
+,-.,.+ _/-///'_ PII::INUFI::ICTUREDByI::IPP[_TEDTOTMIqGE,IqI"TI"I STIqNDIqRDSTNC. _ :+++__+,..,_

' " ' II '

ANL/DIS/TM-13

A Two-Level Formal Specification of a Defense
Communications System
•i'-.;__:i_..';_.;..__ _'_:."-i:i:!:i:_i_._-'i_i:i'.-.;.'--!i_:!:_i_i.:!_i!!_ii_! i!i_i:_-!_i!i_ii!_!i!_i_:_:ii!'..i_!_!_i..;.-'!?_!i'i:!_:i-.'.;_i::_:_i:i:!:!:!_-_:i:i:i_i_::i:-:i:i:.;:::i:i:'E!:i:i:i:i:!:i__:_:_i_ii::i:i:i!."..':i:i'!_i_!:i;i:!:-:!:!:i_-:i_:_:_::i:i:i:::!;!_i_::::i:!::_::_:_i_!_i_::i:::::!:i:i!i:i_i_:i¢::_i_i::_iii_i_!_:_:_:!!_:!i_:_:!:!:!:_:_!!!!$::!:_ii:!!!:_:i_._:!
$:$i$_$_;:i_;_:_:i:i_$_:_:_:_:i:_::_$_:_:::_:_::_:_:!_:::::::::_$_$_::_¥::i:i:i_:_$:::¥:_$i:i:_:_:i:i:!:i:i:i:i:!$!$i:i:i:_:_$i:!$i:_::::i_$!: :::

by G.H. Chisholm and R.A. Kemmerer*

Decision and Information Sciences Division,
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

April 1994

Work sponsored by the U.S. Department of Defense, National Security Agency

*Kemmerer is affiliated with the Reliable Software Group, Department of Computer Science,
University of Cafifomia at Santa Barbara.

'11'

CONTENTS

ABSTRACT ... 1

1 INTRODUCTION .. 1

2 AN OVERVIEW OF ASLAN .. 2

3 FORMAL PRELIMINARY DESIGN SPECIFICATION FOR TIIE SYSTEM 4

3.1 Types and Constants .. 4
3.2 State Variables ... 6
3.3 Critical Requirements -- Invariants and Constraints 7
3.4 Initial Conditions ... 8
3.5 Transitions .. 9

3.5.1 The Send Transition .. 9
3.5.2 The Transport Transition 10
3.5.3 The Receive Transition 11

4 VERIFICATION OF THE PRELIMINARY DESIGN SPECIFICATION 12

5 A DETAILED FORMAL SPECIFICATION OF THE SYSTEM 13

5.1 Types and Constants .. 13
5.2 State Variables ... 14
5.3 Initial Conditions ... 14
5.4 Transitions .. 15

5.4.1 The Intermediate Transition 15
5.4.2 The Final Transition .. 15
5.4.3 The Remove Links Transition 1.6
5.4.4 The Restore Links Transition 16

5.5 Implementation .. 17

6 VERIFICATION OF THE DETAILED DESIGN SPECIFICATION 18

7 CONCLUSIONS AND FUTURE WORK 20

8 REFERENCE ... 21

APPENDIX: ASLAN Formal Specification for the System 23

FIGURES

1 The Defense Communications System Specified in the Preliminary Design 4

2 The ASLAN System Specified in the Detailed Design 13

iii

, , i ,i: _.... _ ._.... , llb_ , __.... _

A TWO.LEVEL FORMAL SPECIFICATION OF A
DEFENSE COMMUNICATIONS SYSTEM

by

G.H. Chisholm and R.A. Kemmerer

ABSTRACT

J

A two-level ASLAN formal specification of a defense communi-
cations system is presented. The ASLAN model is designed to enhance the
understanding of critical requirements and demands of the defense
communications system. For the top-level (high-level) specifications, the
structural details of the actual network are abstracted to allow more time

for examining the interactions between the sites and the network. At this
level, DataGrams move through the network, although the actual routing
decisions are not specified. More details are added in the second-level
specification. At this level, structure is added to the network.

1 INTRODUCTION

Computer systems are being used in critical situations with sensitive data, which
makes it very important to ensure that these systems perform as desired. The defense
communications system contains particularly sensitive data. The purpose of this report is
to demonstrate ways in which formal specification techniques can be used to model the
critical requirements for this system, thereby leading to a better understanding of the
requirements. The goal is to ensure that the requirements are appropriate and that they are
correctly implemented.

Section 2 presents a brief overview of the ASLAN 1 formal specification language and
the ASLAN specification processor. Section 3 discusses the formal preliminary design
specifications for the defense communications system. Section 4 gives proof obligations auto-
matically generated by the ASLAN processor for these top-level (hereafter referred to as
"high-level") specifications. Section 5 presents the detailed design specification and
elaborates on the network structure. Section 6 discusses the proof obligations for this
detailed specification. Finally, Section 7 states conclusions and future work plans.

1 The original Aslan was the noble lion in C.S. Lewis's Chronicles of Narnia (Macmillan Publishing
Company, New York, N.Y., 1955). Aslan created Narnia and gave the animals the gift of speech.

2 AN OVERVIEW OF ASLAN

The name for the formal specification language and the specification language
processor is ASLAN. The ASLAN specification language is an extension of first-order
predicate calculus with equality and uses the state machine approach to specification. The
system being specified is in various states, and states are differentiated by the values of the
state variables. The values of these variables can be changed only by using well-defined state
transitions. The key elements of the ASLAN language are types and constants, state
variables, invariants and constraints, initial conditions, and transitions.

Predicate calculus assertions specify the desired properties that must hold at every
state and between two consecutive states. Critical requirements that must be met in every
state are known as state invariants. These invariants specify the critical requirements for
a good state (i.e., a secure state), and they must be shown to hold for all reachable states,
including the initial state. To prove that a specification satisfies the critical requirements,
the ASLAN specification processor automatically generates the proof obligations needed to
construct an inductive proof of the correctness of the specification with respect to the
invariant assertions.

