
Toward a Verifiable Approach to the
Design of Concurrent Computations

The High-Performance Computing Symposium - 1993

G. H. Chisholm

Argonne9700Nationals.Cass LaboratoryAve. _ 'i'_ :'___'_v";,=__,_"

Argonne, IT, 60439 f_,;'/ I ,'._),_.13

ABSTRACT ('_ '_ -/" i
Distributed programs arc dependent on explicit message passing between disjoint

components of the computation. This paper is concerned with investigating an approach
for proving correctness of distributed programs under an assumed data-exchange capa-
bility. Stated informally, the data exchange assumption is that every message is passed
correctly, i.e., neither lost nor corrupted. One approach for constructing a proof under this
assumption would be to embed an abstract model of the data communications mechanism
into the program specification. The Message Passing Interface (MPI) standard provides a
basis for such a m6del. In support of our investigations, we have developed a high-level
specification using the ASLAN specification language. Our specification is based on a
generalized communications model from which the MPI model may be derived. We de-
scribe the specification of this model and an approach to the specification of distributed
programs with explicit message passing based on a verifiable data exchange modeL

1. INTRODUCTION

Distributed programs consist of a collection of concurrent processes that communicate

by explicit message passing. Such programs have been observed to fail on loss or
corruption of data during the point-to-point communication of messages. This situation
suggests that verification of distributed programs should include a proof that the program
satisfies a data exchange property. The following describes progress in developing an
approach for the specification and verification of distributed programs. A proof that a
distributed program is correct with respect to assumed data-exchange properties is beyond
the scope of this paper. However, we describe an essential element for the development
of distributed programs that satisfy this property.

The literature includes a number of approaches to program verification. Our paradigm
is based on an axiomatic reasoning approach as described in [4, 7, 5]. This approach

is predicated on an assertion language and proof system. The assertion language allows

1

MI_ _ TF_E _ J The submitted manutcrll::}t hat been authored

by a contractor of the U.S. Government
under contract No. W-31-109-ENG-38.

- ') Accordingly , rho U. S. Government retain--
nonexclusive, royalty-free license to publith
or reproduce the published form of this

DISTRIBUTIONOFTHISDOCUMEHTfSUNLIMITEID ¢o.,.bu,,o,,,o..,,o, ot.er.,o_o.o,for
tj, S. Government O_rpo_$,

0,. "'" _'4J

tW

representation of the program and construction of formal proofs of relevant properties all
within the proof system. In some applications, the proof rules are constructed to support
verification of existing programs. In other applications, the proof rules are constructed
to support specification of properties and verification that code satisfies its specification.

One property of interest to those verifying concurrent programs is "fairness." The
fairness assumption states that every component of a concurrent program is eventually
activated. Reference [1] describes an axiomatic method for verification of the fairness

assumption. This method is predicated on the embedding of a schedular into a nonde-
terministic program and constructing the proof.

We suggest an extension to this approach for dealing with the data-exchange assump-
tion. The data exchange assumption is that every message is passed correctly-that is, no
message is lost or corrupted. Specifically, we suggest using a specification-based proof
system. The approach is predicated on embedding a specification for an abstract data
exchange mechanism into the program and constructing a proof of correx;tness based on
this specification. In this paper we describe the specification of such a mechanism. This
specification was written in the ASLAN specification language [2].

Note that we describe a high-level specification: the level of detail is insufficient
to support a proof of the data exchange assumption. However, it represents the initial
effort in achieving our ultimate goal of supporting such a proof. The next phase is to
develop a multilevel ASLAN specification with successively more detail. One constraint
on this development should be to assure that the specification is applicable to a diverse
set of applications, in particular, those of interest to the high-performance computing
community.

We also recommend that the ASLAN specification presented here be further devel-

oped to include the a Message-Passing Interface (MPI) standard currently under devel-
opment [3, 6]. The development of a second formal description of the MPI model would
provide additional confirmation of the correctness and completeness of the model and
would increase the accessibility of that model.

2. DESCRIPTION OF A GENERAL COMMUNICATIONS MODEL

In this section we present a description of a high-level specification of a general

message-passing mcxiel based on the ASLAN specification language [2]. We begin with
a brief description of ASLAN and then discuss code for an ASLAN specification of a
communications model. The complete specification is contained in the Appendix.

