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Abstract

A new approachtocalculatingthepropertiesoflargesystemswithinthelocaldensityapproximation(LDA)
thatoffersthepromiseofscalabilltyon themassivelyparallelsupercomputersisoutlined.The electronic

structureproblemisformulatedinrealspaceusingmultiplescatteringtheory.The standardLDA algorithm
isdividedintotwoparts.Firstly,findingtheself-consistentfield{SCF)electrondensity,Secondly,calculating
the energy corresponding to the SCF density. We show, at least for metals and alloys, that the former problem
is easily solved using real space methods. For the second we take advantage of the variational properties of
a generalized Harris-Foulkes free energy functional, a new conduction band Fermi function, and a fictitious
finite electron temperature that again allow us to use real-space methods. Using a compute.node _ atom
%uivalence the new method is naturally highly parallel and leads to O(N) scaling where N is the number of
atoms making up the system.. We show scaling data gathered on the Intel XP/S 35 Paragon for systems up
to 512-atoms/simulation ceil. To demonstrate that we can achieve metallun3ical-precision, we apply the new
method to the calculation the energies of disordered Cu0.s Zn0.s alloys using a large random sample.

INTRODUCTION

Understandingthe metallurgicalpropertiesofalloysat the quantum mechanicallevelhas been a longsought

aftergoalofcondensedmatterphysics(Hume-Rothery 1969).The underlyingassumptionbeingthatsuch a

understandingisnotonlyintellectuallysatisfyingbut willalsoaidthedevelopmentofnew orimprovedmaterials.

Inrecentyearssignificantprogresstowardsthisgoalhas been made, particularlyinthe areaofunderstanding

theelectronicdrivingmechanisms thatunderlayalloyphasestability(Stocksetal.1994).These advanceshave

been builton threemajor pillars.Firstly,thelocaldensityapproximation(LDA) to densityfunctionaltheory

providesa basisfortreatingtheenergeticsofcondensedmany-electronsystemsofsufficientrelativeprecisionto

answerquestionsof metallurgicalinterest.Secondly,significantalgorithmicdevelopmentshave made problem

areasoncethoughtto be beyond the reachofLDA methods mattersofroutine(Stocksetal.1994).Thirdly,

thevastincreasein computationalpower affordedby the 1980'sgenerationofvectorsupercomputersnot only
allowedmore complexcalculationsbut alsocontributedtoaconstructiveinterplayofalgorithmicand theoretical

developmentswithavailablecomputationalpower.

Despitethesemajor advancesthesurfaceof metallurgicalproblemshas hardlybeen scratched.There are

importantclassesofproblems,involvinginteractionsbetweenlargenumbers ofatoms,thatarefarbeyond current

methods and computationaltechnology.The generalareaofthemechanicalbehaviorofalloys,which involves

suchmacroscopicdefectsasdislocationsand grainboundaries,beingonesuchareathatisofparticularimportance

tothedesignofnew materials.Given the availabilityofa new generationofmassivelyparallelsupercomputers

(MPS) itseems opportunetoinvestigatetheirpotentialforallowingus toextendLDA methods to thisregime.

ApplyingLDA methods tobasicsimulationregionsorunitcellsthatcontainnumbersofatoms,N, intherangeof
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, i00's-1000's is non-trivial; requiring that we address the issue of developing truly scalable algorithms [algorithms
for which the computational effort grows linearly with the system size (O(N)-algorithms)].

The central problem in applying LDA methods to large systems involves a O(N 3) divergence (the so called N 3-

problem) in the amount of work associated with the linear algebra operations of inverting (in multiple scattering
theory methods) or diagonalizing (in conventional basis set methods) a matrix whose size is proportional to N.

The poor scaling of conventional LDA electronic structure methods generally limits them to N < 50 (typically
N < 10). In addition to the N_-problem, the straightforward adaptation of conventional methods to MPS by

parallelization over reciprocal-space k-points actually exhibits inverse scaling. This is because the number of
k-points required to obtain good convergence of Brillouin integrations decreases with increasing system size.