The critical requirements that must hold between two consecutive states are ASLAN
constraints. These constraints deime secure state transitions (i.e., requirements that must
be satisfied by every state transition). The constraint is included as part of the proof
obligations generated to construct the inductive proof.

An ASLAN specification consists of a sequence of levels. Each level is an abstract
data-type view of the system being specified. The high-level view is an abstract model that
defines:

• What constitutes the system (i.e., types, constants, and variables);

• What the system does (i.e., state transitions); and

• What critical requirements the system must meet (i.e., invariants and
constraints).

Low levels become increasingly detailed, with the lowest level corresponding closely to high-
level code. The ASLAN specification processor generates correctness conjectures whose proofs
ensure that low levels correctly refine high levels.

The ASLAN specification processor has been implemented to parse ASLAN
statements that specify different levels of abstraction as well as the critical requirements.
The processor also produces the proof obligations needed (1) to prove a specification is correct
with respect to the critical requirements and (2) to show the correct refinement of levels. The
ASLAN lang=_age and use of the language processor are detailed in the ASLAN User's
Manual (Auernheimer and Kemmerer 1992).

il I i i ,i I I I , , II r J J _ , ,

3

Before formally specit_ng the example system, it is useful to have a basic
understanding of some of the notation required by ASLAN. The following symbols are used
for logical operations:

& Logical AND

I Logical OR

~ Logical NOT

Logical implication

In addition, a conditional form is used:

IF A THEN B ELSE C FI,

where A is a predicate, and B arid C are well-formed terms. The notation for set operations
is as follows:

ISIN is a member of
UNION set union
CONTAINED_IN subset
SET DIFF set difference
{a,b..c} the set consisting of elements a,b..and c

The ASLAN language also contains the following quantifier notation:

FORALL for all
EXISTS there exists

Finally, a special ASLAN symbol (a prime symbol) is used to indicate the old value of a
variable (e.g., x" is the value of variable x in the previous state).

I ' i , I I I , , i i l II ir I I I I I i

3 FORMAL PRELIMINARY DESIGN
' SPECIFICATION FOR THE SYSTEM

In this section, each of the components of the ASLAN preliminary design

_l specification for the defense communications system is discussed in detail. The appendix

i] gives the complete ASLAN specification for the system. Figure 1 represents the system

!l specified in the preliminary design.
|

At this level of detail, the network is unstructured. Each of the sites interfaces with

i the network through two buffers: a send buffer and a receive buffer. A site places

| DataGrams in its send buffer when they are ready to be transmitted to another location. The

I network transports the DataGrams to the destination, where they are placed in that

location's receive buffer. Details of the movement of DataGrams within the network are

unknown at this time.

|

3.1 TYPES AND CONSTANTS
ASLAN is a strongly typed language; that is, every simple and constructed type must

be declared in the type section of the specification. At this stage in the design of the

..... ,,,

Location 2 _ Location 4IE]N ®NmN

- _ Location 9_ #'

S = Send Location 8
R = Receive

FIGURE 1 The Defense Communications System Specified in the
Preliminary Design

communications system, the structure of the network is unknown; however, it is assumed

that to ensure that the design contains the required properties, the network will contain

DataGrams. Thus, the DataGram is the first type declared in the type declaration section

of the specification. Again, the specific structure of a DataGram is unknown, as are the

possible values that an element of that type can assume.

The declaration

DataGram

indicates an "unspecified type." The only relations available on elements of an unspecified

type are "=" and "4."

Although its structure is unhnown, a DataGram has a source field, a destination

field, a data field, and a time stamp. These values are represented in the specification by the

following constants:

TO (DataGram): Location,
FROM (DataGram) : Location,
Data (DataGram) : Message,
Timestamp (DataGram) : Time

In addition, because DataGrams can be corrupted or phony DataOrams can be injected into

the network, it is important to know whether a DataGram is well formed. A well-formed

DataGram is indicated by the Boolean constant:

Well_Formed (DataGram) : Boolean

The message and location declarations are also unspecified types. It is not important

at this level of the design to know the makeup of a location or a message. However, it is

necessary to denote that different types of messages and locations occur. For instance, a

message can be either a status message or a command message, and a location can be either

a battle manager, a sensor, or a weapon. The constants

Type_of_Message (Message): Message_Type,
Type of_Site (Location) : Location_Type

specifythe message and location,respectively.The Boolean constant

Consistent_Message (Message_Type,Location_Type): Boolean

determines whether a message type is consistent with its originating location. The type

Time

is also unspecified because, at this stage in the design process, the units of time have not

been specified.

6

In ASLAN, the two most commonly used type constructors are sets and lists. In the

example specification, DataGrams is a set of DataGram, and Locations is a set of Location:

DataGrams IS SET OF DataGram,
Locations IS SET OF Location

Because some messages in the system are more significant than others, it is

important to assign a precedence level with the messages. A declaration of the ASLAN

subtype is used for this purpose:

Precedence_Level IS TYPEDEF T:Integer(T >= 1 & T <=3)

This subtype declaration specifies that an element of type precedence is a subtype of integer,

and its value is in the range from 1 to 3. The constant

Precedence (Message): Precedence_Level

associates a precedence with a message. The last constant

Neighbor (Location,Location): Boolean

determines whether two locations are one "hop" away from one another.

3.2 STATE VARIABLES

As mentioned in Section 2, states are differentiated by the value of the state

variables, and state variables are rei_renced and/or modified by state transitions. All state

variables must be declared in the variable section of the formal specification.

The preliminary design specification has five state variables. The first four variables

are DataGrams, and the first two of these DataGrams are parameterized by location:

.. Send_Buf fer (Location): DataGrams,
Rec_Buffer (Location) : DataGrams

These two variables represent DataGrams that are buffered while they are waiting to be put
into the network, as well as DataGrams that have been removed from the network and are

waiting to be processed by the site. The third state variable

Network: Da taGrmns

represents all DataGrams in transit in the network.

The fifth state variable in the specification

Action_Items (Location) : DataGrams

represents DataGrams removed from the receive buffer that await action by the site. Finally,
the variable

Now

represents the current time.