2.1 ASLAN Specification Language

ASLAN is based on the first-order predicate calculus with equality. The system
being specified is considered to be in various states, depending on the values of the state
variables. Changes in state variables take piace only by well-defined transitions. ASLAN
uses induction to show (1) that the system defined by these state variables and transitions

always satisfies some critical requirements, and (2) the resulting state after a transition
also satisfies the invariant assertion,

2.2 INITIALIZATION

The following is analogous to the declaration section of a program and supports the
strong typing of the ASLAN language.

TYPE

DataGram,

DataGrams IS SET OF DataGram,

Me ssage,

Location,

Locations IS SET OF Location,

Precedence Level IS TYPEDEF T:Integer(T >= 1 & T <=3),

Me ssage_T ype,

Location_Type,
Time

We use the term "DataGrarn" to refer to anything that floats around in the ether.
The entire bandwidth of the communications network is finite and may be envisioned as

being made up of either DataGrams or not-DataGrams. Here we focus only on failures to
communicate DataGrams; properties of not-DataG rams are outside of the current model.
One mode of failure would be to consider something to be a DataGram when it is not.
A second failure would be to have a valid DataGram and to fail to communicate it. The

bandwidth of ali possible messages is countable finite and modeled as a set made up of
"DataGrams" and "-DataGrams." These are propertie._ of the system that are outside of
the current model. The intent of presenting this discussion is to demonstrate the necessity
of carefully selecting the data representation in anticipation of capturing diverse system
properties in a specification.

CONSTANT

TO (DataGram) : Location,

FROM (DataGram) : Location,

Data(DataGram) : Message,

Timestamp (DataGram) : Time,

Precedence (Message) : Precedence_Level,

Type_of_Message (Message) : Message_Type,

Consistent_Message (Message_Type, Location_Type) : Boolean,

Type_of_Site (Location) : Location_Type,

Well Formed(DataGram) : Boolean,

Neighbor (Location, Location) : Boolean

VARIABLE

Send Buffer (Location) :DataGrams,

Rec Buffer (Location) :DataGrams,

Network :Datagrams,

Action Items (Location) :DataGrams,

Now : Time

INITIAL

FORALL L:Location (

Send Buffer(L) = Empty

& Rec Buffer(L) = Empty)

& Network = Empty

2.3 INVARIANT

Recall that an invar2mt defines requi,_ments that must be met in every reachable state.
Intuitively, the critical requirement is that a DataGram can be in one piace at a time.

FORALL D :Datagram (

(EXISTS Ll :Location (D ISIN Send_Buffer(Ll))

-> FORALL L2:Location (

D -ISIN Rec Buffer(L2) & D "ISIN Network))

& (EXISTS Ll:Location(D ISIN Rec_Buffer(Ll))

-> FORALL L2 :Location (

D "ISIN Send Buffer(L2) & D -ISIN Network))

& (D ISIN Network

-> FORALL L:Location (

D "ISIN Rec Buffer(L) & D -ISIN Send_Buffer(L)))

J

& FORALL LI, L2 :Location (

D ISZN Rec Buffer(Ll) & D ISIN Rec Buffer(L2)

-> LI=L2)

& FORALL LI,L2:Location (

D ISIN Send Buffer(Ll) & D ISIN Out Buffer(L2)

-> LI=L2))

2.4 CONSTRAINTS

Figure1 isa blockdiagramofa generalcommunicationsmodel.Dcpicmdin_Figure,
Iisthe interface betweenprocessesand the dam-exchangemechanism.A processpasser's
dam to theSend_Bufferforeventualincorporationintoa DamCrram by the"Send"

function.The "TransporCfunctionmovcs DataC_rrarnsfrom theSend_Bufferof one
locationto the Re,c_Bufferatanotherlocation.The "Rcccivc"functionrcmovcs a

DataGram from a Rcc_Buffcrforprcscntationtoa processatthatlocation.

