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Abstract

A new approach to calculating the properties of large systems within the local density approximation (LDA)
that offers the promise of scalability on the massively parallel supercomputers is outlined. The electronic
structure problem is formulated in real space using multiple scattering theory. The standard LDA algorithm
is divided into two parts. Firstly, finding the self-consistent field {SCF) electron density, Secondly, calculating
the energy corresponding to the SCF density. We chow. at least for metals and alloys, that the former problem
is easily solved using real space methods. For the second we take advantage of the variational properties of
a generalized Harris-Foulkes free energy functional, a new conduction band Fermi function, and a fictitious
finite electron temperature that again allow us to use real-space methods. Using a compute-node = atom
aquivalence the new method is naturally highly parallel and leads to O(N) scaling where N is the number of
atoms making up the system.. We show scaling data gathered on the Intel XP/S 35 Paragon for systems up
to 512-atoms/simulation cell. To demonstrate that we can achieve metallurgical-precision, we apply the new
method to the calculation the energies of disordered Cuo.sZno.s alloys using a large random sample.

INTRODUCTION

Understanding the metallurgical properties of alloys at the quantum mechanical level has been a long sought
after goal of condensed matter physics (Hume-Rothery 1969). The underlying assumption being that such a
understanding is not only intellectually satisfying but will also aid the development of new or improved materials.
In recent years significant progress towards this goal has been made, particularly in the area of understanding
the electronic driving mechanisms that underlay alloy phase stability (Stocks et al. 1994). These advances have
been built on three major pillars. Firstly, the local density approximation (LDA) to density functional theory
provides a basis for treating the energetics of condensed many-electron systems of sufficient relative precision to
answer questions of metallurgical interest. Secondly, significant algorithmic developments have made problem
areas once thought to be beyond the reach of LDA methods matters of routine (Stocks et al. 1994). Thirdly,
the vast increase in computational power afforded by the 1980’s generation of vector supercomputers not only
allowed more complex calculations but also contributed to a constructive interplay of algorithmic and theoretica!
developments with available computational power.

Despite these major advances the surface of metallurgical problems has hardly been scratched. There are
important classes of problems, involving interactions between large numbers of atoms, that are far beyond current
methods and computational technology. The general area of the mechanical behavior of alloys, which involves
such macroscopic defects as dislocations and grain boundaries, being one such area that is of particular importance
to the design of new materials. Given the availability of a new generation of massively parallel supercomputers
(MPS) it seems opportune to investigate their potential for allowing us to extend LDA methods to this regime.
Applying LDA methods to basic simulation regions or unit cells that contain numbers of atoms, N, in the range of
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100’s-1000’s is non-trivial; requiring that we address the issue of developing truly scalable algorithms [algorithms
for which the computational effort grows linearly with the system size (O{N )-algorithms)].

The central problem in applying LDA methods to large systems involves a O(N3) divergence (the so called N3-
problem) in the amount of work associated with the linear algebra operations of inverting (in multiple scattering
theory methods) or diagonalizing (in conventional basis set methods) a matrix whose size is proportional to N.
The poor scaling of conventional LDA electronic structure methods generally limits them to N < 50 (typically
N < 10). In addition to the N3-problem, the straightforward adaptation of conventional methods to MPS by
parallelization over reciprocal-space E—points actually exhibits inverse scaling. This is because the number of
E—points required to obtain good convergence of Brillouin integrations decreases with increasing system size.

The exception to the above general remarks about system size is the, pseudo-potential based, Car-Parrineilo
method (Car and Parrinello 1985). For simple systems, e.g. Si and Al, and moderate system sizes, N ~ 100’s
the scaling is NlogN (Singh et al. 1992) and is limited by a fast Fourier transform required to Judiciously switch
between real and reciprocal space. However, as remarked above, the scaling reverts to N3 for larger N due to an
orthogonalization step. In addition, for systems containing elements for which the pseudo-potential is not truly
weak, e.g. transition metal elements. the number of atoms that can be treated is much reduced because of the
need to use more plane waves/atom.