3.3 CRITICAL REQUIREMENTS--- INVARIANTS AND CONSTRAINTS

The defense communications system aims (1) to deliver the most critical DataGrams
(i.e., those with the highest precedence) first, (2)to take actions only on well-formed
DataGrams, and (3)to allow a DataGram to reside in only one place at a time. These
restrictions on moving and processing DataGrams should be specified in the critical
requirements.

The ASLAN system expresses the critical requirements as invariants and
constraints. The invariants express the critical requirements that must hold in every
reachable state, and the constraints express the critical requirements that must hold between
two consecutive states. The restrictions that a DataGram can reside in only one place at a
time are expressed as invariants in the ASLAN specification. The first conjunct of the
invariant

FORALL D: DataGram (

(EXISTS Ll:Location (D ISIN Send Buffer (LI))
-> FORALL L2:Location (

D -ISIN Rec Buffer (L2) & D -ISIN Network)))

specifies that if a DataGram is in the send buffer of a particular location, it is neither in the
network nor in a receive buffer. The fifth conjunct

FORALL Li,L2:Location (

D ISIN Send Buffer(Ll) & D ISIN Send_Buffer(L2) -> LI=L2)

further states that the DataGram can be in the send buffer at only one site.

The second and fourth conjuncts of the invar _ _nt specify similar properties for the '
receive buffers. The third conjunct specifies that a Data']ram in the network cannot reside
in a send buffer or in a receive buffer.

Before examining the constraints, recall that a primed variable (e.g., x') in an ASLAN
expression indicates the value assigned to that variable in the previous state. The example
system has four constraints. The first conjunct of the constraint

FORALL L:Location, D: DataGram (
(D ISIN Rec_Buffer (L) & D -ISIN Rec_Buffer' (L) ->

(EXISTS Ll:Location (D ISIN Send_Buffer' (LI))

I D ISIN Network')
& FORALL D1 : DataGram (

(EXISTS Ll:Location (DI ISIN Send_Buffer' (LI))

I D1 ISIN Network')
-> Precedence (Data(D)) >= Precedence (Data (DI))))

expresses the requirement that if a new DataGram is placed in the receive buffer of a
location, it must have previously been in the network or in some site's send buffer. That is,
the communications system does not generate DataGrams. Furthermore, this conjunct
specifies that other DataGrams of higher precedence cannot reside in the network or in a
site's send buffer. The second conjunct specifies a similar requirement for DataGrams
moving from a send buffer to either the network or a receive buffer.

The third conjunct

(D ISIN Rec_Buffer' (L) & D -ISIN Rec_Buffer (L) ->
FORALL Dl:DataGram (D1 ISIN Rec_Buffer' (L)

-> Precedence (Data (D)) >= Precedence (Data (DI))))

is a local restriction on each site. It requires each location to process high-priority messages
first.

The last conjunct of the constraint

(D ISIN Action_Items (L) & D -ISIN Action Items' (L) ->
Well_Formed (D)))

is also local. It specifies that only well-formed DataGrams should become action items.

3.4 INITIAL CONDITIONS

The initial conditions of an ASLAN formal specification express the restrictions on
the initial state of the system. That is, for each state variable, it is necessary to express the
restrictions to be placed on its initial value. Because the initial state is a reachable state, it
is necessary for the initial state to satisfy the invariant. (This condition is one of the proof
obligations automatically generated by the ASLAN specification processor.) Therefore, the
invariant could be used as the initial expression. A more realistic approach is to choose a
degenerate case that reflects the initial introduction of the system being specified into the
operational environment while still satisfying the invariant. This approach is used in the
specifications for the defense communications system.

' n' '

The initial condition specifies that the send and receive buffers for all sites contain
no DataGrams. In addition, the network contains no DataGrams. This fact is expressed by

FORALL L:Location (
Send_Buffer (L) = Empty
& Rec_Buffer (L) = Empty)

& Network = Empty

3.5 TRANSITIONS

ASL_N transitions specify the ways in which a system can change from one state to
another. A transition is composed of a header, an entry assertion, and an exit assertion. The
header gives type information for its parameters. The entry assertion expresses the
conditions required to have the transition. The exit assertion specifies the resultant state
after the transition occurs; that is, it specifies values of the state variables in the new state
relative to values in the previous state.

The preliminary design specification for the defense communications system contains
three transitions: Send, Transport, and Receive. These transitions correspond to putting
DataGrams in the send buffer for transmission; transporting them through the network to
their destination, where they are placed in the receive buffer; and processing them in the
receive buffer and taking action, if necessary.

3.5.1 The Send Transition

The parameters of the Send transition are the sender, a list of receivers, and the
message to be sent. The Send transition represents what occurs when a message is placed
in possibly multiple DataGrams with multiple destinations.

TRANSITION Send (Sender :Location, Receivers :Locations, M: Message)
ENTRY

Consistent_Message (Type_of_Message (M),Type_of_Site (Sender))
EXIT

Send_Buffer (Sender) BECOMES Send_Buffer' (Sender) UNION
{SETDEF D: DataGram

EXISTS R: Location

(R ISIN Receivers
& TO (D) = R
& FROM (D) = Sender
& Data (D) = M

& Times tamp (D) = Now') }

The entry assertion for this transition specifies that the message sent must be
consistent with the sending site. For example, a sensor site could not send a launch
command.

The exit assertion specifies that a DataGram for each location in the receiver set is
placed in the sender's send buffer. The content of each DataGram contains the destination

10

for its TO field, the sender's location for its FROM field, the message for its data field, and

the current time (the value of state variable Now) for a time stamp. The BECOMES operator

used in this expression is shorthand notation provided by ASLAN. This notation asserts that

the value of a parameterized variable changes for some arguments but remains unchanged

for the other arguments. Thus, the exit assertion is equivalent to

FORALL SI: Location (
Send_Buffer (Sl) =

IF Sl=Sender

THEN Send_Buffer' (Sl) UNION
{SETDEF D: DataGram
EXISTS R:Location

(R ISIN Receivers
& TO (D) = R
& FROM (D) = Sender
& Data (D) = M

& Times tamp (D) = Now'))
ELSE Send_Buffer' (Sl)

FI)

The ASLAN specification processor transforms BECOMES statements to this form when

constructing the proof obligations.

