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Abstract. The basic ideas and theoretical methods used in the description

of hot nuclei are reviewed. In particular, a macroscopic approach to shape

transitions is discussed in the framework of the Landau theory in which the
quadrupole shape degrees of freedom play the role of the order parameters.

This theory describes the universal features of the nuclear shape evolution
with temperature and spin. A unified description of fluctuations in ali

five quadrupole degrees of freedom is introduced and plays an important

role in the calculation of physical observables. A macroscopic approach to
the giant dipole resonance (GDR) in hot nuclei is developed. With ali

parameters fixed by the zero temperature nuclear properties, the theory

predicts both the GDR cross-section and angular anisotropy of the 7-rays in

very good agreement with recent experiments. The intrinsic shape

fluctuations are the main cause for the resonance broadening at higher
temperatures, while the orientation fluctuations are responsible for the

observed attenuation in the angular anisotropy. Dissipation at finite

temperature is discussed in the framework of a Langevin-like equation
describing the time-dependent shape fluctuations. Non-adiabatic effects
may cause motional narrowing of the resonance.

<) i. Introduction

The possibility of "heating up" a nucleus to a finite temperature opens for

<_ us a new dimension in the study of nuclear structure. The principal

experimental techniques of forming such hot nuclei are via heavy ion fusion

reactions with heavy projectiles. The relative kinetic energy in these

_ collisions is deposited in internal excitations of the nucleus. If there
is enough time this energy will be redistributed among the large number of

degrees of freedom of the heavy compound nucleus and would lead to an

equilibrated hot nucleus [1-3]. A typical heavy nucleus can store up to
several hundred MeV of excitation energy in its dense "reservoir" of
excited states

Numerous phenomena are encountered in the study of hot nuclei [4-12].

Various phase-transltlon-llke phenomena are expected to occur as we heatthe nucleus. At critical
temperatures of Tc-0.5-1 MeV there is the

disappearance of pairing [4], at Tc-l-3 MeV we have the shape transitions
of well deformed nuclei associated with the melting of the shell structure

[5-7], and at Tc~7-12 MeV there is the llquid-gas phase transition [8]
above which the finite nucleus does not exist as such. The latter

transition is hard to observe since Coulomb instabilities [8] start to
develop at lower temperatures (T-5 MEV). Of great interest both
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experimentally [9-14] and theoretically [15-17] is the study of collective
nuclear motion at finite temperature. In the following review we shall

study mainly the shape transitions, the evolution of the nuclear shape with
temperature and spin, and the collective nuclear motion at the

corresponding range of temperatures and spins. However many of the
theoredical techniques developed and discussed are useful in the

description of other phenomena in hot nuclei.
The main theoretical methods used to describe hot nuclei are taken

from statistical mechanics. However, since the nuclear system is finite

(typically on the order of I00 degrees of freedom) these techniques should
be applied with care. In particular we shall see that thermal fluctuations

play a major role even away from the critical point.

Recent advances in detector systems are making it possible to study
experimentally the properties of nuclei under conditions of high excitation

and high spin. These properties are inferred from the measured spectra of
v-rays as well as of particles of low to medium mass that are emitted from

the nuclear complex during its cooling process. A major probe of the shape

of such hot nuclei is the giant dipole resonance [18-24] whose frequencies
are known to depend on the nuclear shape.

The present review is organized as follows: In Section 2, we

introduce the general concepts of hot nuclei: the equilibrium assumption
and the definition of nuclear temperature and nuclear rotation. In Section

3, we discuss the various mean-field approximations used to treat hot

rotating nuclei. The main discussion will focus on a recently developed

macroscopic approach - the Landau theory of shape transitions [25,26].
Since the nuclear system is finite, fluctuations are important [27-32] and

they will be introduced in Section 4, using the framework of the Landau

theory. In Section 5, we shall introduce a macroscopic theory of the giant
dipole resonance (GDR) in hot nuclei [29,32]. Comparison will be made to

experimentally observed quantities - the GDR absorption cross-section and

the angular anisotropy [33,34] of the GDR 7-rays observed in the decay of
the hot nucleus. Dissipation at finite temperature is also an important

issue, lt is discussed in Section 6 in the context of time-dependent

fluctuations [35,36]. If these fluctuations are non-adiabatlc, they will
lead to motional narrowing [37,38] in the GDR from which it is possible to

determine certain friction coefficients. Section 7 discusses briefly the
effect of fluctuations on the B(E2) transitions in the continuum which have

been measured recently [39].

2. Hot Nuclei

2.1 The Equillbrlum Assumption

At low energies the nuclear spectrum is discrete and a variety of

theoretical models have been introduced to explain it. However, already

for E'E6 MeV the level density of a heavy nucleus is so high that its

spectr_ is quasi-continuous. Individual states are then hard to resolve

experimentally or theoretically. Some renouncement of knowledge is

required in order for the problem to become tractable again. The basic

underlying assumption is the equilibrium assumption: all states at a given

excitation energy, spin and any other conserved quantum numbers are equally

probable. It is only under this assumption that a reduced global
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description of the nucleus in terms of a few macroscopic parameters can be
achieved. The ensemble describing such a nucleus is the microcanonlcal
ensemble.

Global equilibration means that various parts of the nucleus have

enough time to reach complete relaxation and to explore ali available phase

space at the given excitation energy and spin. We shall refer to such a
nucleus whose energy is shared among its many degrees of freedom as a hot

nucleus. In a heavy ion reaction with a heavy projectile we expect that an

important fraction of the fusion cross-section is the formation of an

equilibrated nucleus. This is generally true for beam energy per nucleon

of less than 5-7 MeV. It is of course an experimental task to identify

that part ' of the cross-section which goes into the formation of an
equilibrated hot nucleus [i-3].

2.2 Nuclear Temperature

The microcanonical ensemble at a given energy E which is proportional to

6(E-H) is not very convenient to work with. We therefore replace it by the
canonical distribution D = exp(-H/T) at a certain temperature T. Thisi

temperature is determined by the condition that the average energy of the
canonical ensemble is the given energy E. This leads to the following

definition of nuclear temperature

! . d__Inp(E*) (2 I)
T * ' '

dE

where p(E*) is the nuclear level density at excitation energy E*.
The formal relation [40] between the microcanonlcal and canonical

ensembles is established when the canonical partition function

-H/T
Z(T) - Tr e , (2.2)

is evaluated in terms of the level density (which is the microcanonical

partition function p(E) - Tr6(E-H)),

Z(T) _ dEe "E/T
- p(E) . (2.3)

0
_

-

The inverse relation to (2.3) is the inverse Laplace transform

If (2.4) is evaluated by the saddle point approximation we obtain the
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relation (2.1). The exact transformation (2.4) represents the fluctuations v

in the inverse temperature for a fixed value of E.

.....2.3 Nuclear Rotation

In the formation of a compound nucleus in a heavy ion reaction the nucleus

usually acquired large angular momentum. The microcanonical equilibrium

ensemble is then proportional to 6(E-H)Pj, where Pj is the projection on
states with a given spin J. lt is again convenient to transform to the

temperature representation where we define a partition function at a given

spin J to be

oo

Z(T,J) Tr (e"H/T Pj) ; dee "E/T
- - p(E,J) . (2.5)

O

Here p(E,J) is the level density at energy E and spin J. In terms of the

density p(E,M) with M being the spin projection [40]"

a Ip(E,J) = - _ p(E,M) . (2.6)
M-J+I/2

Introducing the free energy in a frame rotating with angular velocity D

[41]

(H-D._)/T
F(T,_) - - T in Tr e" , (2.7)

we can rewrite (2.5) in the form

4_T
- [i(J+I/2)_>+F(T i_)]/Tr i_d_

Z(T,J)
- j e . (2 8)4xT2

0

Thus by considering _-fluctuations it is possible to calculate the

partition function at a given spin. Usually (2.8) is evaluated at the
saddle point approximation where _ is determined from J by the relation

J + 1/2- - aF(T,_)/8_ . (2.9)

This accomplishes the transformation from the description in terms of the
extensive variables E and J to the intensive conjugate variables T and _.

The free energy in the rotating frame (2.7) is the fundamental relation
which contains ali the thermodynamic information on the system. In the

next section we shall discuss how to calculate such a quantity..
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3. Mean-Field and Landau Theories

Since H in (2.7) is a many-body Hamiltonian, the evaluation of the exact

many-body partition function is difficult and approximation must be
introduced. Most of them are based on various versions of the mean-field

approximation.

3,1 Mean-Field Approximations

In general we seek to calculnte the free energy F-F(T,w;p) as a function of
some trial parameters ?. £he equilibrium configuration is then found by

minimizing F with repect to ?.
The basic variational principle from which such approaches are derived

is the following: The exact canonical density matrix D-exp(-H(T))/Z(T) is

obtained by minimizing the free energy functional

FIT,D] - Tr(DH) + Tr (Din D) , (3.1)

with respect to all possible density matrices satisfying

Tr D - 1 . (3.2)

If we restrict the space of variations to density matrices of the form

DO = exp (-Ho/T) , (3.3)

where H0 is a one-body Hamiltonian, we find

I

F[T,p] - tr (tp + _ pvp) + T tr [p2n p + (l-p) 2n(l-p)] . (3.4)

Here p is the one-body density matrix and t and v are the one-body kinetic

energy and two-body potential energy, respectively.
Minimizing F in (3.4) with respect to p, we obtained the finite-

temperature Hartree-Fock equation [6]

-i

p - ( 1 + exp [(hp-p)/T] } , (3.5)

where

h - t + vp , (3.6)
P

is the mean-field single-particle Hamiltonian.
If we wish to include pairing effects we can do it within the finite-
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temperature Hartree-Fock-Bogoliubov approximation [4].