Figu,-eI BlockDiagramof an AbstractDam-ExchangeMechanism

Send_Buffer0)

,_d(Process(x),Send_Buffe_x)) ILocation(j)1

SendBuEer(i) Rec_BufferfJ_

Send_BuffoOn)

Rec_Buffe_i) i process(n)']

ILocation(n)_
- Rec_Buffer(n)

Receive(Rec_Buffer(y),Process(Y))
a_
m
=

a 5

I

FORALL L:Location, D: DataGram (

(D ISIN Rec_Buffer(L) & D "ISIN Rec_Buffer' (L) ->

(EXISTS Ll:location (D ISIN Send_Buffer' (LI))

I D ISIN Network')

& FORALL DI :DataGram (

(EXISTS Ll:Location(Dl ISIN Send_Buffer' (LI))

I DI ISIN Network')

-> Precedence (Data(D)) >= Precedence (Data(Dl))))

This states that for ali locations, L, IF a DataGram is in the input buffer or network
before a transition fires, but is not in the same buffer after firing, THEN the precedence

for that DataGram is equal to or higher than ali DataGrams eligible for processing by

"Transport."

In such a system, "Transport" and "Receive" are autonomous. Selection of which
DataGram is to be processed is dependent on precedence. Ali DataGrams processed by
"Receive" were of equal or higher precedence than those available to "Transport."

In contrast, the "Send" function is conceived as sequentially processing messages
frt_m an application. This constraint extends the generic model to encompass a distributed
system with multiple precedences associated with messages, that is, systems that may
simuhaneously be processing real, simulated, or test data.

(D ISIN Send Buffer' (L) & D -ISIN Out_Buffer(L) ->

(EXISTS Ll:location (D ISIN Rec_Buffer(Ll))

I D ISIN Network)

& FORALL DI :DataGram (

(EXISTS Ll:Location(Dl ISIN Send_Buffer' (LI))

I DI ISIN Network')

-> Precedence (Data(D)) >= Precedence (Data(Dl))))

All DataGrams processed by "Transport" were of equal or higher precedence that
those eligible for "Transport."

(D ISIN Rec_Buffer' (L) & D -ISIN In_Buffer(L) ->

FOPALL Dl:DataGram (DI ISIN Rec_Buffer' (L)

-> _recedence(Data(D)) >= Precedence(Data(Dl))))

D ISIN Action Items(L) & D -ISIN Action_Items' (L)

-> Well Formed(D)

Only well formed DataGrams are "Received."

The constraint is the conjunction of these three constituents:

1. ali DataGrams processed by "Receive" and were of equal or higher precedence than
those available to "Transport'," and

2. ali DataGrams processed by "Transport" were of equal or higher precedence that
those eligible for "Transport," and

3. only well formed DataGrams are "Received."

2.5 THE SEND FUNCTION

TRANSITION Send (Sender:Location, Receivers:Locations,

M:Message)

ENTRY

Consistent_Message(Type_of_Message(M),

Type_of_Site(Sender))
EXIT

Send Buffer(Sender) BECOMES Send_Buffer' (Sender) UNION

{SETDEF D:DataGram

EXISTS R:Location (R ISIN Receivers

& TO (D) = R

& FROM(D) = Sender

& Data(D) = M

& Timestamp(D) = Now) }

Input to the transition consists of "Sender," a list of "Receivers," and a "Message."
An entry conditions states that the message must be consistent for the site. Firing
the transition results in the generation of a new DataGram that is appended to the
"Send_Buffer" for a Location/Sender. A DataGram is formed for each Receiver and
is made up of "TO,", "FROM," "Data," and "Timestamp."

2.6 THE TRANSPORT FUNCTION

TRANSITION Transport (D:DataGram)

ENTRY

EXISTS L:Location (D ISIN Send Buffer(L)) i D ISIN Network

& FORALL Dl:DataGram (

EXISTS Ll:Location (DI ISIN Send Buffer(Ll))

I DI ISIN Network

-> Precedence (Data (D))

>= Precedence (Data (DI)))

EXIT

IF EXISTS L:Location (D ISIN Send Buffer' (L))

THEN UNIQUE L:Location (

D ISIN Send Buffer' (L)

& Send Buffer(L) BECOMES

Out Buffer' (L) SET DIFF {D}

& IF Neighbor (TO (D) ,L)

THEN Rec Buffer (TO (D)) BECOMES

In Buffer' (TO(D))

UNION {D }

ELSE Network = Network UNION {D}

FI)

ELSE (Rec Buffer (TO (D)) BECOMES

In Buffer' (TO(D))

UNION {D }

& Network = Network SET DIFF {D}

i NOCHANGE (Rec_Buffer,Network))

FI

The firing of the "Transport" transition results in a DataGram being moved from a
Send_Buffer to a Rec_Buffer. The entry condition is that there is a DataGram available

for processing. On exit, Send_Buffer' is the result of removing the DataGram, and
Rec_Buffer'(TO) has the DataGram appended to it. Ali actions are consistent with *.he

precedencehandling protocol.