3.5.2 The Transport Transition

The Transpo_ transition models the movement of DataGrams in the communications

system. Each time this transition is fired, a single DataGram moves _om a location's send

buffer or _om pa_ of the network to either the receive buffer at the destination site or to

another part of the network.

TRANSITION Transport (D:DataGram)
ENTRY

EXISTS L:Location (

D ISIN Send_Buffer (L)) I D ISIN Network)
& FORALL Dl:DataGram (

EXISTS Ll:Location (

D1 ISIN Send_Buffer (LI)) I D11SIN Network
-> Precedence (Data(D)) >= Precedence (Data (DI)))

EXIT

IF EXISTS L:Location (D ISIN Send_Buffer' (L))
THEN UNIQUE L:Location (
D ISIN Send_Buffer'(L)

& Send_Buffer (L) BECOMES Send_Buffer' (L) SET_DIFF {D}
& IF Neighbor (TO (D),L)

THEN Rec_Buffer (TO (D))
BECOMES Rec_Buffer' (TO (D)) UNION {D}

ELSE Network = Network UNION {D)

FI)
ELSE (Rec_Buffer (TO (D))

BECOMES Rec_Buffer' (TO (D)) UNION {D}
& Network = Network SET_DIFF {D}

INOCHANGE (Rec_Buffer,Network))
FI

11

The first conjunct of the entry assertion for the Transport transition specifies that the

DataGram must be in either a site's send buffer or the network. The second conjunct

specifies that the precedence of this DataGram is at least as high as any DataGram located
in a send buffer or the network.

The exit assertion is written by using the ASLAN conditional form (IF THEN ELSE

FI). The THEN form corresponds to what occurs if the DataGram is in a send buffer; the

ELSE form corresponds to what occurs if the DataGram is in the network. Suppose the

DataGram is in a send buffer and is being sent to a neighboring site of the site that is

sending the message. In that case, the DataGram is placed in the receive buffer at the

destination site; otherwise, it is put in the network. In both cases, the DataGram is removed

from the send buffer. When a DataGram is already in the network, it is either placed in the
receive buffer at the destination site and removed from the network or allowed to remain in

the network. The latter option is a disjunction because at this level of detail it is not known
how it is decided whether the DataGram remains in or is removed from the network. This

process will be clarified in the more detailed second-level specification.

3.5.3 The Receive Transition

The Receive transition represents a site that processes DataGrams that are delivered
to its receive buffer.

TRANSITION Receive (Receiver:Location, D:DataGram)
ENTRY

D ISIN Rec_Buffer (Receiver)
& FORALL Dl:DataGram (DI ISIN Rec_Buffer (Receiver)

-> (Precedence (Data (D)) >= Precedence (Data (DI))))
EXIT

Rec_Buffer (Receiver) BECOMES Rec_Buffer' (Receiver)
SET_DIFF{D}

& IF Well_Formed(D)
THEN Action_Items(Receiver) BECOMES

Action_Items'(Receiver) UNION {D)
FI

The entry assertion specifies thatonly DataGrams in the site's receive buffer can be

processed and that the precedence of the DataGram processed is at least as high as other
DataGrams in this site's receive buffer.

The exit assertion specifies that the DataGram is removed from the site's receive

buffer and that other DataGrams remain in the buffer. It also specifies that a well-formed

DataGram is added to the list of action items for this site. At this level, the well-formed

property is not defined; however, cryptographic check sums could be used to implement the
well-formed check.

12

4 VERIFICATION OF THE PRELIMINARY
DESIGN SPECIFICATION

Upon completion of the preliminary design specification for the defense
communications system, the specification was input into the ASLAN processor to produce the
necessary proof obligations. The aim was to guarantee that the transitions specified would
satisfy the formal critical requirements. Before examining the proof obligations generated,
recall that the formal critical requirements consist of invariants and constraints, where an
invariant is a relationship between state variables that must hold in every reachable state,
and a constraint is a relationship between state variables that must hold between two
consecutive states.

The ASLAN proof methodology uses an inductive approach to generate the necessary
proof obligations to ensure that the critical requirements are preserved. In this approach,
the invariants are proved for the initial state. For every transition, it is then necessary to
show that if the transition fires in a state where the invariants hold, the resultant state also
satisfies the invariants. In addition, the previous and new states must satisfy the
relationships expressed by the constraints; that is, the initial state is the base case, and the
induction is on the transitions. Thus, the transitions can be fired in any order, and, by
induction, any reachable state will satisfy the invariants, and any two consecutive states will
satisfy the constraints.

__ The first proof obligation generated by the ASLAN processor is known as the Initial
Conditions Theorem:

INIT -_ INV, "

i where INIT is the initial clause, and INV represents the invariants in the invariant clause
of the specification.

In addition, for each transition in the specification, the ASLAN processor generates
a Transition Theorem:

INV' & ENTRY" & EXIT --, INV & CON,

where ENTRY and EXIT are the entry and exit assertions for the transition, and CON is the
constraint clause. (It is beyond the scope of this report to discuss the proofs of these
correctness conjectures.)

13

5 A DETAILED FORMAL SPECIFICATION OF THE SYSTEM

Once additional design decisions have been made, a more detailed formal design

specification can be developed. The detailed design specification will give more information

about the structure of the network. Figure 2 shows the system specified in the detailed

design. At this level, the network is an architecture of static links, with each link connecting

two sites. These links can be disabled and restored. In addition, each location has a transfer
buffer to hold DataGrams in transit from their source to their destination.

Many of the types, constants, and variables of the preliminary design specification

are identical in the detailed design specification. That is, no new details have been added

for these entities. The following sections discuss only the new or modified entitl, _ of the

specification.

5.1 TYPES AND CONSTANTS

Two new types have been added to the detailed design:

Link,
Links IS SET OF Link

A link connects two sites and can become inope_'able and then operable again (Section 5.4).