If the phenomena we want to describe are the shape evolution with

temperature and spin, a more restrictive choice of H0 corresponds to that
of the Nilsson Hamiltonian which is deformation-dependent but not self-

consistent. The slngle-partlcle states with energies _i are assumed to be

populated with the Fermi-Dirac occupation probabilities fl

1

fl " (,i-.)/T . (3.7)
l+e

To account for the correct average energy the Strutinsky method is
used [7].

Another derivation of a mean-fleld approximation is based on the

functional integral approach, where the many-body partition function is

expressed as an integral over ali "possible" one-body 2artitlon
functions [42]:

[ -H/T1 I -F(T _'u')/T
Z(T) - Tr e - D[a] e " ' ' . (3.8)

Here a(_) (0 s _ s T"I) is a single-particle density function which depends
on an imaginary time-like parameter _. For _-independent a's (the so-

called "static approximation" [43,44]) the free energy F(T,_;a) is given by

F(T,a) - I le'Ha/T)- _ tr(_va) - T In Tr . (3.9a)

Here Ha is a sum of the single-particle Hamiltonians h_ i) where

h - t + va . (3.9b)a

Eqs. (3.9) describe the free energy of nucleons moving independently in a

mean-field va. If the integral (3.8) is evaluated in the stationary phase
approximation one recovers the Hartree-Fock equation (3.5). The advantage

of the functional integral approach is that it allows us to go beyond the

mean-field approximation by including fluctuations in a. We shall return
to this issue in Section 4.

To describe rotation of a hot nucleus we replace in (3.1) H by H-D._,

which is the Hamiltonian in the frame rotating with angular velocity
[41]. Using one-body density matrices of the form (3.3) we obtain the

cranked mean-field approximation where a coriolis coupling - D.J is

included in the one-body Hamiltonian (3.9b). The free energy is now
F - F(T,D;p) and can be expanded to second order in

F(T _;p) - F(T _-0;p) - i _ iij (T;p) _i_j + ... , (3.10)
' ' 2 i,J

i
e

,II ' "_1 II



' 7

, where Iii is the symmetric moment of inertia tensor• lt is found that

I/T

Iii" I <Ji(r) Jj(0)> dr , (3,11)
0

where

< Ji(_) Jj(0) >- Z"I Tr e e Ji e Jj . (3.12)

is the mean-field Hamiltonian characterized by the trial parameters p.

H_ Ii> are the corresponding single-particle states with single-particle

energies _i, then [26]

Izz- _ l<ilJzli>12(-Ofi/O_i ) + _ l<iljzlk>l 2 , _ .,[fk'fi] (3.13)

The first contribution on the r.h.s, to Izz is from the alignment of the
single particle spins along the rotation axis while the second is from the
collective rotation.

Open shell nuclei are usually found to be deformed in their ground

state. This is a quantum mechanical effect related to the shell structure

of the single-particle levels of the mean-field potential, Various mean-
field calculations [6,7] indicate that when the temperature increases the

nuclear shape is changing and eventually a transition to a spherical shape

occurs at temperatures T=I-2 MeV for deformed rare-earth nuclei. In the

following we shall concentrate on the nuclear shape evolution with

temperature and spin.

3.2 Landau Theory

The most relevant and universal features of any microscopic mean-field

theory of shape transitions in hot nuclei can be described in the framework

of the Landau theory [25,26]. The approach also offers a useful and

economical parametrization of the results of microscopic calculations and

singles out a small number of the most relevant combinations of the
parameters on which the equilibrium shape depends.

The theory was introduced by Landau in 1937 [45] to describe symmetry

breaking phase-transitions in statistical systems. The free energy which

is a scalar is expanded in a set of trial parameters known as the order

parameters. The equilibrium value of the order parameters is found by

minimizing this free energy. In the symmetry-breaking phase these values

of the order parameters are non-zero.

The most crucial trial parameters in the study of nuclear shapes are

the quadrupole deformation parameters a2_ (_--2,-I,...,2). Thus instead of
considering F(T,_;p) we shall consider only an effective free energy

F(T,_;a2_) by minimizing the former with respect to ali other
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shapeparameters. The symmetry-breaking phase is a deformed nucleus with

a2#_0. Thus the symmetry which is broken is the rotational invariance and
the order parameters are a2u, the non-zero values of which characterize the
degree of symmetry breakfng. In the presence of rotation, the full
rotational symmetry is explicitly broken by the preferred direction of the
rotational axis. The remaining symmetry is that of rotations around the

direction of _, which is spontaneously broken in the phase-transition.
Since F must be a scalar, only rotatlonally invariant combinations

of _ and a2# are _llowed. The _-independent invariants to
fourth order are (a×a)(0) ((_×a)(_)x_)(o) and (_x_)(°),(c_×cz)(°). The

lowest .invariants involving _ are quadratic in _ such as
((_×¢0)(2)xa)(°),((_x_)(2)x(cxx_) (2)I(0) etc. To second order in D one can

arrange these terms in the form of the expansion (3.10). We can transform

from the laboratory c,2 At: the Hill-Wheeler intrinsic parameters (8,7) andthe Euler angles _-(¢,_,_,. The latter characterize the orientation of the

nucleus' principal frame x'-y'-z' with respect to the rotation axis D which

we choose along the z axis of the laboratory frame. The moment of inertia

tensor Iii is diagonal in the intrinsic principal frame and the components
of _ in tl%at frame are

- - _ cos4 sin9
_X '

- w sin4 sin9 (3 14)
y,

- _ cos8
l'

Thus (3.10) becomes

• liF(T,w;a2#)-F(T,u_=O;_,7) - _ Ix,x,Sin28 cos24

in2¢ , ,cos2 ] w2+ I ,y,Sin20 s + I #
(3 15)

y Z.Z ' '

The above Landau expansion leads to the following

F(T,_-0;fl,7) - F0(T) + A(T)_ 2 - B(T) _3cos37 + c(r)fl4 + ... , (3.16)

and

z'z'(T;fl'7) - 10(T) - 2R(T) flcos7 + 211(T)_2 + 2D(T) _2sin27 + ... ,
I

Ix,x,(T;fl,7) - Iz,z,(T'_,7, - 2_/3) ,

ly,y,(T;_,7) - Iz,z,(T;_,7 + 2_/3) . (3.17)

The temperature-dependent coefficients F0,A,B,C,10,R,I I and D are
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Fig. 1. The (_,7)' plane of / _/,"

shapes of deformed nuclei , / z'-k /a' ' _ 1/"1 z'_ \

\ ,'
"'i<o-120 _-60

phenomenologlcal parameters which are not determined by the Landau theory.

However, the topography of the free energy surface (3.15) - (3.17) depends

only on certain combinations of these parameters as we shall see below.

The equilibrium configuration is found by minimizing the free energy

with respect to _2#' Minimizing first with respect to the orientation _,
one obtains as a necessary condition for the minimum the standard result

that the nucleus must be oriented such that one of its principal axes, say

z', is directed along D. We then allow (_,7) to cover the full plane

(0 S _ < =; -180 ° S 7 s 180°). This (_,7) plane of shapes of deformed

nuclei rotating around a principal axis z' is shown in Fig. I. The

sufficient conditions for a minimum require further that the rotation is

around the axis with the largest moment of inertia, namely

I > Ix I (3 18)ZWZe IXp , y yt f •

After minimizing with respect to the angles, the free energy (3.15) becomes

1 2
F(T,_; a2_) - Fo(T)# A(T)_ 2 - B(T)$3cos37 + C(T)_ 4 - _ Izz(T;$,7)_

(3.19)

where Iz, z, is given by (3.17).
For stability one must require C(T) > 0, and nuclei with deformed

ground state have A(T) < 0 at low temperatures. The prolate-oblate

asymmetry requires B(T) _ 0. For definiteness, we will discuss the more

frequently occurring prolate case B(T) > 0. When T increases A(T) changes

sign at some temperature which is usually between 1 and 2 MeV for the

deformed rare-earth nuclei. In the case D-0 (rigid body moment of inertia)
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the relevant dimensionless combinations are the reduced temperature

AC
" "E , (3.20)
BL

and co/coc,where

9
co - (B/C) (B/R)1/2c i-6 , (3.21)

is a critical angular velocity.

In these reduced variables a universal phase diagram emerges.
Minimizing (3.19) one finds that at negative values of _, i.e. at low T and

not too large co, there are seven extreme in the entire (_,7) plane. They
are located symmetrically due to the 7 _ "7 symmetry of the free energy.

For D-0, the condition Iz,z, > Ix,x, [ Iy,y, (see Eq. (3.18)) selects
those extreme which falls in the sector 171>120 ° only. At negative
• , there are three such extreme, one oblate (7--180 °) and two triaxial

related by the 7 _ "7 symmetry. 0nly one of the latter should be

considered, since they both give the same shape up to a rotation by 900

around the z axis. We choose to work in the sector -1800 s 7 _'120°.

For B>0 and _<0, the triaxial configuration is the stable equilibrium shape
and the oblate is a saddle point.

When _ increases towards positive values for fixed co, one finds a

3

,8, 04,9 0.30 0.20 0.10 _ 0,60 0,50 0.40 030 020
I O0 I J I 1 0,. • 1 I I - : - ' -- _1_: _ : o

y COl ,. o.3_-o._o.a _/ _, t,o_-.7, ,5 _ /
/ .__ • __._ / IT'" O? /

| 0,36 I /'t ' "-_ _ /0,

• ,'rO'_- _J/C_c'0'7 /0.10" ,'rO'_- (.1.¢. 2 /0_0
0.37_\ // \.... /oo

•160"_" ' " "160"\ -\ I /O,Oo
• o,., /o.o

7 0.30 _ o,.

