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Abstract

The q2 dependence of the r-r/mixing amplitude is examined with the use

of QCD sum rules. The linear slope of the mixing function 0(q _) is found

to be much smaller than that for p-w mixing. Thus the mixing amplitude is

approximately the same in the space-like region as in the time-like one, and

one may neglect the q2 dependence of the mixing. A comparison between a

hadron-meson, an effective chiral model, and the QCD sum rules approaches

is made.
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I. INTRODUCTION

The recent interest in examining the off-shell behavior of p-w mixing [1-4] and r-r/

mixing [5-7] is based on the observation of Goldman, Henderson and Thomas (GHT) [1]

that the meson mixing previously used in the calculation of the nucleon-nucleon (N-N)

charge-symmetry-violating (CSV) potential [8] may not be correct. In particular, the value

of p-w mixing found experimentally in the time-like region (qZ > 0) may not apply in the

space-like region, from which the CSV potential is generated. Subsequently, other authors

have discussed this issue for p-w mixing by using different effective models [1,3,4], and also

find appreciable q2 dependence of the mixing amplitude. With the advent of QCD sum

rules [9] and their phenomenological success in describing hadronic properties [10-12], it is

natural to apply this technique to meson-mixing, particularly since the method is closer to

QCD than other models that have been used.

In the pioneering work of Shifman, Vainshtein and Zakharov (SVZ) [91, the "on shell"

p-w mixing was used as an illustration of the power of QCD sum rules. However, in their

paper some fine points remain elusive and there is no discussion of the "off-shell" behavior

of meson-mixing. These details were re-examined by Hatsuda, Henley, Meissner and Krein

(HHMK) [4], who used both Borel and finite-energy sum rules, together with dispersion

relations to determine the momentum-dependence of p-w mixing. They found a rapid q2

variation of the mixing parameter O(q2). In this paper we shall follow the spirit of HHMK

in applying it to _r-r/mixing. By performing the Borel analysis, we can extract 0(q_) as a

function of the CSV parameters, and we can also study how the QCD condensates affect

the mixing function 8(q_).

This paper is organized as follows: In section I, we establish notations and definitions.

The calculations are described in section III. In section IV, we relate our results to those

of GHT [1] and Piekarewicz-Williams (PW) [3]. Finally, in section V, conclusions and a

summary are presented.

II. 7r-t/MIXING (FORMALISM)

The 1r-r/mixing function O(q2) is defined by the mixed correlator of 7r° and rt°
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rr"_(q 2) = i f d4x eiq_ < Tr°(x)rl°(O)
> (1)

where 7r° and r/° are eigenstates of an isosymmetric strong-interaction Hamiltonian.

We can express the physical r-r/fields, which are eigenstates of the full strong interaction

Hamiltonian, in terms of r °, r/°, by introducing the mixing matrix

t 7° , (2)

where e is a "mixing angle". By saturating the lm lr "7 with the r and r/poles and using a

dispersion relation for Re 7r'n(q2), we can write

O(q )
_r"_(q2) = (q2 _ m_ + i_)(q 2 - m_ + ie) " (3)

where the mixing function is related to the mixing angle e as

O(q_) = [e(m:)- e(m:)] q2 + [m_e(ra:) - ra:e(m:)] . (4)

Since the e "mixing angle" may be a function of q2, the value of e(m_) may be different

from that of e(m_); in this way the mixing function O(q2) develops a linear dependence on

q2.

On the other hand, in order to study the meson properties from the quark-gluon degrees

of freedom without being plagued by the problem of wave functions, we need to introduce

interpolating quark currents for the correlation function, and the meson properties are rep-

resented by the experimentally measurable matrix elements of these quark currents. In the

present case, we choose to work with the axial vector currents rather than pseudoscalar ones

for a number of reasons. Foremost is that, although 7r and 77are pseudoscalar particles, the

use of the axial vector currents gives a better convergence property [9-12]. Secondly, on the

mass shell, the two currents are directly related. In an SU(3) notation, we use

_ z

j_(x) - 1
2vf_(_,7,7su(x) + d%Tsd(x) - 2_%TsS(x)). (5)