L°t°n21I Locaton4I
Location1 o

mm
'ocat'oo_I __, L°cati°n 91_S'S = Send =

R = Receive Location81T = Transfer

FIGURE 2 The ASLAN System Specified in the Detailed Design

14

The constant

Next_Hop (Location, Location) :Location

representstheroutingalgorithmused. At thislevelofdetail,no actualalgorithmispresent;

however,givenany two locations,thealgorithmdeterminesthenextlocationalongthepath.

The constant

Net_Arch: Links

isa setoflinksthatindicatespairsofsitesthat areconnected. Note thatlinkagebetween

two sitesdoesnot mean thatthe linkcan be used forcommunication. That is,althoughthe

architectureisstatic,the operabilityofthe linksisdynamic. Therefore,some linksmay be

inoperableand unavailableforcommunication.

Another new constantdeclared

Link_OK (Location, Location, Links) :Bool can

determines whether a link between two locations exists. That is, given two locations and a

set of operable links, this constant is true if the link between the two locations is in the set;

otherwise, it is false.

5.2 STATE VARIABLES

As mentioned above, a transfer buffer is associated with each site. The state variable

Trans_Buffer (Location) :DataGrams

representsthesebuffers.

A second new state variable introduced in the detailed design specification is

Operational_Links :Links

This state variable represents those links in the network that are currently operational.

5.3 INITIAL CONDITIONS

The initial conditions clause specifies that neither the send nor the receive buffers

contain DataGrams. In addition, all transfer buffers are empty. The initial conditions clause

also specifies that all links in the network are currently operational. This condition is

expressed by

FORALL L:Location (
Send_Buffer (L) = Empty
& Rec_Buffer (L) = Empty
& Trans_Buffer (L) = Empty
& Operational_Links = Net_Arch)

15.

5.4 TRANSITIONS

Six transitions are included in the detailed design specification for the defense

communications system: Send, Intermediate, Final, Receive, Remove Links, and Restore

Links. The Send and Receive transitions are identical to those specified in the preliminary

design. The Intermediate and Final transitions are realizations of the Transport transition

in the preliminary design, and the two remaining transitions do not correspond to transitions

specified in the preliminary design. Each of the new transitions is discussed in

Sections 5.4.1-5.4.4, respectively.

5.4.1 The Intermediate Transition

The Intermediate transition implements the Transport transition that is fired when

the DataGram is being transferred to a destination other than its final destination.

TRANSITION Intermediate (D:DataGram)
ENTRY

EXISTS L:Location (

(D ISIN Trans_Buffer (L) I D ISIN Send_Buffer (L))
& Next_Hop (TO(D), L)-=TO(D)

& Link_OK (L,Next Hop (TO(D),L),Operational_Links)

& FORALL D1 :DataGram, L1 :Location (

((DI ISIN Trans_Buffer(Ll) I D1 ISIN Send_Buffer(Ll))
& Link_OK(Li,Next Hop(TO(D1) ,LI) ,Operational Links))
-> (Precedence(Data(D)) >= Precedence(Data(Dl)))))

EXIT

UNIQUE L:Location (

(D ISIN Trans_Buffer' (L) I D ISIN Send_Buffer' (L))
& Send_Buffer (L) BECOMES Send_Buffer' (L) SET DIFF {D}

& Trans_Buffer (L) BECOMES Trans_Buffer' (L) SET_DIFF {D}

& Trans_Buffer (Next_Hop (TO (D),L)) BECOMES

Trans_Buffer' (Next_Hop(TO(D) ,L)) UNION (D})

The first conjunct of the entry assertion for this transition specifies that the

DataGram must be in either a site's send buffer or a transfer buffer. The second conjunct

specJf _ that the next location is not the destination, and the third conjunct specifies that

an operational link exists between the DataGram's present location and its next location.

The f'mal conjunct specifies that the precedence of this DataGram is at least as high as any
DataGram located in a send buffer or a transfer buffer; it also identifies which link becomes

operational next.

The exit assertion for this transition specifies removal of the DataGram from either

the send buffer or the transfer buffer where it currently resides. The DataGram is placed in

the transfer buffer of the site that is next in its routing (as determined by the next hop
constant).

5.4.2 The Final Transition

The Final transition implements the Transport transition that is fired when the next

location for the DataGram being transferred is its destination location.

16

TRANSITION Final (D:DataGram)
ENTRY
EXISTS L:Location (

(D ISIN Trans_Buffer(L) I D ISIN Send_Buffer(L))
& Next_Hop (TO (D),L)=TO (D)
& Link_OK (L,Next_Hop (TO (D) ,L) ,Operational_Links)
& FORALL D1 :DataGram, L1 :Location (

((DI ISIN Trans_Buffer (LI) I D1 ISIN Send_Buffer (LI))
& Link_OK (Li,Next_Hop (TO (DI) ,Ll),Operational_Links))

-> (Precedence (Data (D)) >= Precedence (Data (DI)))))
EXIT

UNIQUE L:Location (

(D ISIN Trans Buffer' (L) I D ISIN Send_Buffer' (L))
& Send_Buffer (L) BECOMES Send_Buffer' (L) SET_DIFF {D}
& Trans_Buffer (L) BECOMES Trans_Buffer' (L) SET_DIFF (D}
& Rec_Buffer (TO (D)) BECOMES Rec Buffer' (TO (D)) UNION {D})

The entry assertion for the Final transition differs from the entry assertion for the

Intermediate transition only in the second conjunct. This conjunct specifies that the next hop
is the DataGram's destination. The exit assertion for the Final transition differs from the

exit assertion for the Intermediate transition in one way; that is, the DataGram is placed in

the receive buffer of the site that corresponds to its next hop instead of in the site's transfer
buffer.

5.4.3 The Remove Links Transition

The Remove Links transition models a set of links of the network that becomes

inoperable. For example, an electromagnetic pulse could cause some of the links to fail.