-,,o-\ o._,.1/ ",_ ./
0.36 /_'/o,o

-..._, I
"t20" "t20"

Fig. 2. Motion of the extreme in the _-7 plane with changing r and fixed

co/coc'On the right a second-order transition is shown for co/coc-2with dots
denoting a global minimum and asterisks a saddle point. On the left is a

first-order transition for co/coc-0.7 where open circles denote a local
minimum.
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' behavior which depends on whether _ is smaller or larger than _c
(see Eq,(3.21)), For fixed _/_c>l and r increasing (see r,h,s, of Fig. 2),
the triaxial minimum moves towards the oblate saddle point and coincides

with it when r reaches

9 El- (0_/4_c 1)2]r - _ - . (3 22)

When r increases above (3.22), the oblate shape becomes the only stable

minimum, This is a second-order phase-transition where the order parameter

(at the minimum) changes continuously. When _/_c<l (see l,h,s, of Fig. 2)
and r reaches (3.22), the oblate saddle point turns into a local minimum

but the trlaxial minimum is still separated from it. Instead, when r

increases past (3.22) a new triaxial saddle point emerges out of the oblate
and moves towards the old. The two coalesce and disappear when r reaches

[ 2 2]9 1 + 3 o_ /_c (3 23)" 3_ _ ' '

Above the r in (3,23) only the oblate minimum remains. The phase
transition from the triaxial minimum to oblate minimum occurs for r between

(3,22) and (3.23), when the free energies of these two minima are equal.
This is then a first-order transition. The motion of the extrema is

demonstrated in Fig. 2 for _<_c and for _>_c' Fig. 3 is a phase diagram in

the r-_/__ plane for D-O nuclei. The solid line for W>_c is the transition

llne of t_e second-order transitions. For w<_c, there is a "coexistence"
region whose boundaries are defined by (3,22) and (3.23). lt is shown in

l I l I I I

OBLATE _= / / // _

r=ACIB 2 -. " ',<'. ," '

6-" _ _.. . 0,4oF _,o,,,,_--.'._..
0,0 _ _ ' / L '_c-JC-J_..J''_....;.,-'_."

--- _ I ,.- ,.-,z_
-- ...,._ ', _.--,...-.r,J."'-"'" '.. "',, ,...,'_"," '""._ , _.ov-__:;_-- _:,.-,,
--'" "/'o,zo_" """ ........-_3'...

I,. _, ',. ". i---;",.'.""I,C - ,_ _ :, " -'- / -Izl"., __-"" '.

I/ , 0.0
/ : 0.0 0.2 0.4 0.6 O.e 1,0

"2.0 I I J / I '_ I', I 'a I . ..J
o 2 4 6 8 I0

(u/(uc

Fig. 3. Phase-diagram in the variables r and _/_c" The trlcritical point
is denoted by an x. The solid line separates the triaxial phase from the

non-collective oblate phase. Insert' the first order transition region.
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more detail in the insert of Fig. 3. The point _'_c' _'_c "63/128 separates
the first order from the second order transitions and is known as a

tricritical point [46]. Also shown in Fig. 3 are contour lines of _ (in
units of B/C) and 7. We see that near the tricritical point the shape
changes rapidly from almost prolate to oblate.

3.3. Microscopic Calculations

The unfolding of the universal phase-diagram to the experimentally

accessible variables, excitation energy and spin, requires the knowledge of
the Landau parameters in the expansion (3.15)-(3.17). We have performed

[47] microscopic calculations of the free energy surfaces of various nuclei
and mapped them on the Landau expansion in order to determine the

parameters A(T), B(T), C(T) etc.

The surfaces are calculated using cranked Nilsson-Strutinsky procedure

for rotations along a principal axis z. The frequencies o_k of the
deformed harmonic potential well were parametrized according to Hill and
Wheeler:

_k=_O exp - _ cos 7 " , (3.24)

For _-0 (no rotation) pairing is also included using a BCS monopole pairing

force. In the liquid-drop energy we have allowed for large deformations by

taking the exact Coulomb and surface energies expressed as elliptic
integrals. For a given nucleus and a temperature T we can determine based

on the expansion (3.15), the surfaces F(T;_-0,_,7) and Izz (T;_,7). Using

(3.16), we find F0, A,B and C. Using (3.17) we determine the moment of

80 :losed she '
Fig. 4. The Landau

parameter A(T) for
various erbium 40

isotopes as calculated

microscopically. Ali

curves converge to a >_ O
common value --30 MeV _
for T.>3 MeV. ._.

< -40

-80 lsz

-17_0 174- ¢= mid,,shell
= I = I ,,

I 2 3
TEMPERATURE(MEV)
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' inertia coefficients 10,R,I I and D,_ The complete Landau expansion at any

and a2u is then given by (3.15), The Landau expansion (3.15)-(3,17)
reproduces well the microscopic surfaces for T _ I MeV and moderate spins.

The Landau parameters have been determined [47] for ali even-even

rare-earth nuclei. They are found to obey simple systematics as a function

of N and Z of the nucleus. Fig. 4 shows, for example, A(T) for different

erbium isotopes in the temperature range T _ 0.8 MeV. A is the most

crucial parameter in the Landau theory since the prolate to spherical shape

cransitlon at _-0 occurs near the temperature where A changes sign. We see

from Fig. 4 that the value of A is sensitive to shell effects. For mid-

shell nuclei, which are strongly deformed in their ground state, A starts

from values large in magnitude and negative, and increases monotonically

with T towards positive values. Such nuclei undergo shape transition from

almost prolate to oblate st _0. For nuclei near shell closure, A starts

positive a_d d_oreases monotonically while never becoming negative, Such

nuclei start and stay spherical but become softer with increasing T. Above

T = 3 MeV ali rare-earth nuclei have approximately the same A (=30 MeV) due

to the disappearance of shell effects. Fig. 5 shows the critical

temperature T c versus neutrons number for the even-even rare-earth nuclei.

Tc is very close to the temperature at which y-r c . On the phase-diagram of

deformed nuclei the value of Tc determines the position of the line of

triaxial to oblate shape transitions. The systematic of Tc is strikingly

simple. For each family of isotopes between two closed neutron shells the

values of Tc fall on an inverted parabola-llke curve whose maximum is at
mid-shell. The curve drops rapidly towards shell closure. This is of

course consistent with the A systematlcs of Fig. 4. For various families

of isotopes the parabola-like curves are arranged like onion shells where

the innermost shells correspond to isotopes near proton shell closure at

Z-50 and 82, and the outermost shells are in the region of proton mid-

shell, 66DY. The largest critical temperature of Tc ~ 1.85 MeV is found in
mid-neutron shell isotopes of Gd, Dy and Er.

2 i i "I i 'i
- mid-shell -

Fig. 5.. The critical __d,Dy,Er 'temperature ,_ as a function

of neutron number for even- Ce ///__b .

even rare-earth nuclei. The _ Nd /// NrI__H f'maximal value of Tc occurs

near the neutron mid-shell _ 1.5 " Sm
(N-104) for a given isotope

family and near the proton
mid-shell (Z-66) among the
various families.

I closed
sh II Ce

7'0 78 86 94 I02 II0
Neutron Number
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Fi_ally, we consider the angular momentum Jc which corresponds to _'_e
i.e. Jc Izz_c' The critical spin Jc Is shown in Fig. 6 for various rare _s 2

earth isotope families. We note that since _c - B / /C we expect the Jc
systematlcs to be dominated by the B-systematlcs. B on the other hand

governs the prolate-oblate free energy difference which is

AF-(24/256)(B4/CS). One can apply Hill and Wheeler's "thirds of the shell"

rule [48] according to which prolate ground state deformation dominates in

the ffrst two-thlrds of the shell while oblate deformation is typical for

the last third. It is thus expected that B - 0 around two-thirds of a

filled shell and is maximal around one-third of a filled shell. The

behavior of Jc in Fig. 6 tends to support the foregoing analysis with Jc
rising rapidly from neutron shell closure at 82 to a maximum in the

neighborhood of the end of the first third of the shell (N-96) and then

proceeding to fall towards zero at the end of the second third of the shell

(N-II2). An app:oxlmate proton "thirds of the shell" rule is also observed

by inspecting the various curves in Fig. 6. The proton shell closure is 50

and 82, so that the outermost curves correspond to nuclei with 60-62

protons (Nd and Sm), while the innermost curves correspond to 70-72 protons

(Yb and Hf). In general the values of Jc are relatively small (_I0-15_),
indicating that the transitions are very close to being second-order.

Using the Landau parameters it is possible, for the nucleus under

consideration, to unfold the universal phase-dlagram to the physical

5 1
Sm,Nd

Gd, Ce
Fig. 6. The angular JO

momentum Jc at the
tricritical point vs. Oy

e neutron number for rare-

earth nuclei.

5 Er
g O

5

!
| Yb
II

i

78 86 94 102 I10

Neutron Number

I
|
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variables (E*,J). An example is shownin Fig. 7 for *SSHF.

4. Fluctuations

Since the nuclear system is finite, fluctuations away from the mean-fleld

configuration are important. According to Eq. (3.8) for the nuclear many-

body partition function, all possible one-body potentials va should be

admitted each with a probability given by the Boltmann factor

P la] _ exp [-F(T,_;a)/T] , (4.1)

with the free energy given by (3.9). For the finite nucleus P is maximal

for aTaeq (the HF solution p of (3.5)) but is non-negligible for a_aeo.
lt is possible to evaluate the small amplitude fluctuations by

approximating (4 I) by a Gaussian in a-a , with a width given by the• eq
second variation of the exponent. We then o_tain the temperature-dependent

RPA approximation [42]. This approximation is not sufficient when some of

the directions are "soft," in which case the integral (3.8) in these

directions should be evaluated exactly [43].