The exception to the above general remarks about system size is the, pseudo-potential based, Car-Parrinello
method (Car and Parrinello 1985). For simple systems, e.g. Si and AI, and moderate system sizes, N ,,- 100's

the scaling is NlogN (Singh et al. 1992) and is limited by a fast Fourier transform required to judiciously switch
between real and reciprocal space. However, as remarked above, the scaling reverts to N 3 for larger N due to an
orthogonalization step. In addition, for systems containing elements for which the pseudo-potential is not truly
weak, e.g. transition metal elements, the number of atoms that can be treated is much reduced because of the
need to use more plane waves/atom.

In the remainder of this paper, we will briefly describe a real space multiple scattering theory approach to
large systems that is specifically designed for application to massively parallel computer architectures such as the

Intel Paragon (Nicholson et al, 1994). We call the new approach the Large System Multiple Scattering (LSMS)
method. To date, we have demonstrated O(N) scaling on system sizes that can be run on the available machines
and project continued O(N) scaling for systems containing thousands of atoms.

OUTLINE OF THE LSMS METHOD

For the purposes of discussion of the LSMS method it is useful to divide the LDA-algorithm (Kohn and Sham 1965)
for calculating the total energy of a system into two parts. Firstly, the solution of the Euler-Lagrange equations
to obtain the self-consistent electron density and potential corresponding to a given set of atomic positions.
Secondly, the calculation of the total energy (and forces on the atoms) corresponding to that self-consistent-field

(SCF) electron density. Conventionally, the same electronic structure method is used in to solve the SchrSdinger
equation in both of these stages. However, in recent years, it has become clear that, by taking advantage of the
stationary properties of modified energy functionals of the Harris-Fouikes type (Harris 1985, Foulkes and Haydock
1989), it is possible to obtain accurate energies from approximate electron densities, provided that the kinetic
energy is evaluated accurately.

At the heart of the LSMS method is the observation that we can use spatially local real space multiple
scattering methods to obtain a solution of the SCF-problem. This approximation yields an approximate electron
density of sufficient quality that when used in a Harr:s-Foulkes energy functional yields an essentially exact energy.
In addition, by using an extended finite temperature free energy functional, a newly developed conduction band
Fermi function, and by performing our calculations at a fictitious finite electron temperature we are able also to
obtain accurate total energies using entirely real space methods.

Self-consistency

In the SCF-pazt of the LSMS method the electron density at the central site of a cluster of scatterers is used as a

approximation to the true electron density at that site. That is to say, for the purpose of solving the SchrSdinget
equation, we replace all of the atoms in the crystal, except those within a few neighboring shells [we refer to this as
the local interaction zone (LIZ)], by a constant background potential (in the case of the muffin-tin approximation
by the muffin-tin zero, in a full potential calculation a suitable average over the boundary). In order to obtain
an approximation to the local electron density on each site in the crystal, we consider every atom in the solid

to be at the center of its own local cluster. We use multiple scattering theory to calculate the single particle
Green function and hence the electron density on that site. We then reconstruct the potential throughout space
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i_.in a mini self-consistency loop.

[Iv utilizin¢ the above device, lhe electronic slructure problem htus b_en reduced to ihat of calculating; the
,.lectrondensltyon the centrai atom of a tinite cluster of sites. [his simpie procedure is parucuiarly w_tlsuited to
_ll_pplnE onto a parallel computinE paradigm 0v mssociatin_ each atom in the system under consideration with a

iiode on a parallel machine l t'or sufficiently powerful nodes more than one atom could bo a.ssoclated with a sin_ie
node i. This atom/node equivalence is illustrated schematically in ti_. 1.
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Figure l: Schematic of a parallel SCE algorithm: we envision a basic unit cell consisting of N-atoms labeled
1..... ,V and about each atom, for example the i_h, we define a local interaction zone consisting of M-atoma
including itself, for example atoms labeled i, j, k, 1, m.

