaminant transport.
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