In the remainder of this paper, we will briefly describe a real space multiple scattering theory approach to
large systems that is specifically designed for application to massively parallel computer architectures such as the
Intel Paragon (Nicholson et al. 1994). We call the new approach the Large System Multiple Scattering (LSMS)
method. To date, we have demonstrated O(N) scaling on system sizes that can be run on the available machines
and project continued O(N) scaling for systems containing thousands of atoms.

OUTLINE OF THE LSMS METHOD

For the purposes of discussion of the LSMS method it is useful to divide the LDA-algorithm (Kohn and Sham 1965)
for calculating the total energy of a system into two parts. Firstly, the solution of the Euler-Lagrange equations
to obtain the self-consistent electron density and potential corresponding to a given set of atomic positions.
Secondly, the calculation of the total energy (and forces on the atoms) corresponding to that self-consistent-field
(SCF) electron density. Conventionally, the same electronic structure method is used in to solve the Schrodinger
equation in both of these stages. However, in recent years, it has become clear that, by taking advantage of the
stationary properties of modified energy functionals of the Harris-Foulkes type (Harris 1985, Foulkes and Haydock
1989), it is possible to obtain accurate energies from approximate electron densities, provided that the kinetic
energy is evaluated accurately.

At the heart of the LSMS method is the observation that we can use spatially local real space multiple
scattering, methods to obtain a solution of the SCF-problem. This approximation yields an approximate electron
density of sufficient quality that when used in a Harr's-Foulkes energy functional yields an essentially exact energy.
In addition, by using an extended finite temperature free energy functional, a newly developed conduction band
Fermi function, and by performing our calculations at a fictitious finite electron temperature we are able also to
obtain accurate total energies using entirely real space methods.

Self-consistency

In the SCF-part of the LSMS method the electron density at the central site of a cluster of scatterers is used as a
approximation to the true electron density at that site. That is to say, for the purpose of solving the Schrodinger
equation, we replace all of the atoms in the crystal, except those within a few neighboring shells [we refer to this as
the local interaction zone (LIZ)], by a constant background potential (in the case of the muffin-tin approximation
by the muffin-tin zero, in a full potential calculation a suitable average over the boundary). In order to obtain
an approximation to the local electron density on each site in the crystal, we consider every atom in the solid
to be at the center of its own local cluster. We use muitiple scattering theory to calculate the single particle
Green function and hence the electron density on that site. We then reconstruct the potential throughout space



Ly solving Poisson’'s equation tor a crvstal electron density made up ol a sum of the single site densities and use
110 a mini setf-consistency loop.

By uulizing the above device. the electronic structure problem has been reuuced to that of calculating the
~lectron density on the central atom of a finite ciuster or sites. I'his simpie procedure 1s particuiarly well suited to
mapping onto a parallel computing paradigm by associating each atomn in the system under consideration with a
node on a parallel machine tfor suificiently powertul nodes more than one atom coutd be associated with a singie
nodei. This atom/node equivalence 1s illustrated schematically in fig. 1.
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Figure 1: Schematic of a parallel SCF algorithm: we envision a basic unit cell consisting of N-atoms labeled
1,...,N and about each atom, for example the i'# we define a local interaction zone consisting of M-atoms

including itself, for example atoms labeled 1, j, k,[,m.

Given the above breakdown of the SCF problem, the central computational difficulty now becomes calculating
the electron density on the central site of an M-site cluster. For this, muitiple scattering theory is a particularly
useful tool. If we restrict ourselves to muffin-tin potentials, although this is not necessary, the electron density
phy(F) on the central (i**) site of the M-atom cluster is given by (Faulkner and Stocks 1980)

-2 Rad . . L i - ,
() = =3 / def(e = u) | ) [Z4(F O)ThL 21 (Fi o) = 23 (Fi )L (Fi)ber] | (1)
- LL!

where 3 denotes the imaginary part, f(¢ — ) is the Fermi-Dirac distribution function, u is the chemical potential,
1(F;¢€) and J(T;€) are regular and irregular solutions of the Schrodinger equation for a single scatterer, and,
T8, is the scattering path matrix for the i*A-site (Faulkner and Stocks 1980). The scattering path matrix is

found from
=l -y (2)

Equation 2 is a matrix equation both in site index i, which labels the position vectors R; of the atoms in the
cluster, and angular momentum index L. The t-matrix ¢t and real space structure constant matrix g have elements
trri(€)dij and gLL:(ﬁ,,' - li,-) respectively.