2.7 THE RECEIVE FUNCTION

TRANSITION Receive (Receiver:Location, D:DataGram)

ENTRY

D ISIN Rec Buffer (Receiver)

& FORALL Dl:DataGram (Precedence (Data(D)) >=

Precedence (Data (DI)))

EXIT

Rec Buffer(Receiver) BECOMES Rec_Buffer' (Receiver)

SET DIFF {D}

& IF Well Formed(D)

THEN Action Items (Receiver) BECOMES

Action Items' (Receiver) UNION {D}

FI

Inputs are Receiver and DataGram. The DataGram is equal or higher in precedence
than others in the Rec_Buffer. Following firing of the transition, DataGram has been
removed from the Rec_Buffer, and, if Well_Formed, moved into the Action_Items buffer.

This is envisioned as being passed off to an application.

3. CONCLUSIONS AND RECOMMENDATIONS

Distributed programs consist of a collection of concurrent processes that communicate
by explicit message passing. Such programs have been observed to fail on loss or
corruption of data during the point-to-point communication of messages. This suggests
that verification of distributed programs should include a proof that the program satisfies

a data exchange property.

We recommend that the ASLAN specification presented here be further developed
to include the detailed MPI model. The b,mefit of accomplishing this work would

be twofold. First, development of a second formal description of the MPI model
would provide additional confirmation of the correctness and completeness of the model.
Second, multiple representations of any model increases the accessibility of that model.

ACKNOWLEDGEMENTS

Thanks to Dick Kemmerer tor assistance in development of the ASLAN specification
and to Bret Michael and Gail Pieper for their diligent reviews and comment.

This work was supported by the National Security Agency, V31, under MOD 708992.

Bibliography

[1] Krzysztof R. Apt and Ernst-Rudiger Olderog. Verification of Sequential and
Concurrent Programs. Springer-Verlag, New York, 1991.

[2] Brent Auernheimer and Richard A. Kemmerer. ASLAN user's manual. Technical
Report TRCS84-10, University of California - Santa Barbara, Santa Barbara, CA,

April 1992.

9

[3] Jack J. Dongarra, Rolf Hempel, Anthony J. G. Hey, and David W. Walker. A proposal
for a multi-level message-passing interface standard. Technical Report ORNL/TM-
12231, Oak Ridge National Laboratory, Oak Ridge, Tenn., January 1993.

[4] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Mathe-
man'cal Aspects of Computer Science, pages 19-32. American Mathematical Society,
Providence, R.I., 1967. Proc. Symp. Appl. Math. 19.

[5] D. Gries. The Science of Programming. Springer-Verlag, New York, 1981.

[6] William D. Gropp and Ewing L. Lusk. A test implementation of the MPI draft
message-passing interface standard. Technical Report ANL-92-47, Argonne National
Laboratory, Argonne, III., December 1992.

[7] Zohar Manna. Mathematical Theory of Computation. McGraw-HiU Inc., New York,
1974.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

bility for the accuracy, completeness, or usefulness of any information, apparatus, p;oduct, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

10

Appendix ASLAN SPECIFICATION OF
COMMUNICATIONS MODEL

SPECIFICATION COMMUNICATIONS /* 14 MAR 93 */

LEVEL Top_Level

TYPE

DataGram,

DataGrams IS SET OF DataGram,

Message,

Location,

Locations IS SET OF Location,

Precedence Level IS TYPEDEF T:Integer(T >- 1 & T <-3),

Message_Type,

Locatlon_Type,
Time

/* A Message is part of a DataGram - A DataGram includes information */

/* such as sender, receiver and time stamp. */

CONSTANT

TO(DataGram): Location,

FROM(DataGram) : Location,

Data(DataGram) : Message,

Timestamp(DataGram) : Time,

Precedence(Message) : Precedence_Level,

Type of Message(Message): MessageType,

Conslstent_Message(Message_Type,Location_Type) : Boolean,

Type of Site(Location) : Location_Type,

Well Formed(DataGram): Boolean,

Neighbor(Locatlon, Location): BooleanVARIABLE

Out Buffer(Location):DataGrams,

In Buffer(Location):DataGrams,

Ne[work:Datagrams,

Action Items(Location) :DataGrams,

Now:Time

INITIAL

FORALL L:Locatlon (

Out Buffer(L) = Empty

& In Buffer(L) - Empty)