We have developed a macroscopic approach to fluctuations [29,32] in
the Landau framework in which fluctuations in the order parameters are

treated exactly. In our case we assume a unified theory of shape

fluctuations in which all five _2 are included• The probability of

finding a nucleus in a "state" with _eformatlon _2# is given by [49]

P [e2#] " Z'I exp['F(T'_;e2.)/T] ' (4.2)

where

Z(T,_) - ; D[_] exp(-F/T) , (4.3)
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is the nuclear partition function. The free energy F in (4.2) is given by

the general Landau expansion (3.15)-(3.17). This theory takes into account

large amplitude fluctuations in a2#. The phase-space volume element D[_ 2 ]

is chosen to be the one which treats ali five a2# uniformly, namely t_e
unitary invariant metric

. _4, sin371d_d7d_ . (4.4)
D[=2# ] - 1"[da2/_ ,

lt should be noted that ou: theory takes into account fluctuations not only

in the intrinsic shape _,7 but also in the nuclear orientation _ relative

to the rotation axis D. Previous analyses of shape fluctuations have

neglected the latter.

The importance of (4.2) is in its use of calculating expectation

values of any physical observable X (which is shape-dependent)

In subsequent chapters we shall compare the value of <X> obtained by (4.5)

where shape fluctuations are included with the value X(aea ) predicted by
the mean-fleld theory, for several physical observables X/ We shall see

that they are quite different.

5. Giant Dipole Resonances in Hot Rotating Nuclei

The giant dipole resonance (GDR) built on nuclear excited states was

observed in recent years at several laboratories, and is one of the major

probes of shapes and properties of hot rotatlng nuclei [18-24].

In cold nuclei (T-0) the frequency of the giant resonance vibration is

inversely proportional to the length of the semi-axis along which the

vibration occurs [50,51]. Therefore in deformed nuclei the resonance

splits and from the amount of splitting it was possible to determine its

deformation. A similar technique was used to determine the shape of hot

rotating nuclei [18-24]. However, due to shape fluctuations around the

equilibrium shape, the relationship between the equilibrium nuclear shape

and the GDR spectral shape is more complex, lt has been recognized by

several authors that thermal shape fluctuations play an important role in

determining the width of the resonance [28,30,31].

Microscopic theories of GDR underestimate the width of the GDR [17].

The finlte-temperature RPA also predicts that the GDR is rather insensitive

to temperature. However, recent measurements indicate strong dependence of

the width on temperature for spherical nuclei [18]. By using [17] a

phenonemological escape width, one can increase the calculated width, but

the spectral shape is still in disagreement with the observed one. We have

developed a macroscopic approach [29,32] to the GDR in hot nuclei in the

framework of the Landau theory. All parameters are determined from the

properties of the T-0 GDR. In this theory unified large-amplitude

fluctuations in the order parameters (a2p) play an important role. It is
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the first theory which is able to reproduce both the observed cross-section

' and the angular anisotropy of the GDR 7-rays emitted from the hot nucleus

[33,341.

5.1 Macroscopic Theory

In this section we shall derive an exact expression for the GDR absorption

cross-section o(e) and the angular anisotropy coefficient a2(_ ) (see
definition below) in terms of the dipole _emporal autocorrelation function

evaluated at equilibrium.
The differential cross-section for a nucleus of energy E and spin J to

emit an electric dipole 7-ray of energy e and direction e with respect to

an axis to be specified below is

dF 3

em 1 [_c] 1decE1" 2_7 p(,:J) _ [<f JfMfiD#[t J Mi>[ 2 6(E-E i) 6(E'-Ef) r (®)
i,f # '

#,M i

(5.1)

where E'-E-_. The sum represents an average over all initial states of

energy E and spin J and a sum over all final states of energy E'. Here

p(E,J) is the initial level density and D_ is the dipole operator. The

angular functions F#(®) are given by

F (®)- ldI
2

dI
2

 ,l(e)l + I , (5.2/

where dI are the Wigner matrics for spin i. Eq. (5.1) can be rewritten in

the following way:

ao

em 1 e dte iet/_ <D#(t) D#(0)> E F (®) (5 3)
ded_" [2_) 2 # ,J ' '

where Dp(t) is the dipole operator in the Heisenberg representation and the
average is over the microcanonical ensemble

: <X>E, J -Tr IX 6(E-H)Pj] / Tr [6(E-H)Pj] . (5.4)
!11

m

i In Eq. (5.4) Pj is the projection on states with spin J.
As usual we replace in (5.3) the micrcc_nonical average by a canonical

! average <D_(t)D#(O)>T, w where

l
.ql

Jl
I
!
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-Tr [Xe "(H'_'_)/T] / Tr e"(H'_'_)/T . (5.5)<X>T, _

In doing so, we have chosen a preferred direction _. Choosing this

direction to be the z-axls, we are measuring the 7-ray with respect to the
rotation axis D, i.e. approximately with respect to the spin direction.

From Eqs. (5.2) and (5.3) we find that the angular distribution of the 7"
rays can be written as

2

- o(,) + ) P2(O)] (5.6)

where

o(_) 2_ I dtei_t/_ <D_(t) D_(0)> , (5.7)3_2c
=CO

,_ and

ao

dt ei't/_ <Dt0(t) D0(t)>
1 3 -®

a2(_) " _ - _ ® . (5.8)

J" dt ei't/_ E <D_(t) D (0)>#
#

o(_) is the GDR absorption cross-section and a2 is known as the
angular anisotropy parameter. If the angular distribution is measured with

respect to the beam axis, then, assuming it is perpendicular to the spin

direction, we have to multiply (5.8) by (-1/2). In the following and in

ali calculations we shall use this a2 unless otherwise specified.

5.2. Fixed Deformation

In order to calculate the dipole correlation functions in (5.7) and (5.8)

we first need to evaluate them for a constant deformation _2u' In Section

5.3 we will show how to take into account the fluctuations of ehp at finite
temperature. In the absence of rotations (_-0) the tensor <D!,_t)D,0(0)> is

diagonal in the intrinsic frame of the nucleus. In that fram_ _2 wis also
diagonal and is defined in terms of the Hill-Wheeler coordinate_ _,7 and
the Euler angles _ which determine the orientation of the nucleus relative

to the rotation axis D. Rotation matrices relate the correlation tensor in

the intrinsic frame to that in the laboratory frame. We adopt the common

assumption that the resonant energies of the three giant dipole oscillatory

!
!

)n
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' modes are inversely proportional to the semi-axis lengths of the ellipsoid
representing the nuclear shape [50,51]

0
Ej- E0 _- Eo exp - _ cos(7 - _- J) ; (J-1,2,3) _ (5.9)

and that the Fourier transform of the correlation tensor (multiplied by the
additional factor of _ in (5,7)) is proportional to a L0rentzian,

2

rj_

fj(_) " [2 E_]2 + Fj2 2_ ' (5.10)

In (5.10) the natural frequencies are E_(_-0) - E°q as given by (5.9) and F
whic_are the decay widths along the J-th intrinsic axfs; Eo is a constant

varies from nucleus to nucleus. Equation (5.9) follows from the nuclear

hydrodynamics model where giant resonances are oscillations in the proton

and neutron fluid densities and thus have wavelengths nearly proportional

to the length of the semi-axls along which the oscillations occur [50,51].

Equation (5.10) follows from assuming that the dipole in the intrinsic

principal frame is damped as is the displacement of a harmonic oscillator

in an external field. The strength of the Lorentzlan (5_I0) is fixed by
the classical sum rule [50].

In the presence of rotation (_0_ the Coriolis and centrifugal forces

shift the normal frequencies from Ei to Ej(D) and make the correlation
tensor nondiagonal in the intrinsfe frame. However, there exists a
canonical transformation to normal coordinates in which the correlation

tensor is diagonal. To find that transformation we model the giant dipole

oscillator by a rotating deformed three-dimensional harmonic oscillator.

The Hamiltonian in the intrinsic rotating frame is

1 _2 I _ 02 2 . _ . (_) , (5.11)H(d,p) - _ p + _ Ei di

where d is the giant dipole operator in the intrinsic frame and _ is its

conjugate momentum. In Ref. 32 we have shown that the correlation function

in this frame can be written in terms of the raising and lowering operators

for the three normal modes, a__ and as, and a matrix _ which relates the
normal coordinates to the intrinsic ones'

<dt(t)a d (O)>- _ _*as_t <as(t) aS(0)> . (5.12)
st

The matrix _ depends on _, _ and 7 (through E_) and _. As in the
nonrotating case, the Fourier transform of the correlation tensor ir_ the

"normal" frame, <as(t) aS(O)>, is assumed to be diagonal and to have the

Lorentzian form (5.10) but now with shifted EI.
The relationship between the dipole operator in the laboratory frame
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(D_) and in the intrinsic rotating frame (d#) is simply

-i_t._/_ +i_t._/_
D (t)- e _ DpA(n ) dA(t ) e . , (5.13)# A

where _ - (@,8,4) are the Euler angles and D is the Wigner rotation matrix
for spin i.