Clearly this real space method is highly scalable on MPS’s since each node can be assigned the work involved
in setting up and inverting the rhs of eq. 2 for the atom to which it is assigned. Keeping angular momenta up to
Imaz = 3 the dimension of the matrixis (Imaz +1)*M . Thus, calculation of the electron density at each site requifes



“hat each node invert a matrix of dimensiont {dmaz — 1)* M. If M & .\ this is clearly advantaveous compared to
-onventionai reciprocal space methods since these involve the inversion of a matrix of dimension ({1, + 1)2N at
1 sufficient number of k-pomns to converge necessary Brillouin zone integrations. This advantage 1s. of course.
provided that convergence of pyr(F) = 5, pi(F) to the true SCF density py./(F) = po(T) is sutficiently rapid.
Ifow the LSMS algorithm maps onto a parallel machine 1s shown schematuically in tig. 2. Counsider the 5-

Figure 2: Schematic of the LSMS algorithm.

atom(node) of the N-atoms(nodes) that comprise the total (periodic) system and assume that the LIZ about each
atom is confined to its nearest neighbor (NN) shell (atoms 7, k,l,m in the illustration) The LS\/IS algorithm
proceeds as follows. An initial guess of the potential v} (F), and electron density pi,(F), for the i*# site, and the
positions of all atoms in the system. are loaded onto the #*#-node. The node determines which other nodes are
within its LIZ. It then calculates the t-matrix corresponding to its own potential. The 1*”-node then requests and
receives the t-matrices of other atoms/nodes within its interaction zone. in addition it sends its own t-matrix to
other nodes for which it is one of the atoms in the remote nodes’ LIZ. The i**-node now has sufficient information
to set up and invert the real space KKR-matrix, eq. 2, for the atom centered on itseif, from which the local
electronic charge and charge density can be calculated by repeating this procedure for all the energies on the
energy integration contour required by eq. 1. The new p}, (F) can then be used in some appropriate mixing scheme
and a new v}, (F) constructed. Apart from the calculation of the Madelung potential, this is an entirely local
process. The calculation of the Madelung potential requires knowledge of the muitipole moments on the remote
sites which have to be interchanged amongst the nodes. The complete process can then be repeated until charge
self~consistency is obtained.

In order to check the convergence of this method we have performed test calculations on a number of systems
that are sufficiently small that they can also be treated by conventional methods, in this case the KKR method.
For fcc based metals ( e.g. Cu, Zn, Lyp-structure CuZn) we find a local interaction zone consisting of the first
shell of neighbors (13-atoms) sufficient to obtain energies that are accurate to 0.01 mRy provided that we use the
LSMS-potentials in a full-Brillouin zone integration calculation of the Harris-Foulkes energy (see below). For bce



based systems (e.g., Fe. Mo, B2-structure NiAl) two shells (15-atomst are required.

Total Energy

So far we have only described how to obtain high quality electron densities in a scalable manner. \s we have men-
tioned previously, calculation of the band structure contribution to the total energy requires that the Schrodinger
equation be solved to i much higher precision than that required for obtaining the electron density. Clearly,
this can be done using standard reciprocal space methods. However. this involves one last electronic structure
calculation that scales as 3. It is important that this be avoided.

To this end, we use a newly developed finite temperature Harris-Foulkes tree-energy functional ( Nicholson et
al. 1994)

Frlp] = / deef(e——n)n(e,v(pf))-/dev(p,f)+U(p)+En(pJ

—00
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where the effective potential appearing in this equation is the so called output potential obtained from
AT+ e

r(p,r) = )

(4)

This free energy functional has a number of appealing properties that can be effectively deployed in calculating
accurate total energies. In particular, Fy[p], defined by eqgs. 3 and 4, is stationary with respect to the variations in
the electron density p, effective potential v(p, T}, Fermi function f(e — ), chemical potential y, and temperature
T These stationarity properties open up the possibility of using the approximate, LSMS, electron density pp (F),
potential var(F) and chemical potential up as stand-ins for the fully SCF quantities without making a large error
in the energy. Equally important, however, is the fact that eq. 3 allows us to perform energy evaluations at
fictitious finite electron temperatures.

