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AN EQUAL-ORDER APPROXIMATE PROJECTION FEM

P.M. GRESHO, S.T. CHAN, and M. CHRISTON
Physical Sciences Department
Lawrence Livermore National Laboratory
P.O. Box 808, L-262

" Livermore, California 9455 l, USA

In this short paper we introduce and test a tectmique for solving the incompressible Navier-Stokes
equations using bilinear basis functions for velocity and pressure.

INTRODUCTION

The equationsof principal interest are

au_/tgt+u_.Vu+VP=uV2u_and V.u_=0 in 11, (1),(2)

u=w(t) on F and Jn_.w=0, (3)
with

F

andu=u o with V.u o=0 in f_ at t=0 and with n.u o=n_..w(0) on F. (4)

Since these "primitive equations" are usually considered as too difficult to solve as stated (fully-
coupled), the following pressure Poisson equation (PPE) formulation is of much interest: Using
O(V. u_)/Ot= 0 in (1) leadsto me PPE:

V2P V.(vV2u u Vu)=Va in _,tgP/tgn n(vV2u u Vu tg-_tt)
= _-_' _ ._ =_. _-_" _- on F.(5), (6)

The PPE (derived) formulation is (1) and (3)-(6): i.e., (2) is omitted because it is implied [See,
e.g., Gresho (1991a)],

The weak (Galerkin) form of the PPE formulation is

v. + u. Vu + v(vu)r:vv - PV. v = 0 v v _ _H_ (7)

I  '-Ia °'
r

Remarks:

1. The above PPE formulation assures that V.u = 0 in a very weak (and vague) sense in that if
(7) and (8)=_(1) and (3)-(6) then V.u =0. I.e.,/four weak solution Is also a classical
solution, then u will be (strongly) div-free. These are big it's.



2. The PPE formulation has more solutions than the u - P formulation--and the extras are

spurious, a particular example being that V. u o need not vanish in order that PPE solutions
exist--any uo 'works'. [See Gresho (1992) for others.]

If we discretize (1)--(4) via the GFEM, we arrive at the following Index 2 DAE system:

Mfi + N(u)u + CP = Ku + f, u(O) = Uo and Cru = g , with Cruo = go (9), (10)

where f and g correspond to BC data. Note that (9) also corresponds to the finite-dimensional
version of (7). Converting this to a lower index (easier) problem is achieved by inserting ti into
the time-differentiated version of (10): the resulting Index 1 DAE system is (9) and

(CTM-IC)p = CTM-I(Ku + f - N(u)u)- g. (11)

As with the PPE formulation, the Index 1 formulation uncouples the pressure _om the acceleration
(its "raison d" etre ), Also as with the continuous formulation, violation of C uo = go results in an

ill-posed Index 2 problem but the Index 1 version---having more s_lutions--is not ill-posed. It is
ju,_ not right; _. resulting discrete velocity field will not satisfy C u = g. [It will satisfy
C' u = g+C uo-go; see Gresho (1991b).!.

For comparison with what follows below, we now introduce the projection matrix, _:

- I- M-tC(CrM-lC)-lC r, (12)
which i_,a 'formal' construction only. _ has the following properties:
1. _" = _o; it satisfies the definition of a projection.
2. If w is an arbitrary velocity field, tl_n fow is its proj_tion to the (discretely) div-free

subspace; i.e. u - _w satisfies C' u = 0. In fact, C'_ ffi0.
3. The eigenvalues of _o are either zero or 1, and its norm is unity. All discretely divergence-free

vector fields are eigenvectors of _ with eigenvalue unity.

In terms of _, the Index 1 problem can be 'condensed' to an Index 0 problem (i.e., to a set of
ODE's):

_ = _ [M-I(Ku + f- N(u)u)]+ M-'C (CrM-IC)-'g . (13>

which clearly satisfies crf_ = ,g; (only) an initially div-free velocity field will remain div-free.

