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ABSTRACT

We present a new pattern recognition (PR) technique for
chemical identification using arrays of microsersors. The technique
relies on a new empirical approach to k-dimensional cluster analysis
which incorporates measured human visual perceptions of difficult
2-dimensional clusters. The method can handle nonlinear SAW array
data, detects both unexpected (outlier) and unreliable array
responses, and has no user-adjustable parameters. We use this
technique to guide the development of arrays of thin-film-coated
SAW devices that produce optimal PR performance for
distinguishing a variety of volatile organic compounds,
organophosphonates and water.

INTRODUCTION

There is much current interest in the use of pattern recognition
(PR) techniques to identify and quantify chemical analytes based on
the multivariate responses of chemical microsensor arrays [1,2]. PR
techniques used previously measured array responses of the class
categories of interest, called training set data, to infer the class
category associated with new array measurements (test data). The
class categories can be the chemical identities of the analytes and can
also represent the analyte concentrations. Each sensor in the array
provides one dimension of the multidimensional data vectors. The
application of PR techniques to microsensor-based chemical sensing
is motivated by two advantages: (i) chemical identification is possible
using only partially chemically selective microsensors rather than
highly selective (and more difficult to develop) microsensors; (ii) PR
can in principle identify a large number of chemical species using a
small, fixed set of sensors.

The desired arrays of sensors are those that yield distinctive
response patterns for different chemicals, i.e. so that the clusters of
pattern vectars associated with different chemical classes are
spatially separated and distinguishable in the pattern vector space.
However, not all arrays yield useful separations of the chemical
classes, so much of the work required to develop a useful chemical
pattern recognition scheme is in finding a useful combination of
chemical sensors.

Surface acoustic wave (SAW) devices that have been coated with
different partially selective films are of current interest for array
applications [2-4]. The variety of coatings that can be fabricated
suggests the possibility of detecting a wide range of analytes with
SAW devices. However, coated SAW devices often respond
ponlinearly and occasionally nonmonotonically as a function of
analyte concentration [5]. These devices also do not necessarily yield
additive responses to chemical mixtures. Such responses present
severe difficulties for conventional chemometric techniques, which
work well for linear response signals.

We describe a new PR technique which can treat nonlinear and
nonmonotonic sensor responses. The technique is computationally
efficient, provides waming for new data points that are atypical or
that cannot be reliably identified, and requires no user-adjustable
parameters. We demonstrate the technique with the optimization of
arrays of coated SAW devices for identifying volatile organic
compounds (VOCs), organophosphonates and water. VOC detection
and monitoring is of interest for a number of industrial and DOE
applications [4] and the organophosphonates are simulants for
chemical warfare agents [3]. We describe the selection of SAW
coating combinations and compute estimates of the expected
performance of the arrays on new data. The arrays are developed and

demonstrated using chemicals presented individually. The
performance of this approach for array respomses t. complex
mixtures remains the subject of future study.

PATTERN RECOGNITION TECHNIQUE

Our technique relies on a new empirical approach to
k-dimensional cluster analysis that incorporates measured human
visual perceptions of difficult 2-dimensional clusters [6]. We use this
pew clustering method because it: (i) mimics human cluster
perception; (ii) requires no prior knowledge about the final cluster
result (e.g. the number of clusters); (iii) outperforms commercially
available cluster methods on benchmarking tests [6]. Here we
describe the use of the clustering results to carry out PR or to evaluate
the expected PR performance using sets of coated SAW sensor
responses. Details of the clustering method are described in Ref. 6.

PR using the cluster results is illustrated in Fig. 1a. The open and
closed circles represent hypothetical training data for two classes and
the x symbols represent hypothetical test data points of unknown
chemical class identity. The two dimensions of the data correspond to
simultaneous responses of two different sensors. Computed
clusterings of the test points are indicated by the lines connecting the
points. Three possible cases occur for the class assignment of each
new test point: (i) The new point is clustered only with training data
of a single class and is assigned that same class -- this is the desired
result; (ii) The new point is clustered with none of the training data
and is not assigned a class -- these outlier points can result from
detection of a new chemical class that is not present in the training
data sei, although sensor measurement errors can also produce
outliers; (iii) The new point is clustered with training points from
maultiple classes -- these points occur where the training set classes
overlap and cannot be reliably distinguished, so that the class
assignment is ambiguous. We note that cases (ii) and (iii) provide
useful information that is often unavailable or unreliable from
existing PR techniques.