From the computational point of view, there are a number of advantages to performing the calculations at finite
temperature. Firstly, energy integrations to obtain the charge density and band-structure energy are reduced to
sums over the Matsubara-poles of the Fermi function, which can be made few in number by taking advantage of a
new conduction band Fermi function (Nicholson et al. 1994). This greatly reduces the number of matrix inversions
that are required to perform a total energy calculation. Secondly, since most of the Matsubara-poles are far off
in the complex energy plane, the real space muitiple scattering theory is more rapidly convergent, even for the
troublesome band structure energy (the first term on the rhs of eq. 3). In fact, the Matsubara-pole closest to
the real axis is approximately 7kpT off in the complex plane, which for electron temperatures of 2500K (4000K)
is already 50mRy (80mRy). Thirdly, a calculation at finite temperature provides the electron-hole entropy (last
term on the rhs of eq. 3) as well as the energy (sum of the remaining terms). This information combined with
the fact that the entropy is zero at T' = () allows accurate projection of the energy to T = 0.

Again, using simple systems as tests we have demonstrated that we are able to obtain total energies of
metallurgical precision. Typically, we use an interaction zone of about 55- (59)-atoms for fce- (bee)-structures
respectively. For Cu we found that we could use a fictitious electron temperature as high as 4000K and still
recover the ground state energy to an accuracy of better than 0.2mRy which is sufficient for many metallurgical
applications.

SCALABILITY

The above algorithms have been implemented in a massively parallel computer code. The code assigns each atom
in the system to a node of the MPS. Thus, we are able to treat as many atoms as we have nodes on the target



raraiiel macaine. For stmplicity. the current version of the code assumes periodic bounaarv conaitions. however.
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Figure 3: Scaling behavior of the LSMS algorithm showing the execution time per interation for a 10 iteration
run for the SCF step. The caiculation is for a large cell model of face centered cubic copper for a LIZ consisting
of 13-atoms. Solid line includes I/O time, dashed line excludes I/O time.

In the fig. 3, we show how the LSMS algorithm scales with system size. To demonstrate scalability, we use
face centered cubic (fcc) Cu because the SCF electron density and energy can be calculated by conventional
(KKR) methods. In the LSMS-code, we first represent a single fcc unit cube as four interpenetrating simple cubic
sub-lattices and use four nodes of the MPS. We then represent two unit cubes as eight interpenetrating simple
tetragonal lattices and distribute the calculation across eight nodes. This procedure is repeated until the node
limit of the machine in question is reached, which for the Intel Paragon XP/S-35 on which these calculations were
performed is 512. In fig. 3 the solid line shows the total execution time per SCF iteration for a 10 SCF iteration
run. The dashed line shows the time per SCF iteration alone, having subtracted out the time required to input
the initial guesses of p}(F) and v},(r) and to output the final converged p, () and vy (F).

I/0O apart, the LSMS algorithm exhibits essentially ideal O(N)-scaling. The time per SCF iteration per node
is almost independent of the system size. Since there is little node to node communication in the LSMS algorithm
and, at least in the SCF stage, the whole code and associated arrays fit into the available node memory, it is
not surprising that the code scales essentially linearly. The departure from ideal O(N )-scaling seen when the
I/O time is included resuits from the fact that the Parallel File System (PFS), where the input and output
data sets are stored, does not scale ideally. This is because, on the Paragon XP/S-35, PFS is served by only 16
[/O-nodes. Clearly, when all 512 compute nodes are trying either to read or write, all at the same time, PFS
becomes swamped.

When we use an interaction zone of 55-atorns to calculate the band structure energy the code has to page out
since the real space KKR matrix is sufficiently lorge that it no longer fits onto a node. This difficulty resuits from
the fact that the current XP/S-35 has oniy 16 megabytes of memory per node and the current operating system
kernel is very large (= 7-megabytes) resuiting in only 9-megabytes of memory being available for applications.
The resulting paging causes a reduction in the efficiency of the code, however, the total energy step still scales

well.