TRANSITION Remove_Links (L: Links)
ENTRY

[CONTAINED_IN Net_Arch
EXIT

Operational_Links = Operational_Links' SET_DIFF {L}

One entry condition exists for the Remove Links transition: links that are

parameters to the transition must be links in the network architecture. The exit assertion

specifies that these links are no longer operable; therefore, they are removed from the set of

operational links.

5.4.4 The Restore Links Transition

The Restore Links transition models a set of links being restored to operational

status.

TRANSITION Restore Links (L: Links)
ENTRY

L CONTAINED_IN Net_Arch
EXIT

Operational_Links = Operational_Links' UNION {L}

The entry assertion for this transition requires the links to be links in the network

architecture. The exit assertion adds these links to the set of operational links.

17

5.5 IMPLEMENTATION

The implementation section indicates how each of the types, constants, variables, and
transitions that occur at a high level is refined in the level immediately below (i.e., the level

containing the implementation section). For the defense communications specification, most
mappings are identity maps, except for the constant neighbor, the variable network, and the

Transport transition.

The mapping for the constant neighbor is

Neighbor (LI,L2) == Next_Hop (LI,L2)=L2

This mapping specifies what was termed a "neighbor" in the preliminary design specification

is now a site that is exactly one hop away.

The mapping for the variable network is

Network == {SETDEF D:DataGram EXISTS L:Location (
DISIN Trans_Buffer (L))}

The network, which was a collection of DataGrams in the preliminary design specification,

is realized by the collection of DataGrams that resides in the transfer buffers. Note that
links that are new at this level of detail do not appear in the mapping because they do not

correspond to high-level links.

The mapping for the Transport transition is

Transport (D) == Final (D) I Intermediate (D)

This mapping specifies that the Transport transition can be fired through either the
Intermediate or the Final transition. The mapping does not indicate under what conditions

one or the other of these transitions fires. These conditions are determined by the entry
assertions of the two low-level transitions (Section 5.4).

18

6 VERIFICATION OF THE DETAILED
DESIGN SPECIFICATION

The ASLAN specification processor also generates the appropriate proof obligations
for the detailed design specification of the defense communications system. These proof
obligations guarantee that the detailed design specification correctly refines the preliminary
design specification.

When using ASLAN, the proof obligations between any two levels of specification are
always of the same form. First, a proof obligation is generated that guarantees that the
initial condition specified in the detailed design (low-level) specification implies the initial
condition of the "parent" specification. In addition, for each transition in the preliminary
design (high-level) specification, proof obligations are generated to guarantee that the
transition is correctly refined in the "child" specification. Finally, for each low-level transition
that does not refine a high-level transition, a proof obligation is generated to guarantee that
the transition preserves a mapping of the invariant and the constraint.

The low-level specification contains more details (i.e., it is less abstract) than those
contained in the high-level specification. Therefore, it is necessary to use the implementation
section of the low-level specification to rigorously transform the high-level types, constants,
and variables to the entities of the low-level specification.

The interlevel proof obligations generated by the ASLAN specification processor are
an Initial Condition Mapping Theorem and Transition Mapping theorems.

The Initial Condition Mapping Theorem is

INITlo w _ Impl (INIThigh) ,

where INITlo w is the initial clause of the low-level specification, and INIThig h is the initial
clause of the high-level specification. The Impl function in this formula denotes the
application of the mappings defined in the low-level specification to the types, constants, and
variables that appear in the expression to which it is applied.

The Transition Mapping theorems for a high-level transition refined by a single low-
level transition are

Impl (ENTRYhig h) & Impl (IYVhig h) _ ENTRYlo w

and

Impl (ENTRY'big h) & Impl (INV'hig h) & EXITlo w --->Impl (EXIThi,q h) ,

where ENTRYlo w and EXITIo w are the entry and exit of the low-level transition, and

ENTRYhig h and EXIThig h are the entry and exit of the parent transition, respectively.

19

If the parent transition is mapped to several transitions, this mapping is reflected in
the mapping theorem generated. For example, in the defense communications system
detailed design specification, the disjunctive mapping for the Transport transition generates
the following proof obligations:

Impl (ENTRYtranspor t) & Impl (INVhig h) --->(ENTRYinterrnediat e I ENTRYfinal),

and

Impl (ENTRY'transpor t) & Impl (INV'hig h) & (EXITinterrnediat e [EXITfinal)

Impl (EXrTTransport).

For a transition that does not refine a high-level transition, the proof obligation must
guarantee that the invariant and constraint are preserved. The proof obligation generated
is

ENTRY'lo w & Impl (INV'hig h) & EXlrTlow -->Impl (INVhig h) & Impl (CONhig h).

By showing that the low-level initial conditions correctly implement the high-level
initial conditions and that the low-level transitions correctly implement the high-level
transitions, it follows that the low-level specification preserves the invariants and constraints.
That is, because the low-level specification is consistent with the level above it, and the level
above is consistent with the formal critical requirements, the low-level specification is
consistent with the formal critical requirements. For the defense communications system,
the preliminary design specification and the detailed design specification were input to the
ASLAN specification processor to generate the necessary proof obligations to ensure that the
detailed design specification was consistent with the preliminary design specification. This
report has simplified the proof obligations generated by the ASLAN specification processor
to clarify the presentation. The details of the actual proof obligations generated are discussed
in Auernheimer and Kemmerer (1992).

20

7 CONCLUSIONS AND FUTURE WORK

The ASLAN formal preliminary design specification and detailed design specification
for a defense communications system have been presented. The detailed design specification
elaborated on the structure of the network, the design of the routing algorithm, and the
possibility of inoperable communication links.

The primary benefit of formally specifying and verifying software is development of
more reliable systems. That is, programs developed through the use of this approach perform
the desired functions with fewer errors and can be trusted to operate correctly in critical
environments. In addition, because undetected errors are usually more expensive to fix once
the software becomes operational (as compared with those revealed during the design phase),
the cost of software development is reduced. Errors are located and eliminated early in the
development process, thus reducing costs.

Formalmethodsshouldbeintegratedintothesoftwaredevelopmentprocesstoensure

thatcriticalsystemsperformas desired.Usingformalnotationforthedesigndocuments
allowsrigorousinvestigationofthedesignbeforethecodeiswritten.Inaddition,because

criticalsystem requirementsare capturedin a mathematicalnotation,the system
specificationcanserveasan unambiguousarbitratorofthedesiredpropertiesofthesystem.