1t is usually necessary to estimate the expected performance of
the sensor array using only the measured training data set. We use the
"leave-one-out" approach [7], where each data point is individually
removed from the complete training set and examined as a new test
point by the PR technique. This approach maximizes the use of the
available training data and avoids the favorable bias of the results that
occurs by including the point that is being classified. This approach
is not always convenient in some PR methods that require additional
computations for each version of the training set with a point
removed (e.g. retraining a neural net). Fig. 1b illustrates how the
cluster results are used for the leave-one-out computations. The
known class identity of each training data point is compared with the
result inferred from the clustering approach shown in Fig. 1a. There
are again three possible cases which can arise: (i) The point is
clustered only with other training data of the correct class -- such
points are correctly identified; (ii) The point is clustered with none of
the other training data -- these outlier points are too far away from
other points in the same class for clustering to occur. Outlier points in
the leave-one-out analysis are usually due to inadequate sampling of
the class in the parts of pattern vector space near the outliers, and
suggest the need for more training points. However, these can also
result from sensor measurement errors; (iii) The point is clustered
with other training points from one or more classes that do not match
the correct class. These points identify overlaps between classes in 7™
pattern vector space where the sensor array is unable to mz.iably T
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Fig 1. (a) Ilustration of the use of cluster results for PR.
Open and closed circles are training data, x symbols are test
data. Computed clusterings of test points with training data are
indicated by connecting lines. The three cases illustrated are: (i)
recognized; (i) outlier; and (iii) ambiguous or incorrect. (b)
Use of cluster results for leave-one-out PR analysis on the same
training data. The three illustrated cases are: (i) correctly
recognized; (ii) outlier; and (iii) incorrect.

distinguish chemical identities. Statistics on these three cases for the
entire training set provide three separate figures of merit for the
sensor array under consideration, i.e. the percentage correctly
identified, the percentage that indicates inadequate training set
sampling, and the percentage that indicates class overlap. These
figures of merit are used here to optimize the selection of the array
Sensors.

EXPERIMENTAL PROCEDURES

We analyze experimental results from two sets of coated-SAW
arrays and analytes. In both studies we make use of only the
frequency shifts which result from the uptake of the analyte by the
SAW device coatings. Other measurable responses, e.g. attenuation
[4], are also available for PR, and we will examine these in future
work.

The first set of chemicals includes water, an alcohol
(isopropanol), a ketone (acetone), non-chlorinated hydrocarbons
(d-limonene, n-hexane, and toluene) and chlorinated hydrocarbons
(CCls, TCE, and chloroform). These analytes are sensed using SAW
devices coated with ethyl cellulose, polyisobutylene and nafion
polymer films. The data are acquired by alternating between a
chemical-free purge stream and a stream at a canstant chemical
concentration. Chemical concentration is controlled by the relative
flow rates of a chemiral-free mix-down stream and a saturated stream
(obtained by passage through a bubbler containing the chemical).
Four concentrations per chemical were obtained. This produced 12
data points for both the chlorinated and non-chlorinated classes.

The second set of chemicals includes water, organophosphonates
(DIMP, DMMP), a ketone (acetone), aromatic hydrocarbons
(benzene, toluene), chlorinated hydrocarbons (CCly, TCE), aliphatic
hydrocarbons (cyclohexane, isooctane), and alcohols (methanol,
pinacolyl alcohol, n-proponal). These analytes are sensed using SAW
devices coated with nine self-assembled monolayer (SAM) films and
plasma-grafted polymer films (PGFs). These films and the data
acquisition method are described in a companion paper [8]. We
retained 21 points per chemical, with concentrations ranging from
9% to 49% of the saturation vapor pressure.

DATA PREPROCESSING FOR CLUSTERING-BASED
PATTERN RECOGNITION

It is common for coated SAW devices to yield ranges of
responses that are quite different in magnitude. In order for each
device to have a comparable effect on the class separations in pattern
vector space, the magnitudes of the device responses must be
comparable. We equalize the responses of each sensor by a
multiplicative scale factor, so that the largest absolute training data
response of each sensor is unity.

The coated SAW sensor responses and the lengths of the
multivariate pattern vectors generally increase as the chemical
concentrations are increased. This tends to spread the class vectors
away from the origin and each other as the chemical concentrations
are increased. We improve the clusterings of the sensor data by
normalizing the pattern vectors to unit length after the device
responses have been equalized. A comparison of PR performance for
the raw and normalized data are described below.

DETERMINATION OF OPTIMAL ARRAYS

A key element in the successful development of a pattern
recognition system is the selection of a useful set of measurements
that can separate the classes in pattern vector space. This corresponds
to selecting a set of SAW coatings and a set of chemical
concentrations to include in the training set. One might expect that
arrays with larger numbers of distinct sensor signals, k, would always
be preferable for PR applications. This is not tme for two reasons.
From a practical viewpoint, arrays with the fewest devices are likely
to require simpler fabrication and data acquisition procedures. This
motivates the use of the smallest arrays that provice the desired
performance. From a PR performance viewpoint, discriminating
ability peaks and then declines as k is increased beyond
approximately N/2, where N is the number of training data points per
class. The reasons for this well-known behavior of PR systems are
discussed in Ref. 7. Here we emphasize that the number of SAW
films that can be usefully included in an array is limited by the
number of chemical concentrations per class that is included in the
training data set. This well-known condition for reliable PR analysis
of arbitrary k-dimensional data is often not satisfied in published
sensor PR work. We also note that estimates of PR performance that
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" deo not remove examined points from the training data when

computing their class identities, i.e. that do not use the leave-one-out

- 4 approach, will exhibit increasingly perfect performance as k

¥ increases. Such biased estimates are not representative of the PR
performance on future data.