Given the above breakdown of the SCF problem, the central computational difficulty now becomes calculating
the electron density on the central site of an M-site cluster, For this, multiple scattering theory is a particularly
useful tool. If we restrict ourselves to muffin-tin potentials, although this is not necessary, the electron density
p_(IF) on the central (i t_) site of the M-atom cluster is given by (Faulkner and Stocks 1980)

where _ denotes the imaginary part, f(¢ - #) is the Fermi-Oirac distribution function, # is the chemical potential,

Z[;(_'; e) and d_,(f; e) are regular and irregular solutions of the SchrSdinger equation for a single scatterer, and,
ii

rEr., is the scattering path matrix for the ith-site (Faulkner and Stocks 1980). The scattering path matrix is
found from

(2)
Equation 2 is a matrix equation both in site index i, which labels the position vectors I_ of the atoms in the
cluster, and angular momentum index L. The t-matrix t and real space structure constant matrix g have elements

tLZ,,(_)6ii and gLL,(I_' - t%i) respectively.
Clearly this real space method is highly scalable on MPS's since each node can be assigned the work involved

in setting up and inverting the rhs of eq. 2 for the atom to which it is assigned. Keeping angular momenta up to
l,_a_ -- 3 the dimension of the matrix is (lma_ 4-1)2 M. Thus, calculation of the electron density at each site requires



•hat each node invert a matrtx of dimension (l,_a, -r [)uM. If ._.I << .V this is cieariv advanta_eotls compared to
.onvenLionai reciprocal space methods since these involve the inversion of a matrtx oi' dimension It,,_ax -r-1)",¥ at

t sutficient number of l_-points to converge necessary Brillouin zone integrations. This advantaue is. of course.

?rovided that, convergence of p,_,t(]_)= ___.,pill(r) to the true SCF density p,¢/(E) = p_otr) is sufficiently rapid.
I[ow the LSMS algorithm maps onto a parallel machine is shown schemaucatly in fig. :2. ('_)ns[der the i'.%
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Figure 2: Schematic of the LSMS algorithm.

atom(node) of the N-atoms(nodes) that comprise the total (periodic) system and assume that the LIZ about each

atom is confined to its nearest neighbor (NN) shell (atoms j, k, l, m in the illustration). The LSMS algorithm
proceeds as follows. An imtial guess of the potential v_(r0, and electron density p_4(r-'), for the z:h site, and the
positions of all atoms in the system, are loaded onto the i*h-node. The node determines which other nodes are

within its LIZ. It then calculates the t-matrix corresponding to its own potential. The i'h-node then requests and
receives the t-matrices of other atoms/nodes within its interaction zone. in addition it sends its own t-matrix to
other nodes for which it is one of the atoms in the remote nodes' LIZ. The i'h-node now has sufficient information
to set up and invert the real space KKR-matrix, eq. 2, for the atom centered on itself, from which the local

electronic charge and charge density can be calculated by repeating this procedure for all the energies on the
energy integration contour required by eq. 1. The new P_r(r-0 can then be used in some appropriate mixing scheme
and a new v_(r') constructed. Apart from the calculation of the Madelung potential, this is an entirely local
process. The calculation of the Madelung potential requires knowledge of the muitipole moments on the remote

sites which have to be interchanged amongst the nodes. The complete process can then be repeated until charge
self-consistency is obtained.

In order to check the convergence of this method we have performed test calculations on a number of systems
that are sufficiently small that they can also be treated by conventional methods, in this case the KKR method.

For fcc based metals ( e.g. Cu, Zn, L10-structure CuZn) we find a local interaction zone consisting of the first
shell of neighbors (13-atoms) sufficient to obtain energies that are accurate to 0.01 mlZy provided that we use the
LSMS-potentials in a fuU-Brillouin zone integration calculation of the Harris-Foulkes energy (see below). For bcc



b_ed systems (e.g., Fe, Mo. B2-structure NiAI/two shells (15-atoms_ are required.

Total Energy

So far we have only described how to obtain high quality electron densities in a scalable manner. :ks we have men-

t ioned previously, calculation of the band structure contribution to the total energy requires that the Schr6dinger
,equation be solved to it much higher precision than that required for obtaining the electron density. Clearly,
this can be done using standard reciprocal space methods, ttowever, this involves one last electronic structure
calculation that scales as N a. It is important that this be avoided.