APPLICATIONS

\We have applied the LSMS-code to the direct calculation of the total energy ot a large 256-atom/uni cell model
of a random solid solution of Cunsinas. The sites of a 4 x 4 x 4 repeat of an underlying tcc lattice were
randomly occupied by 128 Cu and 128 Zn atoms. Calculation of the short range order parameter revealed that
the sample had a near ideally random distribution of sites within the 256-atom unit cell. The LSMS-calculation
was performed using I’ == 0A. LIZ's of both 13 and 55 atoms in the SCF step. and a LIZ of 55-atoms in total
energy step. As expected. the final results were found to be independent of the size of the LIZ in the SCF step.

A quantity of considerable interest is the heat of mixing, Emiz = Eatoy = ¢Ecu — {1 = ¢)Ey, where Eaitoy
is the energy of the random alloy, Ecy and Ezn are the energies of fcc Cu and Zn respectively and ¢ is the
concentration of Cu. We obtain a calculated value ot 4.5mRy/atom. this being close to the value calculated on
the basis of the KKR-CPA method (Johnson et al. 1990). This value is somewhat smaller than the 7.0mRy/atom
found on the basis of the most recent charge correlated (CC) KKR-CPA caiculations of Johnson and Pinski
(Johnson Pinski 1994) and a likely experimental value that is also in the range of 7TmRy/atom. Use of the muffin-
tin approximation in the present LSMS calculation and the atomic sphere approximation in the CC-KKR-CPA
calculations may account for this discrepancy. This aside, the discrepancy is somewhat puzzling in view of the fact
that the present calculation. by definition, includes precisely the charge correiations that the work of Johnson and
Pinski was supposed to be correcting for and that were presumed absent from the original mean field KKR-CPA
calculations.

In fig. 4, we show the calculated charges on Cu and on Zn sites obtained in the 55-atom run plotted as a
function of the number of unlike neighbors in the first neighbor shell. Clearly, in a random alloy individual

11.2 = v 12.0

g L X ] g F y
s : ¥ ] 8 ]
> s Cu sites i T - X Zn sites )
s | kK ] 2 | ]

Y L g 4 9 5
5 5 1
8 o 8 o ! l :
S - 1 8 ' ﬁ
= 1.1} i 4 S11.09F l )

> o 4 > s
- 3 . 1 - ' <
S i ! e - X ]
[, g x 1 e g r
% 2 § 1 (4 8 9
a a o s L
E o g 4 E o b

= i ] = |
pa [ ] = ! ]
11,0 bl AT 11.8 bt ; L — AJ;U._

0 2 4 6 8 10 12 0 2 4 6 8 10 12

Number of zinc neighbors Number of copper neighbors

Figure 4: Charges on individual Cu- (left frame) and Zn-sites (right frame) plotted as a function of the number
of unlike neighbors in the first neighbor shell taken from a 128-atom simulation of disordered Cuq sZng 5.

sites will have different numbers of like and unlike near-neighbors. In fig. 4 are shown the charges for each of
the 128-Cu and 128-Zn sites in the 256-site sample. Interestingly, the charges on individual sites are essentially
proportional to the number of unlike neighbors. Scatter about the direct proportionality, resuiting from the
different possible zrrangements of a given number of unlike and like neighbors, is clearly a secondary effect.
This proportionality was pointed out by Margi et al. (Magri et al. 1990) in criticizing the mean-field theory
SCF prescriptios conventionally used in the KKR-CPA method (Stocks et al. 1994) and underlies the improved
energies obtained in the CC-KKR-CPA. In fact, the behavior seen in fig. 4 is ailmost identical to that found by

hat}



Johnso.. and Pinski for the same alloy system.

CONCLUSIONS

We have outlined a new method for performing first principles LDA calculations on large metallic svstems. We
have demonstrated linear scaling on the Intel XP/S-35 massively parallel supercomputer. We believe this to be
the first LDA method for which true O(N) scaling has been attained. In its current manifestation. the LSMS code
is restricted to systems that can be reasonably treated using the muffin-tin approximation. However, the code
is currently being extended to treat general shape potentials and to allow calculation of the forces on individual
atoms. These capabilities will then allow a full relaxation of the internal degrees of freedom. greatly extending
the range of applicability of the method.
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