Furthermore,designpropertiescan be proved,which ensuresearlyinthe development
processthatthesystemwillsatisfyitscriticalrequirements.

21

8 REFERENCE

Auernheimer, B., and R.A. Kemmerer, 1992, ASLAN User's Manual, TRCS84-10, Depart-

ment of Computer Science, University of California at Santa Barbara, April.

t_
L_

23

APPENDIX:

ASLAN FORMAL SPECIFICATION FOR THE SYSTEM

t_

25

SPECIFICATION COMMUNICATIONS

LEVEL Top_Level

TYPE

DataGram,

Message,
Location,

Message_Type,
Location_Type,
Time,
DataGrams IS SET OF DataGram,
Locations IS SET OF Location,

PrecedenceLevel IS TYPEDEF T:Integer(T >= 1 & T <=3)

CONSTANT

TO(DataGram): Location,
FROM(DataGram): Location,

Data(DataGram): Message,
Timestamp(DataGram): Time,
Precedence(Message): Precedence_Level,
Type_of_Message(Message): Message_Type,
Type_of_Site(Location): Location_Type,
ConsistentMessage(Message_Type,Location_Type): Boolean,
Well_Formed(DataGram): Boolean,
Neighbor(Location,Location): Boolean

VARIABLE

Se nd_Buffer(Locati on) :DataGrams,
Rec_Buffer(Location) :DataGrams,
Network:Datagrams,
Actionl te ms (Loc ation): DataG rams,
Now:Time

INITIAL

FORALL L:Location (SendBuffer(L) = Empty & Rec Buffer(L) = Empty)
& Network = Empty

INVARIANT

FORALL D:Datagram (

(EXISTS L 1:Location(D ISIN Send_Bu ffer(L l))
-> FORALL L2:Location (

D" ISIN Rec Buffer(L2) & D "lSIN Network))
& (EXISTS Ll:Location(D IS!N Rec_BufferCLl))

-> FORALL L2:Location (

D "ISIN Send Buffer(L2) & D "ISIN Network))
& (D ISIN Network

-> FORALL L:Location (

D "ISIN Rec Buffer(L) & D "ISIN SendBuffer(L)))
& FORALL LI,L2:Location (

D ISIN Rec Buffer(Ll) & D ISIN Rec Buffer(L2) -> Ll=L2)
& FORALL LI,L2:Location (

D ISIN Send Buffer(Ll) & D ISIN Send Buffer(L2) -> Ll=L2))

26

CONSTRAINT
FORALL L:Location, D: DataGram (

(D ISIN Rec_Buffer(L) & D "ISIN Rec Buffer'(L) ->
(EXISTS Ll:location (D ISIN Send Buffer'(Ll))m

ID ISIN Network')
& FORALL Dl:DataGram (

(EXISTS Ll:Location(Dl ISIN Send Buffer'(Ll))
IDI ISIN Network')

-> Precedence(Data(D)) >= Precedence(Data(D 1))))
&

(D ISIN Send_Buffer'(L) & D "ISIN Send_Buffer(L) ->
(EXISTS Ll:location (D ISIN Rec_Buffer(Ll))
ID ISIN Network)

& FORALL D 1:DataGram (
(EXISTS Ll:Location(Dl ISIN Send Buffer'iLl))
I DI ISIN Network')

-> Precedence(Data(D)) >= Precedence(Data(D l))))
&

(D ISIN Rec_Buffer'(L) & D "ISIN Rec_Buffer(L) ->
FORALL Dl:DataGram (DI ISIN Rec_Buffer'(L)

-> Precedence(Data(D)) >= Precedence(Data(D l))))
&

(D ISIN Actionltems(L) & D "ISIN Action_Items'(L) ->
Well_Formed(D)))

TRANSITION Send (Sender:Location. Receivers:Locations, M:Message)
ENTRY

Consistent_Message(Type_of_Message(M), Type_of_Site(Sender))
EXIT

Send_Buffer(Sender) BECOMES Send_Buffer'(Sender) UNION
{SETDEF D:DataGram

EXISTS R:Location (
R ISIN Receivers

& TO(D) = R
& FROM(D) = Sender
& Data(D) = M

& Timestamp(D) = Now) }

TRANSITION Transport (D:DataGram)
ENTRY

EXISTS L:Location (D ISIN SendBuffer(L)) [D ISIN Network
& FORALL Dl:DataGram (

EXISTS Ll:Location (Dl [SIN Send_Buffer(Ll)) IDl ISIN Network
-> Precedence(Data(D)) >= Precedence(Data(D l)))

EXIT

IF EXISTS L:Location (D ISIN SendBuffer'(L))
THEN UNIQUE L:Location (

D ISIN Send_Buffer'(L)
& Send_Buffer(L) BECOMES Send_Buffer'(L) SET_DIFF {D}
& IF Neighbor(TO(D),L)

THEN Rec Buffer(TO(D)) BECOMES Rec_Buffer'(TO(D)) UNION {D}
ELSE Network = Network UNION {D}

1:I)

t

i

27

ELSE (Rec_Buffer(TO(D)) BECOMESRec_Buffer'(TO(D))UNION {D}
& Network - Network SET DIFF {D}m

INOCHANGE(Rec_Buffer,Network))
F1

i

TRANSITION Receive (Receiver:Location,D:DataGram)
ENTRY

D ISIN Rec_Buffer(Receiver)
& FORALL Dl:DataGram (DI ISIN Rec_Buffer(Receiver)

-> (Precedence(Data(D))>= Precedence(Data(Dl))))
EXIT

Rec_Buffer(Receiver)BECOMES Rec_Buffer'(Receiver)SET_DIFF {D}
& IF Well_Formed(D)