To this end, we use a newly developed finite temperature Harns-Foulkes tree-energy functional (Nicholson et
al. 1994)

/: /FH[p] = deef(e - p)n(e, v(p,f)) - dfpv(p,f) + U(p) + Ere(p)
O0

/?+/*[iV - def(e - #)n(e, v(p, E))]
OO

//-kBT den(e,v(p,E))[f(e-t_)lnf(e-p)+(l- f(e-#))ln((l- f(e-#))] (3)
• O0

where the effective potential appearing in this equation is the so called output potential obtained from

,,_p,e)= --p(_) -, (4)

This free energy functional has a number of appealing properties that can be effectively deployed in calculating
accurate total energies. In particular, FH [p], defined by eqs. 3 and 4, is stationary with respect to the variations in

the electron density p, effective potential v(p, _), Fermi flmction f(e -/z), chemical potential #, and temperature

T. These stationarity properties open up the possibility of using the approximate, LSMS, electron density PM (r'),
potential vM(r") and chemical potential #M'as stand-ins for the fully SCF quantities without making a large error
in the energy. Equally important, however, is the fact that eq. 3 allows us to perform energy evaluations at
fictitious finite electron temperatures.

From the computational point of view, there are a number of advantages to performing the calculations at finite
temperature. Firstly, energy integrations to obtain the charge density and band-structure energy are reduced to
sums over the Matsubara-poles of the Fermi function, which can be made few in number by taking advantage of a
new conduction band Fermi function (Nicholson et al. 1994). This greatly reduces the number of matrix inversions

that are required to perform a total energy calculation. Secondly, since most of the Matsubara-poles are far off
in the complex energy plane, the real space multiple scattering theory is more rapidly convergent, even for the
troublesome band structure energy (the first term on the rhs of eq. 3). In fact, the Matsubara-pole closest to
the real axis is approximately rrkBT off in the complex plane, which for electron temperatures of 2500K (4000K)
is already 50mR.y (80toRy). Thirdly, a calculation at finite temperature provides the electron-hole entropy (last
term on the rhs of eq. 3) as well as the energy (sum of the remaining terms). This information combined with
the fact that the entropy is zero at T = 0 allows accurate projection of the energy to T = 0.

Again, using simple systems as tests we have demonstrated that we are able to obtain total energies of
metallurgical precision. Typically, we use an interaction zone of about 55- (59)-atoms for fcc- (bcc)-structures
respectively. For Cu we found that we could use a fictitious electron temperature as high as 4000K and still
recover the ground state energy to an accuracy of better than 0.2mRy which is sufficient for many metallurgical
applications.

SCALABILITY

The above algorithms have been implemented in a massively parallel computer code. The code assigns each atom

in the system to a node of the MPS. Thus, we are able to treat as many atoms as we have nodes on the target
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Figure 3: Scaling behavior of the LSMS algorithm showing the execution time per interation for a 10 iteration

run for the SCF step. The calculation is for a large ceil model of face centered cubic copper for a LIZ consisting
of 13-atoms. Solid line includes I/O time, dashed line excludes i/O time.

[n the fig. 3, we show how the LSMS algorithm scales with system size. To demonstrate scalability, we use
facecenteredcubic(fcc)Cu becausethe SCF electrondensityand energycan be calculatedby conventional

(KKR) methods.IntheLSMS-code,we firstrepresentasinglefccunitcube asfourinterpenetratingsimplecubic

sub-latticesand use fournodes ofthe MPS. We thenrepresenttwo unitcubes aseightinterpenetratingsimple
tetragonallatticesand distributethecalculationacrosseightnodes.Thisprocedureisrepeateduntilthe node

limitofthemachineinquestionisreached,whichfortheIntelParagonXP/S-35 on which thesecalculationswere

performedis512.Infig.3 thesolidlineshows thetotalexecutiontime perSCF iterationfora I0 SCF iteration

run.The dashedlineshows the timeperSCF iterationalone,havingsubtractedout the timerequiredtoinput
theinitialguessesofp_f(_ and vlw(_ and tooutputthefinalconvergedp_M(r-')and v_w(_.

[/O apart,theLSMS algorithmexhibitsessentiallyidealO(N)-scaling.The timeper SCF iterationpernode

isalmostindependentofthesystemsize.Sincethereislittlenodetonode communicationintheLSMS algorithm

_nd,at leastin the SCF stage,thewhole code and associatedarraysfitintothe availablenode memory, itis

not surprisingthatthe code scalesessentiallylinearly.The departurefrom idealO(N)-scalingseenwhen the

I/O timeisincludedresultsfrom the factthatthe ParallelFileSystem (PFS),where the inputand output

datasetsaxestored,doesnot scaleideally.Thisisbecause,on the Paragon XP/S-35, PFS isservedby only 16
I/O-nodes.Clearly,when all512 compute nodes aretryingeitherto reador write,allat the same time,PFS
becomesswamped.