= The correlator of these two currents is defined by

_r_ / eiqx
r,,, = i d4x < Ti_(x)i_(O) > . (6)
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Using the definition of the mixing angle e, (Eq. (3)), the PCAC relation for r and r/,

< 01j.3(0)Jr(p)>= i f. p., < 0lj_s(0)lo(p)>= i f, p., where f. and fo are the decay

constants for _ and _, and the pole approximation for Imr_._, we have:

• _1Im r._,"7= q_,q_,f_ • fn [e(m])6(q 2 - m_) - e(m_)6(q 2 - m_)]. (7)7_

Because of the structure of PCAC and the _r-_/pole approximation, there is no q2g.,,

_". In addition to the 7rand r/poles, let us also include the next resonances interm in Im r.,.

the Im _r_,,,"l",these resonances are a pair of pseudo-vector particles the b1(1235) (denoted by

A) and h1(1170) (denoted by n); these resonances contribute to Im 7r,,,.,

(qt,qu - q2qt,u)]Afa [c'(m_)_(q 2 - m_A) - e-(m_)'5(q 2 - m_)], (8)

where ]A, ]B are the decay constants for A and B particles.

Combining these two contributions, we can rewrite

1
-Imr_._ = quqv lm_r,(q 2) - q2g.. Im_r2(q2),
_r

1m, ,(q= - - g.  (q2- m'.)
+hA,5(q2 - m_) - hB6(q2 - m_)

+higher resonances + continuum

lmr2(q 2) = ha,5(q2- m2A) - hB,5(q2 - m_) + higher resonances + continuum, (9)

where

g,_ -- f._f,7 e(m_) g,7=" f,_f, Te(m_)

fAfs e.'(m_) (10)

These parameters g,_, 9,1, hA and hs are unknown and will be determined from the QCD

sum rules. Once they are determined in terms of the CSV parameters and the Wilson

coefficients of the OPE for the quark current-current correlation function, we can substitute

these numbers into the mixing function O(q2) and discuss its momentum dependence in the

. region of interest.

In the case of z-r/mixing, in contrast to the case of p-w mixing, there is no "on shell"

value for 0(q2), due to the large difference of r and 7} masses, Am = m,j- m_ = 412
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MeV N 3rn,; this mass difference presumably comes primarily from the s-quark contribu-

tion in the r/. There is, thus, no direct experimental method to study _r-r/ mixing, unlike

e+e - _ lr+lr - at the w-resonance [13,14], since 7r and 71cannot be formed from one photon

states in e+e - collisions; however, the decay of the r/° to _r+_r-Tr° via the _r° pole serves to

set an "experimental" mixing at the 7/ mass [15]. Here we shall content ourselves to use

experimentally measured masses for the _r(135), r/(547), b(1235) and hx(1170) particles as

input parameters, and distinguish between e(rn]), e(m_), e'(rn_), and d(rn_) as indepen-

dent variables. Although we do not rely on an expansion in terms of the mass difference

2 2 to perform the calculations as in the p-w case, the large mass difference of_m 2 =__m n -- m_r

7rand r/is comfortably accommodated without difficulty.

III. CALCULATIONS

One important ingredient of the QCD sum rules is the operator product expansion (OPE)

_" by keeping[16] for the correlation functions. In our case, we calculate the OPE of _r_

operators up to dimension 6. For the Wilson coefficients, we work to first order in a_, a and

_-_ where as(a) is the fine structure constant for the strong (electromagnetic) interaction,Q,

and mq is the current mass of quark q (m_ for u quark, and md for d quark). We use the

definition Q2 = _q2; we do not include the q_ dependence of a0 but choose its value at 1

GeV 2, ao (1 GeV 2) -_ 0.5. Our calculation is similar to that for the p-w case but we are

dealing with axial vector currents for pseudoscalar mesons; thus, the reader may convince

" himself or herself of the signs of our results by counting the number of 7 matrices in each

, diagram. In the following, we shall neglect a detailed discussion of each diagram (c.f. ref.