For large sets of distinct devices, we must search for the smallest
subsets that produce good separation of the chemical classes of
interest in a leave-one-out analysis. We do this directly for the nine
SAMs and PGFs by examining all combinatorial sets of arrays. The
computations are done on a SPARCT 10 workstation. The primary
figure of merit we seek to minimize is the percentage of incorrect
leave-one-out points in the data set. We also seek to minimize the
number of outliers among the array combinations with the smallest
incorrect percentages. The number of data points per chemical class
is sufficient to usefully include all of the SAM-coated and
PGF-coated SAW devices in the array, but we are interested in
identifying the smallest subset of devices with the best PR
performance.

RESULTS

The leave-one-out results for the ethyl cellulose, polyisobutylene
and nafion coatings yield no incorrect points for the class
combinations chosen. The locations of the training points are shown
in the plot of Fig. 2. Note that this is one perspective of a
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Fig 2. One view of a three-dimensional pattern vector space
plot of 3-film SAW array data. All of these chemical classes are
distinguished. The alcohol and ketone classes are secea to
separate when viewed along the nafion axis. The 3 types of
chemicals within the chlorinated and non-chlorinated classes
are too similar to be distinguished with this array.

three-dimensional plot. These results show that a variety of chemical
classes can be distinguished using these three SAW coatings. The
ketone and alcohol classes appear to overlap from this viewing
orientation, but can be seen as distinct when viewed along the nafion
axis direction. The three individual chemicals within the chlorinated
and non-chlorinated VOC classes are not reliably separated, so that
additional measurements are needed to distinguish these chemicals.
However, more concentration values are required for the individual
chemical classes to achieve this improvement.

Figs. 3a-d show the statistics obtained from the nine SAMs and
PGFs. The number of array combinations that yields a particular
percentage of incorrect identifications is plotted for arrays with 3 to 6
films in Figs. 3a-d, respectively. Again it is seen that all three-film
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Fig 3. Histograms of number of arrays vs percentage
incorrect from the leave-one-out analyses for the SAM-coated
and PGF-coated SAWs. Panels (a)-(d) show results for arrays
with three to six films per array, respectively.

arrays generate some incorrect chemical identifications. The overall
PR performance improves as films are added, and the number of array
combinations exhibiting no incorrect responses is nonzero for four or
more films in tne arrays. The best three-to-six film combinations are

[HS(CH,)10COO-/Cu?+, Eugenol-30, PIB-PGAA 5+15],
[HS(Cﬂg) 1sCHj3, PGAA-PGAA 5+15, Eugenol-30,
PIB-PGAA 1+415], [HS(CH;);5CH3. HS(CH»),5CH;3,
PGAA-PGAA 5+15, PGAA-PGAA5+30, PIB-PGAA 1+15],

[HS(CH),0CCOH,  HS(CH»),0COO/Cu?+,  HS(CH»),5CH;,
Eugenol-30, PIB-PGAA 1+15, PIB-PGAA 5+15], respectively (see
ref. 8 for an explanation of the film abbreviations). Since the
higher-dimensional results can not be graphically displayed, we show
the best three-film case in Fig. 4. This three-film set is not able to
separate all of the chemicals, For clarity, we show only some of the
chemical classes which are non-overlapping in Fig. 4.

Finally, we have examined the effect of normalizing the pattern
vector lengths on these results, This is done by computing results with
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Fig 4. One view of a three-dimensional pattern vector space
plot of the best 3-film SAW array from Fig. 3a. Not all of the
individual chemicals are correctly identified, and for clarity we
show only some of the non-overlapping chemical data.

a range of scaling values ranging from 1, corresponding to raw data,
to 1/(vector length), corresponding to a completely normalized vector

length. Fig. 5 plots the number of incorrect responses as a function of

the degree of normalization for the three-film array shown in Fig, 4.
The PR performance is best for nearly normalized vector lengths and
is worst for the raw data.
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Fig 5. Effect of the amount of pattern vector normalization
on the results of the three-film array of Fig. 4. Each pattern
vector is multiplied by 1/(L+a(1-L)), where L is the length of
the patten vector and o determines the degree of
normalization.

CONCLUSIONS

We present a new PR technique for chemical identification using
arrays of microsensors. The technique relies on a new empirical
approach to k-dimensional cluster analysis which incorporates
measured human visual perceptions of difficult 2-dimensional
clusters. The method can handle nonlinear SAW array data, detects
both unexpected (outlier) and unreliable array responses, and has no

user-adjustable parameters. We use this technique to develop small
arrays of thin-film-coated SAW devices which produce optimal PR
performance for distinguishing a variety of volatile organic
compounds, organophosphonates and water, We find that three-film
arrays are sufficient to distinguish a number of distinci chemical
classes, but are unable to distinguish closely similar chemicals in the
non-chlorinated and chlorinated hydrocarbon classes. For vapor

-concentrations greater than 9% of saturation, arrays with as few as 4

selected films give 100% correct classification for these chemical
classes and the individual chemicals. In addition, many different
five-film combinations give 90-100% orrect identifications for the
individual chemicals,
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