We find that the cross-section in the laboratory frame is given by

o(e;P,7 _)- 4_e2fi Z N _ [S_ 0) fj(e)+ S_ ") fj(e + _)
' mc A J-I

(+) fj(_ - _)] (5 14)+ Sj , .

while the angular anisotropy is

Io) fj(,,)_S. I

a2(e'/9 _ a) . 3 J 'I ---

J

(5.15)

Here S} ° +)' are the resonance strengths in units of the classical sum rule:

I [ * _ nA * ]S(+)j -_ _ (6pv-n n ) Re ) + _ , lm )
/_v _ v (_#J_vJ . A _v (1_#J_vJ

s_0) _i (_jSvj- _ n n Re ) . (5.16)
v

_v

Here _ is a unit vector along the rotation axis and nu are its components

in the principal intrinsic frame. _A v is the completely antisymmetric
tensor, lt is seen that a is generall/the sum of nine Lorentzians in the

laboratory frame (which are non-degenerate for trlaxial nuclei rotating
around an axis which is not principal). For noncollective nuclear

rotations ali but two sets of the Lorentzians coincide; ali but five sets

of lines coincide when the angular velocity is parallel to a principal

axis. For rare-earths the splitting is usually small (_0.5 MeV) compared

to the widths of the Lorentzians. For lighter nuclei it may be more

significant--due to the fact that _ can be as large as 2-3 MeV for
moderate spins.

The cross-section (5.14) and a2 in (5.15) will be completely specified

as soon as the widths FI in (5.10) are defined. We use for these widths a
power-law [52] dependence on the resonance energy
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zJl5 , (5.17)rj - ro Eo

where Fo depends on the nucleus under consideration. Equation (5.17) is
consistent with the experimental dependence of the ground-state GDR widths

on deformation in heavy nuclei, lt can also be derived using surface

dissipation models. In such a theory the width, in units of FO, is reduced
to a purely geometrical quantity expressed as an elliptic integral [53].

It is well approximated by a power law with 6-1.6. The only free

parameters (E0,F0,6) which are assumed to depend weakly on T are determined
from the zero temperature properties of the nucleus as discussed in Ref.
32.

If the effect of the Coriolis force on the eigenfrequencies is

neglected (_0), it is possible to derive an analytic expression for o(_)

and a_ as a function of the orlentation_f(8,4) In this approximation, the

correlation tensor <d_(t)dj(O)>_ (i,J-I,2,3) is diagonal and from Eqs.
(5.7) and (5.8) we find

a = f + f + f , (5.18)
x y z

and

I (fr + f )/2 - f 2 f - f
y z 3 cos 8 i 3 x Y sin28 cos24 (5 19)

a2 " 2 f 2 + 8 f ' "

where f - fx + f + _Z and fi (i-x,y,z) are the Fourier transforms of
<d_(t)d (0)> as given Dy Eq. (5.10). Notice that a2 _n (5 19) is the onei
with respect to the beam axis.

Here a2 is independent of the Euler angle @. For axially symmetric
shapes (with symmetry axis z) fx fv and a2 is then also independent of 4.
lt is seen that while a is ihdependent of orientation (in this

approximation) a2 is very sensitive to orientation. This is demonstrated
in Fig. 8.

5.3 Thermal Fluctuations (Adiabatic Theory)

If the fluctuations in the shape are slow enough then the equilibrium

averages in (5.7) and (5.8) are done according to (4.5) by averaging the
contribution from a fixed a_ over ali possible intrinsic shapes and shapez#
orientations. This is demonstrated in Fig. 9 for the GDR cross-section.
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To compare our theory with experiment we have applied [33] it to

three cases for which precision measurements were recently taken [34]'go
_°Zr at T-I.6 MeV, J-10h; Zr at T-I.7 MeV, J-22_; and °2Mo at T-2 MeV,

J-33_. The free energy surfaces were constructed from a cranked Nilsson-

Strutinsky Hamiltonian. The cranking calculations were done only for
parallel to a principal axis from which the moments of inertia were
determined as a function of _ and 7. The free energy for a general

orientation Q is then determined by the expression (3.15). We have

calculated the phase-dlagrams of these nuclei and found that at the

equilibrium configuration a_-0.47, 1.03 and 1.36 MeV respectively in each of

FiE. 9. GDR cross-sectlons are ]L!llllll///

shown at various deformations in _/i
the (_,7) plane. The observed '_
cross-sectlon is obtained by

averaging according to (4.5).

Y" "120"
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, the above three cases, The equilibrium shape is a non-collective oblate

(7--180°; e-o) whose deformation increases with spin; _-0,02, 0,08 and
0,16, respectively, When the metric (4,4) is included with the

distribution (4,2), the resulting most probable shapes are triaxial

(7=-150 °) and their deformation is significantly larger; 8-0.24, 0,31 and

0,46_2for the above three cases. ,From the ground-state CDR data in _°Zr
and Mo we have determined E0-16.82 MeV and F0-5 MeV, Both a and a2 were
then calculated from (5.7) and (5.8) where fluctuations in the intrinsic

deformation (_,7) were included as well as those in the orientation (8,4),

The results are shown by the solid curves in Fig. I0. They agree very
well with the experiment [34] shown by the error bars, In particular, the

theory reproduces accurately the observed broadening of a at finite
temperature, In judging the quality of the agreement between the

calculated and experimental a2, the region E. _ II MeV should be
disregarded since there the 7-rays from daughte_ nuclei contaminate the

signal. The latter have lower spin and energy and tend to drive the

observed a2 to zero. Also, at the high energy side we are at the tall of
the resonance and ther error bars are large. Thus the range to consider in

Fig. I0 for the a2 fit is Ii Z E7 Z 20 MeV.

150 OOzr e2Mo / \eOzr
T-1.6 MeV /'"''" T=1.8 MeV /'"''.:. T=2 MeV
J,,,lOti J-22 t% J,,33 1%

O" 100

(mb) : ,,,
50

/ ./ I

\

0
i

, 0.2 /
, ,...-..

I " s

8. 2 0 , .,..

/

-0.2 -"

10 15 20 10 15 20 10 15 20

E .y. (MEV)

Fig. i0. The CDR absorption cross-section o (top row) and the angular

anisotropies a2 (bottom row) versus 7-ray energy E. for _°Zr and _2Mo. The
error bars are the experimental data. The fo{lowing calculations are

shown: with orientation fluctuations (solid lines) and without orientation

fluctuations (dashed lines) using the metric (4.4); without the orientation

fluctuations using the metric (5,20) (dotted lines) and the mean-field
results (dashed-dotted lines in the right colLu_n),
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The dashed lines in Fig. I0 are the results of similar calculations

but with no orientation fluctuations, The metric (4,4) is used. Compari**g
them with the solid lines, we see that the effect of the orientation

fluctuations on the cross-section is small, Only in the high spin case

(J-33 _) is this effect measurable, and does it provide a correction at the

high energy side of the resonance. However, the effect of the orientation

fluctuations on a2 is large; it causes a considerable attenuation in a2 in
agreement with the experiments

The dotted lines in Fig. i0 show the results of the calculations where

the fluctuations are evaluated with a metric used by other authors

[28,30,313

D[e] - _ d#d 7 , (5.20)

which does not include orientation fluctuations. We see that these results

are in strong disagreement with the measured GDR cross-sectlons. The GDR

widths are considerably underestimated by the calculations and their shape

Js different from the experimental ones. The a2's on the other hand are
close to those calculated with the metric (4.4) and with orientation

fluctuations, If a temperature-dependent width is added to fit the

experimental width of the GDR cross-sections, then a disagreement with a2
will result, Also, if orientation fluctuations are included with the

metric (5.22), then a2 will be strongly attenuated relative to the
experiment. Thus only a theory with intrinsic shape and shape orientation

fluctuations according to the unitary metric (4.4) can reproduce both the

observed cross-sections and a2's. The good agreement between experiment
and theory is also an indirect confirmation of the existence at finite

temperatures of non-collectlve oblate shapes whose deformatlon increases

with spin.

We have seen that the choice of the metric plays an important role when

d_=_d_d)' d4941, 3yid19dxdn

Fig. ii. Comparison of ., .,

the unitary metric (5.4) T, tm, v

and the metric _d_d 7 (Eq. o o _
(5.20)) . Probability -.4 "'* r
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-,4 , . , . _ !K -,4 . , , .

densr at T-I and 2 MeV >, -.4 -., o .l .4 -A -.I o .l
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* compared with the experimenta ! results, The main difference between the

two metrics is that the unitary metric (5,4) favors large and triaxial

deformations far more than Eq, (5,20), This is illustrated in Fig, ii

which shows for both metrics the probability density for an intrinsic

deformation in cartesian coordinates _cos 7 and _sln 7, Notice the peaks

along triaxial shapes in the case of the unitary metric, The difference

between the two is more noticeable at higher temperatures,
To understand the effect of orientation fluctuations we use the

approximation of Seotion 5,2, Since a does not depend on orientation they

do not affect the average much. However when we average a 2 in Eq. (5.19)
over orientation, we obtain (for axial nuclei)

q fll- r , (5,21)
a2 2f± + f,,II

where II and ± denote the direction parallel and perpendicular to the

symmetry axis. r is an attenuation factor given by

1

29 ; 2
3cos -i 3 x xz 3 I i5r <

2 > - _ e / e dz 4x 2 '
22)

0

where

x- (111" Ii) _2/2T , (5.23)

The attenuation factor r is shown vs, x in Fig. 12. Notice that the

attenuation is smaller (i,e, r closer to i) when Ixl is larger. From

(5,23) this happens when the spin is higher (and there are less

fluctuations in orientation) or when AI-IIII-I±I is larger (at larger
deformation).

I°OI ................. , ,

5

Fig, 1,2, Attenuation factor r
(Eq. (5.22)) vs. x (Eq.(5.23)). oFor prolate shapes x<O and for

oblate shapes x>O.