[4]) and simply write down the relevant answers:

_rr/
_ _ru_,(q)- quq_,Trl(q_)_.q2g_,,,Tr2(q2), Q2 _ _q2

4x/37rl(q') - C01n 0 2 + Q_ + -t O

4v/3_r2(q2) _ Co In Qz + Q_ Q4 b _ + O (11)
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where

g2 ea
Co- 16r3+0(_,_2), a°-4r, a=4r

c, = o+ o(C)
02= 2[m_< _ > --rod< dd>]

3521ra,[< _u >2c. = -<ad> ]
88 ra[4 < flu >2 dd >2]. (12)- <

It is helpful to note three points:

(1) For vector mesons, the conservation of the vector current leads to a 7r,_ that must be

proportional to q,q_- q2g,_; therefore rl = r_. This is no longer true in the r-r/case, since

the axial vector current is not conserved. A side benefit is that we now have two independent

sum rules for r,_,_"and we can take advantage of this property to extract information on the

parameters appearing in the mixing function O(q2)

(2) If we restrict ourselves to operators up to dimension 6 and make the vacuum saturation

assumption (VSA) for the four quark condensate [9], we find that the s quark in the 77

current (Eq. (5)) does not contribute at all. The recson is that the s quark could only arise

in the four quark condensate < 4FqgFs > (q = up or down quark) which vanishes under the

VSA.

(3) Taking the difference of the sum rules for rl and _r2we see that the coefficient 6'3 for the

dimension 6, four-quark condensate drops out. Therefore the uncertainty in this coefficient

due to the assumption of the VSA can be ignored.

The next step is to relate these CSV parameters and condensates to the phenomenological

parameters g_, g,, ha and hB in the RHS of Im r_ (our model for lm r,_). In order

to assure convergence, to accentuate the lower resonances and to lessen the effect of the

continuum, we follow the standard practice of applying a Borel transformation to 7rl and r2

[9],

L_tf(Q2)] = lira 1 ( _02)"_(n- 1)!
(13)Q

•_n2 _ M2
fired

In this way, we obtain a set of simultaneously linear equations for g_, g_, hA and hs:
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The sum rule for 7rl gives

= M---i"g,, e-:'_f - g,7e-:':_ + hA e-::_ - hs e-:_

+ higher resonances(_r', r/)(A', B') + continuum, (14)

and that for _r2yields

(1) 6'3(1)-co-c_-_ +T --_

-- _MS hAe-_'q - hs e-_ + higher resonances(A', B') + continuum . (15)

Taking the difference, we get

26'2 _-il = 4V_M2 g,_e-'_ - g,_e-_ -_ + higher resonances(_", r/) . (16)

It is worthwhile to call attention to the fact that the contributions of higher resonances

b_(1235)and h1(1170) and continuum have been completely canceledin Eq. (16). The same

is true for the electromagnetic continuum, whereas higher resonances in the pseudoscalar

channel, such as _r'(1300) - _'(1290), will survive (in principle)in Eq. (16). However, it

will turn out that taking these resonances explicitly into account does not change the Borel

analysis noticeably. This is in contrast to the case of p-w mixing where the corresponding

high resonances (p'-w') are important.

By taking the derivative with respect to (_--_2)on both sides of Eq. (16), we obtain

another sum rule:

-6'2 2 e-'_ 2 e--_ (17)
2--_ = m_ g,r --m, g. .

With these two equations, we can solve for g. and g,:

( ) (C_ emllM2 M s + m,
g" = 2x/_U 2 m_- m_

()(C2 e._2/M2 M 2 + m,, (18)
- g"= 2v/3M 2 m_-m 2,

Finally, the mixing function is

O(q2) - tr(M2)q 2 + _(M2), (19)
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where

_(M 2) - g,- g_ '
2 2

/_(M2)_ m,g_- m_g, . (20)

where we assume the SU(3) symmetry for the decay constants f_ = fn.

In Fig. 1 we plot the dependence of g_ and gn on M 2. In the preferred region of 1.0

GeV s < M < 1.6 GeV s, the difference between g_ and gn is small. Furthermore, it can be

seen from Fig. I and Eq. (18) that if M s >> m_, g, _ gn. We thus find that O(q2) has a

weak q2 dependence.