& Network = Empty

INVARIANT

FORALL D:Datagram (

(EXISTS Ll:Location(D ISIN Out Buffer(Ll))

-> FORALL L2:Location (

D "ISIN In Buffer(L2) & D "ISIN Network))

& (EXISTS Ll:Location(D IS[N In Buffer(Ll))

-> FORALL L2:Location (

D "ISIN Out Buffer(L2) & D -ISIN Network))

& (D ISIN Network

-> FORALL L:Location (

D "ISIN In Buffer(L) & D "ISIN Out Buffer(L)))

& FORALL Li,L2:Location (

D ISIN In Buffer(Ll) & D ISIN In Buffer(L2) -> LI=L2)

& FORALL Li,L2:Location (

D ISIN Out Buffer(Ll) & D ISIN Out Buffer(L2) -> LI=L2))

]!

CONSTRAINT

FORALL L:Location, D: DataGram (

(D ISIN In Buffer(L) & D "ISIN In Buffer' (L) ->

(EXISTS Ll:location (D IS_N Out_Buffer' (LI))

i D ISIN Network')

& FORALL Dl:DataGram (

(EXISTS Ll:Location(Dl ISIN Out_Buffer' (LI))

I DI ISIN Network')

-> Precedence(Data(D)) >m Precedence(Data(Dl))))

&

(D ISIN Out Buffer' (L) & D "ISIN Out Buffer(L) ->

(EXISTS Ll:location (D ISIN [n_Buffer(Ll))

i D ISIN Network)

& FORALL DI :DataGram. (

(EXISTS Ll:Locatlon(Dl ISIN Out_Buffer' (LI))

I DI ISIN Network')

-> Precedence (Data(D)) >- Precedence (Data(Dl)))) _.

&

(D ISIN In Buffer' (L) & D "ISIN In_Buffer(L) ->

FORALL Dl:DataGram (DI ISIN In Buffer' (L)

-> Precedence (Data(D)) >---Precedence (Data(Dl))))

&

(D ISIN Action Items(L) & D "ISIN Actlon_Items' (L) ->

Well Formed(D)))

RANSITION Send (Sender:Location, Receivers:Locations, M:Message)

ENTRY

Consistent_Message(Type_of Message (M), Type of Site (Sender))

EXIT

Out Buffer(Sender) BECOMES Out_Buffer' (Sender) UNION

{SETDEF D: DataGram

EXISTS R:Location (R ISIN Receivers

& TO (D) = R

& FROM(D) = Sender

& Data (D) = M

& Timestamp(D) - Now) }

TRANSITION Transport (D:Da_aGram)

ENTRY

EXISTS L:Locatlon (D ISIN Out Buffer(L)) i D ISIN Network

& FORALL Dl:DataGram (

EXISTS LI:Location (DI ISIN Out Buffer(Ll)) i DI ISIN Network

-> Precedence(Data(D)) >= Precedence (Data(Dl)))

EXIT

IF EXISTS L:Location (D ISIN Out Buffer' (L))

THEN UNIQUE L:Location (

D ISIN Out Buffer' (L)

& Out Buffer_L) BECOMES Out_Buffer' (L) SET_DIFF {D)

& IF Neighbor (TO(D), L)

THEN In Buffer(TO(D)) BECOMES In Buffer' (TO(D)) UNION {D}

ELSE Ne[work = Network UNION {D}

FI)

ELSE (In Buffer(TO(D)) BECOMES In Buffer' (TO(D)) UNION {D}

& Network = Network SET DIFF TD}

I NOCHANGE(In Buffer,Network))

FITRANSITION Receive (Receiver:Location, D:DataGram)

ENTRY

D ISIN In Buffer(Receiver)

& FORALL DI-DataGram (DI ISIN In Buffer(Receiver)

-> (Precedence(Data(D)) >= Precedence(Data(Dl))))

EXIT

In Buffer (Receiver) BECOMES In Buffer' (Receiver) SET_DIFF {D)

& IF-Well_Formed (D)
THEN Action Items (Receiver) BECOMES

12

Action Items' (Receiver) UNION {D}

FI

END Top_Level

M_

| 13
|

1
'W '

r