-,_ , , , A 1 , , i , J A i J A .1 . A ° l

- 0 -5 0 5 I0

X
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The value of a2 is also sensitive to the intrinsic shape, and its

magnitude increases with deformation (for a spherical nucleus a2-0 ),
Intrinsic shape fluctuations tend to drive the most probable deformation to
higher values (compared with the equilibrium deformation) for which the' 90 '
resulting anisotropy is larger, For example Zr at T-I,6 MeV and J-22

has an equlibrium deformation of _--0,08 but a most probable _=0,31, The

enhancement of a2 due to intrinsic shape fluctuations is counteracted by

its suppression due to orientation fluctuations, Thus the observed a2 is
an indirect indication of the equilibrium shape, In the experiment of Fig,

I0 lt was therefore possible to demonstrate llquld-drop-like shape changes
from spherical to oblate with increasing spin [33,34],

5.4 Sensitivity of the GDR to Shape

As shown in Section 5.3 our theory provides a good description of the

available data, Other examples for the GDR cross-section in the strongly
deformed rare-earth region are shown in Fig. 13, From the T-O GDR cross-

section of 1SeEr we have determined E.-14.4 MeV and F0-3.64 MeV, We have
calculated the GDR cross-section for YSSEr and *S°Er for the temperatures

and spins shown in the figure. The solid lines are from the experimental

data. Again, when the unitary metric is used (dashed lines) we obtain good

i i i i I i i * i i _ i i J I | | t I

I .......' T = 1.50MEV..... T = 1,30MEV (b) ,," ',.(a) ,'" '"
_J .." '"..OJ=0.20MeVI ,." "...(U= 0.26MEV

o '" / '
: (d) T = 1.60MEV- I¢_ ,.,'......,.. T = 1.20MEV

• " /_.. ".. _= 0.20MEV . .......,,, (_= 0.55MEV

16OEr ,," '",,,.,...,

0
I_ w v ",' , ] i , , i , l I I I I I v ,

10 15 10 15 20
E (MEV)

Fig, 13, Comparison of the calculated photoabsorption GDR cross-sections
(dashed lines) with the results of CASCADE code fits to the experimental

d ii lee . =ones (soli nee). (a) Er at T 1.30 MeV, _ 0.20 MeV (corresponding to
an excitation energy E*-49.2 MeV in Ref. 14). (b) 1"eEr at T-I.50 MeV,

_=0,25 MeV (E*-61.5 MeV in Ref, I0). (c) *e°Er at T-I,20 MeV, _-0.20 MeV

(E*-43.2 MeV in Ref. 14). (d) *e°Er at T-I.60 MeV, _-0.55 MeV (E*-90.3 MeV
in Ref, 20). The dotted lines represent the calculated GDR with the _d_d 7

metric. The error bars in (a) and (c) are only suggestive of the accuracy

of the experimental measurements and do not represent the actual data.
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' agreement with the data while for the metric (5.20) (dotted lines) the

agreement is poor.
Having established the ability of our theory to provide a quantitative

account of the experimental situation, we will now discuss the question of

how sensitive the GDR is as a probe of the shape of hot nuclei. Indeed,

with increasing T, the thermal fluctuations increase due to two factors'

the explicit appearance of T in the denominator of the exponent in (4.2),
and the T dependence of the free energy surface, lt is the last factor
which is associated with the shape changes caused by heating and rotating a

deformed nucleus In order to see the sensitivity of the GDR results to• 166
these changes, we show in Fig. 13 (for Er at T-I.2 MeV and _-0.2 MeV)
the GDR cross-section obtained by using the "wrong" surfaces F in Eq.

(4.2)' the T-0 (the "dot-dot-dashed-dashed" line) and the T-3 MeV (the

"dot-dot-dot-dashed" line) surfaces. The experimental results clearly

indicate that at T-I.2 MeV IS°Er, though still prolate [14], has a softer

energy surface than at T-0. However, at higher temperatures (T_I.6 MeV) the
GDR becomes much less sensitive to variations in the energy surface [32].

In Fig. 14, we have plotted the cross-sectlon's full width at half
maximum (FWHM) as contour lines in the T-_ (or T-J) plane for *SSEr (a140
typical deformed nucleus) and for Ce (a typical spherical nucleus). The

latter nucleus shows a more dramatic change with temperature' its width at
T-2 MeV is about twice that at T-O MeV (in accord with experiment [18]).

This occurs because its free-energy surface "softens" as T rises from 0 to

2 MeV and because as a spherical nucleus it has only a single Lorentzian

component at T-O. Erbium has a deformed ground state and its FWHM changes

more slowly for T_2 MeV.

J(_)
0 I0 30 50 70 90

4i j | _ _ l * * i •

T (MEV) i _

Fig. 14. FW}LM contour lines _7.5_
(MEV) in the T-_ _(pr T-J) plane

of the GDR for ,.SEr (top) and O.O 0.2 0,4 0,6 ),8w(MeV)
%40ce (bottom). The shape

transition llne is shown by the

upper 0 IO 2__)-'7,0 40 50dashed line in the

figure• 4-

T(MEV] 2

0,0 0.2 0.4 0,6 0.8
uJ(MEV)
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Another interesting phenomenon is that for both nuclei the widths

increase much more slowly at temperatures above 3 MeV. This is associated

with the disappearance of shell effects in this temperature region.

6. Dissipation and Time-dependent Fluctuations in Hot Nuclel

Though the static fluctuation theory works reasonably well for many of the
observed GDR cross-sectlons, there are several cases, in particular at

higher-temperatures (Ta2 MeV) where the above theory [35] overestimates the

observed width of the GDR [20]. lt was recently suggested that in analogy

with nuclear magnetic resonance in condensed matter systems [54] and with

rotational damping of B(E2) transitions in the continuum [37], the GDR

could display a phenomenon known as "motional narrowing" [38] . The

physical reason for this is that the nucleus is hopping so fast between its

various shapes that the GDR does not have enough time to probe separately

each nuclear shape. Thus there is less broadening of the GDR due to its

coupling with the low-lying quadrupole collective states. This idea was

incorporated in Ref. 38 within the framework of a microscopic model for

the strength function based on a description of the compound nucleus by

random matrix theory. Although the model is successful in explaining

motlonal narrowing, it is rather complicated and very difficult to solve at

intermediate situations where the time scale for hopping between shapes is

comparable to that associated with the spread of the GDR frequencies from

shape fluctuations. Furthermore, this theory is proper for a single

resonance and does not take into account the coupling between the various

resonances of a deformed nucleus. In particular, when the Gaussian

Orthogonal Ensemble (GOE) of random matrices is used and under certain

approxlmatlons, one always obtains in the adiabatic limit the Wigner

semicircular distribution, which is inconsistent with previous adiabatic

theories.

We have introduced a relatively simple macroscopic theory of time-

dependent fluctuations [35,36], within the framework of the Landau theory,

which generalizes our previous theory of fluctuations to non-adlabatic

situations for the GDR. The dynamics of the quadrupole shape fluctuations

are described by a model analogous to Brownian motion where the quadrupole

degrees of freedom play the role of the heavy particle immersed in a fluid

and all the other nuclear degrees of freedom play the role of the

surrounding fluid molecules. We assume that at the temperatures of

interest the quadrupole motion is overdamped. The thermodynamical driving

force (to equilibrium) is proportional to the free energy gradient (with

respect to a2p) and the random force describes the interaction of the

quadrupole snape parameters __2p with all other degrees of freedom. Since
the Landau expansion of the _ree energy contains terms up to fourth order

in the deformation, the equation of motion for _p has the form of a non-
linear Langevin equation [55]. When compared with the theory of Section 5,

the current model contains only one additional parameter ; it is

proportional to the mean relaxation rate of the quadrupole motion. This

parameter spans the full range between the adiabatic limit and the sudden

limit in which the time scale for changes in the quadrupole shape is much

: shorter as compared to the time scale associated with the difference in GDR

i frequencies over a typical change in deformation. The other parameter in
the theory, i.e. the magnitude of the correlation of the random force, is

completely determined in terms of the relaxation parameter through the
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fluctuation-disslpation theorem. This theorem must be satisfied in order

for the equilibrium distribution to be a solution of the equation of
motion. Indeed, what we have is a picture of a dynamical equilibrium of

the nucleus, in which the shape fluctuates in time but the distribution of
shapes at any given moment is the equilibrium distribution.

6.1 Langevin Equation

Assuming the quadrupole vibrations to be overdamped at the temperatures of
interest, we model the quadrupole fluctuations by an equation of the
Brownian motion type

1 aF
' - + (t) (6 I)

_2# X 0_2# f2# ' '

F(T,_,_o_) is the free energy surface at temperature T and angular velocity

_, so t_at -@F/a_ 2. plays the role of an external average driving force at

finite temperature. The quantity f2u(t) is a random force which describes
the interaction of the quadrupole shape degrees of freedom with all the

others. It is assumed gaussian and stationary, satisfying the relations

<f2#(t)>- 0

<f2#(t) f*#,(t')>_ -_ 6(t-t') 6 , , (6 2)##

where _ characterizes the magnitude of the correlation. The correlation's

in (6.2) express the physical assumption that the forces f_ vary rapidlyz_ .. J

on the time scale of the variation of <_2.>. Notice that, slmllar to _2#,
f2_ are complex but satisfy the reality condition

* ).
f2# (t) " (" f2 (t) . (6 3)._

Relations (6.2) imply that the real and imaginary parts of f2# are
uncorrelated. Taking the average of (6.1) we find

<_2_ > . I < aF

" x > . (6.4)

For a quadratic F this describes the relaxation of the average deformation

to its equilibrium value defined by <aF/a_2_> - O. The parameter X of the
model is then proportional to the mean relaxation time of _2 to its
equilibrium value. The first order equation (6.1) is correc_ if the
quadrupole motion is strongly overdamped. Otherwise we have to use a

second-order equation which contains an additional mass parameter. The

reduction from the second to flrst-order equation is discussed elsewhere
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[56]. Also I/X in Eq. (6.1) and the correlation function (6.2) can be

more generally an anisotropic tensor (i/x)u #, which depends on _2 ' In
this paper we have taken the simplest possible form which is isotrop_c. If
for example the relaxation times for the nuclear orientation are different

from those of the intrinsic shape we have to consider an anisotropic I/X in

(6.1),

Equation (6,1) is a non-linear Langevin equation. The (non-linear)

driving force is found by taking the derivatives of the Landau expansion of

F analytically in the rotating frame. Notice that it __ important to

consider this expansion for a general _2_ and not Just for situations in
which a principal axis of the nucleus i's parallel to _. Indeed, time-

dependent fluctuations in the orientation of the nucleus are possible. We
find

aF

- + 3B b e 2 + 4C(-) v, 2A a2# #v ,#, v e2v a2va2-v a2# '
a_2#

" 2(II+D) e2# 6#,+_2 + (211+D) a2#6#,+± " (R'211a2#) 6#,0 _

(6.5)

where b, v is proportional to a Clebsch-Jordan coefficient,

b#v _7_ (2 p-v 2v12#). Hera _ is chosen parallel to the z-axis in the
laboratory frame, and A,B,C,... are the Landau parameters of Section 3.