THEN Action_Items(Receiver) BECOMES
Action Items'(Receiver)UNION {D}m

H

END Top_Level

28

LEVEL Second_LevelREFINES Top_Level

TYPE
DataGram,
Message,
Location,
Message_Type,
Location_Type,
Time,
DataGramsIS SET OF DataGram,
Locations IS SET OF Location,
Precedence_level IS TYPEDEF T:Integer(T>= 1 & T <-3),
Link,
Links IS SET OF Link

CONSTANT
TO(DataGram): Location,
FROM(DataGram): Location,
Data(DataGram): Message,
Timestamp(DataGram): Time,
Precedence(Message): Precedence_Level,
Type_of_Message(Message): Message_Type,
Type_of Site(Location): Location_Type,
Consistent_Message(Message_Type,Location_Type): Boolean,
Well_Formed(DataGram): Boolean,
Next_Hop(Locatioa,Location):Location,
Net_Arch:Links,
Link_OK(Location,Location,Links):Boolean

VARIABLE

Send_Buffer(Location):DataGrams,
Rec_Buffer(Location):DataGrams,
Trans_B uffer(Location):DataGrams,
Action_ltems(Location):DataGrams,
Now:Time,
Operational_Links:Links

INITIAL
FORALL L:Location (

Send_Buffer(L) = Empty
& Rec_Buffer(L) = Empty

& Trans_Buffer(L) -- Empty
& OperationalLinks = Net_Arch)

29

TRANSITION Send (Sender:Location, Receivers:Locations, M:Message)
ENTRY

ConsistentMessage(Type_of..Message(M), Type_of_Site(Sender))
EXIT

Send_Buffer(Sender) BECOMES Send_Buffer'(Sender) UNION
{SETDEF D:DataGr,'un

EXISTS R:Location (
R ISIN Receivers

& TO(D) = R
& FROM(D) = Sender
& Data(D) = M

& Timestamp(D) = Now) }

TRANSITION Intermediate (D:DataGram)
ENTRY

EXISTS L:Location(

(D ISIN Trans_Buffer(L) ID ISIN Send_Buffer(L))
& Next_Hop(TO(D),L)" =TO(D)
& Link_OK(L,Next_Hop(TO(D),L),Operational_Links)
& FORALL Dl:DataGram, Ll:Location (

((DI ISIN Trans Buffer(Ll) IDI ISIN Send_Buffer(Ll))
& Link_OK(L 1,Next_Hop(TO(D l),Ll),Operational_Links))

-> (Precedence(Data(D)) >= Precedence(Data(D l)))))
EXIT

UNIQUE L:Location((D ISIN Trans_Buffer'(L) ID ISIN Send_Buffer'(L))
a Send_Buffer(L)BECOMES Send_Buffer'(L)SET_DIFF {D}

& Trans_Buffer(L)BECOMES Trans_Buffer'(L)SET_DIFF{D}

& Trans_Buffer(Next_Hop(TO(D),L))BECOMES

Trans_Buffer'(Next_Hop(TO(D),L))UNION {D})

TRANSITION Final(D:DataGram)
ENTRY

EXISTS L:Location(

(D ISINTrans_Buffer(L)ID ISINSend_Buffer(L))

& Next_Hop(TO(D),L)=TO(D)

& Link_OK(L,Next_Hop(TO(D),L),Operational_Links)
& FORALL D l:DataGram, Ll;Location (

((DI ISIN Trans_Buffer(Ll) IDI ISIN Send_Buffer(Ll))
& Link_OK(L l,Next_Hop(TO(D I),L l),Operationai_Links))

-> (Precedence(Data(D)) >= Precedence(Data(DID)))
EXIT

UNIQUE L:Location((D ISIN Trans_Buffer'(L) ID ISIN Send_Buffer'(L))
& Send_Buffer(L) BECOMES SendBuffer'(L) SET_DIFF {D}
& Trans_Buffer(L) BECOMES Trans_Buffer'(L) SET DIFF {D }
& Rec_Buffer(TO(D)) BECOMES Rec_Buffer'(TO(D)') UNION {D})

TRANSITION Receive (Receiver:Location, D:DataGram)
ENTRY

D ISIN Rec_Buffer(Receiver)
& FORALL Dl:DataGram (Dl ISIN Rec Buffer(Receiver)

-> (Precedence(Data(D)) >= Precedence(Data(D l))))

3O

EXIT

Re,c_Buffer(Receiver) BECOMES Rec_Buffer'(Receiver) SET DIFF {D)
& 1FWell_Formed(D)

THEN Action_Items(Receiver) BECOMES
Action_items' (Receiver) UNION {D }

FI

TRANSITION Remove_Links(L: Links)
ENTRY

L CONTAINED IN Net Arch
EXIT

Operational_Links = Operational_Links' SET_DIFF {L }

TRANSITION Restore_Links(L: Links)
ENTRY

L CONTAINED IN Net Arch
EXIT

Operational_Links = Operational_Links' UNION {L}

IMPLEMENTATION
DataGram == DataGram,

Message _ Message,
Location _ Location,

Message_Type _ Message_Type,
Location_Type _ Location_Type,
Time _ Time,
DataGrams _ DataGrams,
Locations == Locations,

Precedence_Level _ Precedence_Level,

TO(D) ---- TO(D),
FROM(D) == FROM(D),
Data(D) -----Data(D),

Timestamp(D) _ Timestamp(D),
Precedence(M) _---Precedence(M),

Type of Message(M) _ Type of.Message(M),
Type_of .Site(L) _---Type_of_Site(L),
Consistent_Message(M,L) _---Consistent Message(M,L),
Well_Formed(D) _ WeilFormed(D),
Neighbor(L I,L2) _ Next Hop(L I,L2)=L2,

Send_Buffer(L) == Send_Buffer(L),
Rec_Buffer(L) == Rec_Buffer(L),
Network _ {SETDEF D:Datagram EXISTS L:Location (D ISIN Trans_Buffer(L)) },
Actionltems(L) _--- Actionltems(L),
Now =-- Now,

Send(S,R,M) _--- Send(S,R,M),

Transport(D) == Final(D) I Intermediate(D),
Receive(S,D) == Receive(S,D)

END Second Level
END COMMUNICATIONS

i

4i

m m