When we usean interactionzoneof55-atozrmtocalculatetheband structureenergythecode hasto pageout

sincetherealspaceKKR matrixissufficientlyl_rgethatitno longerfitsontoa node.Thisdifficultyresultsfrom

thefactthatthe currentXP/S-35 hasonly16 megabytesofmemory per node and thecurrentoperatingsystem
kernelisverylaxge(_ 7-megabytes)resultinginonly9-megabytesof memory beingavailableforapplications.

The resultingpagingcausesa reductionintheefficiencyofthecode,however,thetotalenergystepstillscales
well.
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APPLICATIONSQ

\Vehaveappliedthe LSMS-code tothedirectcalculationoftheiota[energyot'alarge256-atorn/umtcellmodel

,)[ a random solid solution of Cun sZnn s. Fhe sites of a 4 x 4 × 4 repeat of an underlying fcc lattice were
randomly occupied by 1'28 Cu ana 128 Zn atoms. Calculation of the short range order parameter revealed thaL
the sample had a near ideally ranaom distribution of sites within the 256-awm unit cell. The LSMS-calculation

was performed using T -= 0K. LIZ's of both 13 and 55 atoms in the SCF step. and a LIZ of 55-atoms in total

energy step. As expected, the fina_ results were found to be independent of the size of the LIZ in the SCF step.

A quantity of considerable interest is the heat of mixing, E,_,z - E, noy - cEcu - ( l - ¢')Ez,_ where E,m,y
is the energy of the random alloy, £'cu and Ezn are the energies of fcc Cu and Zn respectively and c is the
concentration of Cu. We obtain a calculated vatue of 4.5mRy/atom. this being close to the value calculated on

the barns of the KKR-CPA me_hod (Johnson e_ al. 1990). This value is somewhat smMler than the 7.0ml_y/atom
found on the basis of the most recent charge correlated (CC) KKK-CPA calculations of Johnson and Pinski
(Johnson Pinski 1994) and a likely experimental value that is also in the range of 7ml_y/atnm. Use of the muffan-
tin approximation in the present LSMS calculation and the atomic sphere approramation in the CC-KKR-CPA
calculations may account for this discrepancy. This aside, the discrepancy is somewhat puzzling in view of the fact
that the present calculation, by definition, includes precisely the charge correlations that the work of Johnson And
Pinski was supposed to be correcting for and that were presumed absen_ from the original mean field KKR-CPA
calculations.

In fig. 4, we show the calculated charges on Cu and on Zn sites obtained in the 55-atom run plotted as a
funcuon of the number of unhke neighbors In _he firs_ neighbor shell. Clearly, in a random alloy individual
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Figure 4: Charges on individual Cu- (left frame) and Zn-si_ (right frame) plotted as a function of the number
of unlike neighbors in the first neighbor shell taken from a 128-atom simulation of disordered Cu0._Zn0.s.

sites will have differen_ numbers of like and unlike near-neighbors. In fig. 4 are shown the charges for each of
the 128-Cu and 128-Zn sites in the 256-site sample. Interestingly, the charges on individual sites are essentially
proportional to the number of unlike neighbors. Scatter about the direct proportionality, resulting from the
different possible errs_gements of a given number of unlike and like neighbors, is clearly a secondary effect.
This proportionality was pointed out by Margi e_ _. (Magi e_ _. 1990) in criticizing the mean-field theory
SCF prescription conventionally used in the KKlt-CPA method (Stocks e_ al. 1994) and underlies the improved
energies obtained in the CC-KKR-CPA. In fact, the behavior seen in fig. 4 is almost identical to that found by



• Johnso., and Pinski for the same alloy system.

CONCLUSIONS

We have outlined a new method for performing first principles LDA calculations on large metallic systems. We
[lave demonstrated linear scaling oil the Intel XP/S-35 massively parallel supercomputer. We believe this to be
the first LDA method for which true O(N) scaling has been attained. In its current manifestation, the LSMS code
is restricted to systems that can be reasonably treated using the muffin-tin approximation. However, the code
is currently being extended to treat general shape potentials and to allow calculation of the forces on individual

atoms. These capabilities will then allow a full relaxation of the internal degrees of freedom, greatly extending
the range of applicability of the method.
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