The Langevin equation (6.1) defines a stochastic Markov process which

determines an ensemble of "trajectories" {_2u(t)}. At any time t we can
then construct a distribution P(_ ,t) of the shapes such that P(_)II d_2# # 2_
is the probability of finding a shape a in the volume element IId_ 2 aroun_# #

a2p. The equation of motion of P is discussed in the next section.

6.2 Fokker-Planck Equation

Since the process _2u(t) in (6.1) is Mark0vian, it obeys a master
equation whose form can be determined from the so-called jump moments.

Starting from a given shape a2# the average jump (first moment) is
calculated from (6.1) to be

I aF

<Ac2> - , At , (6.6)

X aa2#

while the second moments are

<_2#Aa2#,> - _ 6##,At . (6.7)

The distribution P(a2#,t) therefore satisfies a Fokker-Planck equation [57]
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I

aP . a I 8F P + _ _ , . (6.8)

8t 8a2_ _ X Oa2# 8a2#0_2#

The first term on the right of (6.8) is known as the "drift" term

while the second is the "diffusion" term. _ then has the meaning of the

macroscopic diffusion constant and (6.7) is Just the Einstein relation

which relates _ to the microscopic Jumps of a2#.

6,3 Fluctuation-Disslpation Theorem

Any solution to the Fokker-Planck equation converges to the stationary

solution Pst(a2#)which satisfies

a I aF Ps + I 8Pst ] - 0 (6 9)

x a,.,,*_z t _ _ a_,2#, ] ' 'a°t2p

A solution to (6.9) is

2
. m

P = e X_ F . (6.10)
st

Since (6.10) should coincide with the equilibrium distribution

- F/T
P = e , (6.II)
eq

we conclude that

2T
--- . (6,12)

X

Eq. (6.12) determines the correlation function of the random force in
(6.1). Equation (6.12) is just a special case of the fluctuation-

dissipation theorem which connects the fluctuations (of the random force)
at equilibrium with a dissipation parameter characterizing the relaxation

to equilibrium. Relation (6.12) determines _ in our model (6.1), so that

the only undetermined parameter of the model is X.

In terms of Peq' Eq. (6.1) can be rewritten as

OP 8 Peq 8a2# eq
a-'t " 8a2p * 2 _ _ ' (6.13)
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we define the relativeTo show that any solution of (6.1) converges to eqbyinformation content [58] H of P with respect to eq

H- I D[a] P In [ P---]Peq ' , (6 14)

where Dial -II da2#. Using (6.13) we find that
#

 -joEo IoIn --Peq " " _ Di* _eq _# 8c'2# --Peq S 0
I

(6.15)

is always non-positive, Thus H decreases monotonically in time unless

P'Pe- where dH/dr-0. For P_Pe- we have dH/dt<0 and H will decrease
grad_ally to zero so that any P _ill eventually decay to P.n (where H-0),
In fact H is a measure of the entropy difference of t_e equilibrium
distribution relative to the instantaneous distribution P.

If at time t-0, P'Peq' then initially H-0 and therefore H-0 for all

times t so that P'Peq for any t, This is the stationary solution of the
Fokker-Planck equation (6.8). The corresponding ensemble of solutions

{_2, (t)} of the Langevin equation is obtained when the initial shapes

{_2_(0)) are distributed according to Peq' They describe a stationary
Markov process, This process describes an equilibrated nucleus at

temperature T for which the shape fluctuates in time but which at any given

,6 , , ' , , • , ! , v ,'"'1 , ! ', "

Fig. 15. Typical shape '4tL,___ A _
trajectories _ vm, time t

for **2Sn at T-I,8 MeV and x- 5
_-0,535 MeV, obtained from o_ . _
the solution of (6.1), The ._
three traj ectories shown _-_ .,
correspond to various values
of X: X-500 (adiabatic o X" 50

limit), X-50 and X-5 (sudden 0

limit) . " '

' t(MeV-
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. time has the same distribution Peq' In what follows {_2#(t)} will denote
the above process.

In section 6.4 we shall explain how the ensemble {_2u(t)) can be
constructed by Monte-Carlo techniques. In Figure 15 we show 'three typical

"trajectories" _(t) obtained in a Monte-Carlo solution of (6.1) for three

different values of the parameter %. Since X is proportional to the

relaxation time of _(t), the decay of _(t) to its equilibrium value is
faster as X gets smaller. According to (6.12), the variance of the random

force, which is proportional to _, is inversely proportional to X. Thus as
X gets smaller the r.m.s, value of the random force gets larger and the
motion is less smooth and more erratic when shown on the same time scale.

6,4 Non-Adiabatic Theory of the GDR

The giant dipole resonance absorption cross-section o(e) and angular

anisotropy a2(_ ) can be calculated from the Fourier transform of the
temporal autocorrelation functions of the dipole operator D at equilibrium

(see Eqs_ (5.7) and (5.8)). Such a correlation function can be determined

from an equation of motion for D. In the following we will assume that the

giant vibrations are described by a three-dimensional damped harmonic

oscillator rotating with angular velocity D. The vibration frequencies and

intrinsic damping widths are assumed to depend on the quadrupole
deformation as in the adiabatic theory of Section 5. Since the quadrupole

deformation is fluctuating in time according to a stochastic process, the

dipole equation also describes a stochastic process which is coupled to the

Langevin equation.
Here we shall denote by D the dipole operator in th_ frame which i_

rotating with constant angular velocity D and by P the canonical conjugate
momentum. Since the nuclear shape and orientation are fluctuating, this

frame is usually not the intrinsic frame of the nucleus. We have

I

= - E2 D - D x P - _ F P , (6.16)

where E and F are the frequency and damping matrices, respectively. E is

the matri:: which in the principal intrinsic frame is diagonal with elements

given by Eq. (5.9).

The transformation from the rotating frame to the principal intrinsic

frame is the one which diagonalizes _2#' Thus in the rotating frame

E - EeXPo _ Q ] ' (6.17)

where the matrix Q in cartesian coordinates is

I
|
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" =20/2 + 3_ Re ('22 3_ Im ('22 - _ Re ('21

Q- 3_ Im ('22 - c.20/2 - 3_ Re {'22 " _ Im ('21

q

(6.18)

The damping matrix F is t]hen given from the power law (5.17)

- -F exp - 6 q (6 19)o o ' '

as in the adiabatic case.

The GDR equations of motion (6.16) are coupled to the quadrupole

equation (6.1) through the e dependence of E and F. They thus also

describe a stochastic _rocess. For any given solution e2u(t) of (6.1) we
can solve (6.16) for D(t). The transformation from D(0_% P(0) to D(t),

P(t) (for a given _2u(t)) i:s linear so that it is sufficient to solve

• (6.16) for six possible independent initial conditions for D(0) and P(0).

The correlation function <D(t)D(0)> can then be calculated by averaging

over the whole ensemble {_2#(t)) if the initial dipole correlations (at
t-0) are known.

In deriving the initial dipole correlation we are guided by the limit

where e^ are constant (independent of time). In this limit thez#
correlation function (for fixed e2u ) should give the same contribution to
the GDR cross-sectlon that we hav'e assumed in the adiabatic fluctuation

theory. This initial correlation function is found to be

<D(0) D(0)> - _ E" , (6.20a)

which is simply the ground state expectation of _2. The other relevant
initial condition

i

<P(0) D(0)>- - _ , (6.20b)

also follows from considering the ground-state giant resonance state
vector.

The degree of adiabaticlty of the process is determined by the

parameter X. To see that, we define the adiabaticity parameter _ as the

ratio between the frequency spread AE of the GDR due to variations in the

static deformation and the mean relaxation rate A of the quadrupole motion
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AE

- _-- . (6.21)

We can estimate the frequency spread from

_E- J5/4_Eo _ ' (6.22)

In (6.22), (A#) 2 is the variance of # at equilibrium. A in (6.21) is given

by A-l/tc, where the relaxation time tc can be shown to be [36]

<ao'2# A_2#>
tc = X 5T ' (6.23)

We then find

E ,

= _° XT (A#) <A=2# A=2#> . _ (6.24)

Thus, _ is proportional to the parameter X of Eq. (6.1). The adiabatic

limit corresponds to _>>I (X--=). The opposite limit _<<I is referred to as

the sudden limit, where the quadrupole deformation fluctuates very rapidly.