In order to fix the values of g_, g_, a and /_, we choose a suitable Borel window and

average the functions g,_(MS), g,7(M s) over the range of M s (1 GeV s ,_ 1.5 GeVS). At this

point, one should note that if we included the higher resonances r(1300) and r/(1295) in

the phenomenological side of the sum rules and left their masses as parameters, we could

perform the stability analysis to obtain the "optimal" values for g_ and g,. However, our

numerical results do not suggest such "optimal" values are well-defined. The numerical

values we obtain for these parameters are

g_=lldMeV s gn=ll7MeV s
(21)

= 3.65x 10-4 /_- 3660MeV _

Allnumbershavean errorofabout 10-20%,whichisdue totheuncertaintyoftheisospin

1 inthecoefficientCs and thefactsymmetry violating quantities ,_d--_ and 7 =m d-l-mu <flu>

that M s > 0.9 GeV s for stability.

IV.COMPARISONS WITH OTHER MODELS

In this section, we shall compare our results with those of other authors, who use a

different approach.

r-_/mixing has been considered previously by Maltman and Goldman (MG) [5,6] and

Piekarewicz (P) [7]. Maltman used chiral perturbation theory [5] to calculate the r-r/mixing

to the one-loop order. The mixing function 0(q_) is expressed in terms of meson masses and

other physical observables; theoretical uncertainty comes from the electromagnetic mass
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difference of kaons. In order to verify the assumption which underlies the GHT calculation.

Maltman and Goldman [6] also use a chiral quark model to calculate 7r-r/mixing and get a

consistent result with chiral perturbation theory.

Piekarewicz [7] used a purely hadronic model to calculate 7r-r/mixing, where the mixing

is generated by a N._ loop. In order t3 fix the renormalization point for the divergent

integral, he chose the "on shell" value of m, 7 to fix the intercept of the mixing fu ction.

He also derived a ratio between the slope at the origin of the p-w and It-r/mixing ampli-

tudes

< 7rlHlr/ > slope at q2 = 0 g,_g,_
,._ (22)

< plHIo.,> slope at q2 = 0 fpg,_

which he claimed to be less model-dependent and to hold approximately for a reasonable

range of q2.

In view of the lack of "on-shell" experimental value for the _r-r/mixing amplitude (the

previous calculations are based on SU(3) mass splitting [17,18] of pseudoscalar mesons and

a pole model anaiysis of the r/-r/' system [17,18]), our calculation provides an independent

result for the slope and intercept for the mixing function. We list the different results from

the three calculations in Table 1.

It is to be noticed that our slopes are three times smaller than that of chiral perturbation

theory and correspondingly so is the ratio a//_. Because of the small slope, our mixing

function only changes about 5% from q2 = rn¢2to q2 = -m,.2 Therefore, the mixing function

is practically a constant. On the other hand, the intercept of our mixing function (/_) is fairly

close to that obtained in chiral perturbation theory. Furthermore it should be noted that
_

both in the GHT and in the PW approaches the q2 variation of the It-T/mixing amplitude is

much smaller than the one for the p-cv mixing amplitude obtained in the same approaches

[1-3].Finally, our mixing function gives an "on shell" value (q2 = rn2) of 3800 MeV 2, which

is slightly smaller (but within our estimated error) than that of the other two approaches

and the one of 4200 MeV 2 obtained from the CSB NN force [17-19].
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V. SUMMARY AND CONCLUSIONS

In this paper, we use QCD sum rules to study r-r/mixing, choosing a combination of the

two sum rules coming from the correlation functions of two axial vector currents. We are able

to extract the leading behavior of the mixing function 0 as a function of q2 without the need

to use four-quark condensates. We obtain O(q_ = m_) = 3800 MeV 2, and a q_-dependence

of O(q2) that is compatible with zero. This is in contrast to the p-w mixing amplitude, which

varies strongly with q2. Our results are in qualitative agreement with those obtained from

various quark and hadronic models as well as from chiral perturbation theory.
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FIGURES

FIG. 1. The mixing parameters g, and gn as functions of the squared Borel mass M 2



TABLES

TABLE I. Comparisons of different approaches for the _r-r/mixing function

_(MeV2) _/_(M_V-2) 0(q_= _)(MeV2)
Chira]Perturbation 1.08x 10-a 3808 2.836x 10-7 4131.68

Theory [4,20]

Hadronic Model [6] 1.7x I0 -a 3800 4.4x 10 -7 4200

QCD Sum Rules 3.5 x 10-4 3700 9.45 x 10-8 3800
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