In the adiabatic limit (_>>I) we can assume the quadrupole deformation _2B

in the GDR equations (6.16) to be frozen at its initial value _2#(0), so
that the Fourier transform of the dipole correlation function (for a fixed

_2#(0)) is a superposition of Breit-Wigner curves. The actual GDR
absorption cross-sectlon becomes then the average over the initial

distribution, i.e. the equilibrium distribution

-F/T 2#),
' D[_] e a(_;_

aabs(_;T'w) " ;D[_] e'F/T - ' (6.

25)

and D[_] - H d_^ . _4# z# Isin371 d_ d7 chq. Eq. (6.25) is identical with our
previous adiabatic model of Section 5.3. Furthermore, the unitary metric

(4.4) emerges as the one which should be used in the adiabatic limit if

(6.1) describes the correct dynamical evolution °f _2_-(6. 6To solve the stochastic equations (6.1) and ), and to determine

the dipole correlation function in the general case, we proceed as follows"

(i) We choose an initial ensemble of quadrupole deformations (_2. (0)}

which is distributed according to the equilibrium ensemble exp(-F/T). _

(ii) Fo r each a2u(0) we solve (6.1) by Monte-Carlo techniques [36]. We
use a second orde{ stochastic Runge-Kutta method such that
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J

m2# (t+At) " m2# (t) + g2# At + _t-_ Y2# ' (6,26)

where qp. is an average of - x'laF/am_., and the real and imaginary parts

of Y2m a_e five independent standard normal random variables. We obtain an

ensemSle of "shape trajectories" {_2#(t)) which is equilibrated at any
time.

(iii) For each trajectory a2_(t) we solve (6.16) for _(t) in terms of _(0)
and _(0). The correlation <D(t)_(0)> is then calculated by averaging

over the ensemble {_2#(t)} using the appropriate (quantum mechanical)
initial correlation functions (6.20).

Non-adlabatlc effects are seen most clearly when one assumes a zero

intri'%sic width (i.e. F0-O), so that broadening of the resonance arises

only from the coupling to the quadrupole degrees of freedom. We thus

consider such an hypothetical 16_Er nucleus at T-I.5 MeV and _-0. The

solid lines in Fig. 16 are the fit to the Monte Carlo calculations (error

bars) of the GDR absorption cross-sectlon and the dotted line is the

adiabatic model. At X-750 we are close to the adiabatic limit where three

peaks are seen. At smaller X the two peaks on the right coalesce and get
narrower. Then the left peak starts to move to the right while

disappearing and in the sudden limit we have a single narrow Lorentzian.

Thus, though the general effect is that of motional narrowing as discussed

in Ref. 38, the actual spectral shape of the resonance is also sensitive to

7. Note that as the process becomes more sudden it is necessary to take a

smaller time step At since the quadrupole fluctuations are more erratic.

Fig. 16. The Fourier transforms

(solid lines) of the dipole 41' • '' ' 'I.... I.........

correlation function found from the 3_ i_Er _I i

solution of the stochastic equations I T = 1.5 MeV(6.1) and (6.16) for various values of '

purpose of demonstrating the effects

of nonadiabaticity we have chosen a I _'k'_
hypothetical case where Fo-O (i.e., _

no intrinsic damping of the dipole) _ I x = 15o

for 166Er at T-I.5 MeV. The bars are 0____i x_,_,___

• the statistical errors associated with _i. liil ,, li, i

the Monte-Carlo calculations and the I 50
dashed lines present the adiabatic
model of Section 5. Notice that 0

various peaks coalesce and get , ...............

narrower as the process becomes less lo ii ii ill 14 IB iii i7 iii li 1o

adiabatic (X get smaller). _ (MEV)
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112
Fig, 17. Comparison with experimental GDR cross-sections for Sn [20].
The dotted lines shown are the experimental cross-sections, The solid
lines are the results of our stochastic model for several values of X. The

higher and the lower values of X are the adiabatic and sudden limits,
respectively. The intermediate values of X show the best fit to the data.

112
Realistic calculations (Fo_O) are shown in Fig. 17 for Sn where

our adiabatic model (X-500) overestimates the experimental widths [20]

(dotted lines), We used Eo-15.2 MeV, F_0-3,76 MeV and 6-1.6, and calculated
the GDR absorption cross-section for several values of X. As X decreases

the resonance gets narrower and its structure changes. The values which

fit the experiment the closest are shown on the figure and correspond to
intermediate _'s.

In the sudden limit 7<<1 (x_O) it is possible to reduce the stochastic

equation (6,16) to an equation of motion for <D> which is basically that of
a damped rotating oscillator with some effective frequency and damping

width. The effective damping F is estimated to be (in the FO-0 case)

= A-_AE)2- _ AE << AE , (6.27)

which is narrower by a factor W from the width in the adiabatic limit.

This is exactly the motlonal narrowing effect discussed in Ref. 38. In

realistic calculations Fo has to be added to the r.h,s, of (6.29)

The effects of non-adiabaticlty on a2 are shown in Fig. 18 together with
those on a. Two cases are shown for 114Sn, at low (J-14 _) and high (J-40

_) spins. In the sudden limit the minimum and maximum of a2(_) become more

sharply peaked and larger in magnitude. They are also closer to the

central energy Eo. These effects are consistent with the motional

narrowing in a(_).
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We have seen earlier that for *12Sn the GDR cross-section is

consistent with an intermediate situation between the adiabatic and sudden

limit. Thus we expect a2 to look more like the intermediate cases in Fig.

18. Unfortunately the a2's for 112Sn were not measured yet. It will be
very interesting to determine them experimentally. This will provide a

more crucial test of non-adiabatlc effects in the GDR.

7. Quasi-Continuum E2 Transition

At lower excitation energies (E* _ 8 MEV), the E1 decay rate is lower and

E2 transitions above Yrast dominate. The quasicontinuum E2 spectrum has

been recently observed [39] by subtracting the discrete lines and the

statistical 7-rays, and then decomposing the remaining quaslcontinuum into

dipole and quadrupole parts. The observed E2 bump is then interpreted as
the result of E2 transitions within dense rotational bands in the continuum

[39]. These E2 transitions are thus a possible prob_ of the properties of

"warm" nuclei whose excitation energy is below the neutron separation

energy. An interesting observation was made through the analysis of the

experimental data [39] of warm transitional dysposium isotopes

(ts=,164,*S6Dy): a strong collective B(E2) of about 300 W.u. was required
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to reproduce the measured Doppler _hlft of the E2 peak as well as the

' spectral shape, I
For transitional nuclei, the shape transition temperature is low [47]

(Tcr ~ 0,5 - i MEV), Fig, 19 shows the phase diagram in the energy-spin
plane where only the transition lines (7--180 °) are displayed. The
transitions at J-0 happen at E" = 12, 21 and 30 MeV for s2'_64'ISeDy,

respectively. In the experiment of Ref, 39 the 7-cascades start at a given

entry point and proceed along different paths determined by the competition
between E2 and El, The most probable path is shown in the above figure by
arrows, To estimate B(E2) for a general triaxial rotating shape we assume

an asymmetric rotor, If its angular momentum J is large it has in addition
to J an approximate good ("wobbling") quantum number n, The E2 transitions

proceed along the bands n-const, with strength [59]

5 2 2

B(E2; n,J _ n,J-2) = _-_ _ e Q22 ' (7,1)

where Q22 is the intrinsic quadrupole moment around the rotation 3 axis,
Assuming a uniformly charged ellipsoid we find

Q22" _ RI . R , (7,2)

where RI and R2 are the semi-axes lenghts along the I and 2 axes.

I i56 D

1

I0
o 2'o do 4o

Fig, 19. Phase diagram of ,s2 Is4 ,SSDy in the energy-spin plane. Shown
are the Yrast line and the transition lines. The arrows indicate an

approximate most probable 7-ray decay pathway.



40

If the equilibrium deformation is used in (7,2) we obtain for tS4Dy
values of B(E2) which vary between 0 (in the non-collective oblate regime)

and 180 W.u, along the most probable 7-decay path of Fig, 19, Howeveri if
fluctuations in _,7 are taken into account according to the general formula

(4,5), we obtained values of 240-30D W,u,, in agreement with the

experiment, lt is interesting to note that the dysposium surfaces may have
a local superdeformed minimum. As a result the shape fluctuations are

enhanced and lead to the above large values of B(E2),

The fourth order Landau theory of Section 3 does not predict a
superdeformed minimum. In order to treat the above transitional nuclei in

the Landau framework we have to carry this expansion to sixth order, This
is however beyond the scope of the present review,

8, Conclusions

We have reviewed the main ideas and theoretical techniques used in the

description of hot nuclei. In the temperature range I_T_3 MeV, a

macroscopic approach to hot rotating nuclei based on the Landau theory

combined with a uniform fluctuation theory in ali five quadrupole degrees
of freedom can reproduce well measured physical observables. Such

observables are the GDR cross-section and angular anisotropy of the emitted
7-rays, and the B(E2) quasi-continuum transitions.

Time-dependent fluctuations play an important role in non-adiabatic
situations and comparison with the GDR data can be used to determine a
dissipation parameter,

Several interesting theoretical issues are still open:

(i) In our treatment of fluctuations we have assumed that the shape
parameters (a2) are classical (for T_I MEV), lt is not clear what is the
role played by_ quantal fluctuations, They are certainly important at low
temperatures.

(ii) The role played by hlgher-order shape multipoles (such as octupole),
(iii) A theoretical estimate of the damping of quadrupole motion at finite
temperature.

(iv) The importance of temperature fluctuations in the transformation from
the canonical to the physical mlcrocanonical ensemble.

On the experimental side it is hoped that with the improvement of the

present generation of experiments it will become possible to control more

accurately the nuclear phase space variables (temperature and spin), lt is

also necessary to increase the precision with which quantities such as
angular anisotropy are measured.
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