Suppose though that we use instead (7) and (8) to generate our GFEM equations? The result is (9)
and

LP=h , where /-nju IV_Pi'Vtpj (14), (15)

81

qlr

is the 'conventional' GFEM Laplacian and _k is the bilinear basis function associated with node k.
The RI-ISvector is

F

from the finite-dimensional form of (8). Oe, arly some remedial action is required If C O basis
functions are to be employed (for which V'_u n Is not well-deflAaed); for,one _ of res ,lagnse,see

Sohn and Heinrich (1990). For a 'rationalization', note that t_ I V g_. 'V"u = 1_I _n_.. V '_u when
V. u = 0 and thus the omission of the viscous term In (16) cad only 'affect thirl_s near F--an
especially valid approximation for large Reynolds number (small 1)). (See Hasganzadeh et al.
1994) In our formulation,anapproximationto (14)--(16) is actually only required at t = 0---to
estimate the initial pressure field; for t > 0, the pressure is determined by the (approximate)

' projection method--described below.



We, and many others, have generated codes based on the Index 1 formulation of (9) and (1 I) using
the QlPo element; i.e., the quadrilateral element with bilinear basis functions (2D version) for
velocity and piecewise-certstant basis functions for P. But, with the exception of our ad hoc
procedure in Gresho and Chan (1990), all QiPo Index I codes 'required' the also ad hoc (and
more deleterious) approximation ofm_s lumping (because M -t is otherwise dense), which
introduces a serious loss of accuracy for the bilinear element when the flow is advection-dominated
(vortex shedding, for example). Additional bad features of this element are:
1. It suffers from the "Bent-Element Blues"----(see Gresho and Leone, 1984); the CP

approximation to VP is not very accurate when the elements are bent pretty hm'd (are far from
rectangular).

2. The staggered mesh 'bogkk_ping' is not fun.
3. The Laplacian matrix C'M L C is 'awkward' and is suspected to converge 'too slowly' when

lterati ve solvers are used. ( M L is the lumped version of M.)
4. It fails the LBB test! I.e., the velocity and pressure spaces are not quite compatible.
5. The (necessary) integration by parts of the VP term causes 'problems' in 'flow-through'

domains wherein a homogeneous normal natural boundary condition (v cgun/cgn - P = 0) is
employed and a significant 'body force' is present [see Sani and Gresho (1994)].

i

THEORY

So, to get back 'in vogue', we now describe our attempt at creating a stabilized equal-order element;
viz Q1Q1, which overcomes at least flaws (1), (2), and (5) above. But (3) and (4) still 'shoot it
down' and mass lumping still seems required. To implement a consistent mass QtQl element and
to pass 'LBB' (which QtQI falls in spades), we invoke an "approximate projection" [Almgren et
al. (1993), and Dvinsky and Dukowicz (1993)] in much the same way that many before us have
done, viz, we replace the 'bad' Laplacian in (11) by the good (conventional GFEM) Laplacian,
(15). Actually, the procedure ts closer to the following:

1. Replace -PV. v in (7) by v. VP

which implies v o_u_]o3n= 0 as an OBC which is generally an ill-posed boundary condition

(see Sani and Gresho 1994). But we get away with this crime because we will no longer

require a 'stringent' version (even discretely) of V .u = 0.

2. Generate the following Index 2 DAE's:

Mfi + N(u)u + GP = Ku + f, u(O) = uo and Du = g, Duo = go (17)-(20)

where no longer are G and D transposes of each other.

3. Solve the DAE's via the following approximate projection method: Given un and pn,

O SolveM(_"_t-u')+ N(un)un +GPa = ½K(Un+l +Un)+fn forun+l. (21)

(/0Projectfin+ltotheapproximatelydiscretelydlv-freesubspaceasfollows:

(1) SolveAtL(Pn+I- Pn)= D(t2n+l-un)-(gn+ I-gn) forAP. (22)

(2) Compute the projected velocity fiom un+ 1 =Un+l-At MZIG(Pn+I -Pn) (23)
(3) UpdateP andgo to (0

The approximate projection above is derived as follows: Given Us+l, solve

ML (un+l -_n+l) +G(Pn+I -Pn)=O and Dun+ 1 =gn+l +(Dun -gn), (24)-(25)At



which is called 'projecting the difference'aa required 'trick' obtained from J. Bell (LLNL,
personal communication). Note that, because of the next trick, below, Du = g is never quite
achieved in this method.

These equations imply the following 'PPE° for the pressureupdate:

At (DM_LIG)(Pn+I - Pn)= D(t_n+1 -un)-(gn+ 1- gn), (26)

which is replaced by (22) (D ML l G _ L'_and is the final "trick" referred to above--a
replacementmade necessa_ because DM_IG has too many spurious pressure modes (fails LBB)
and made 'interesting' because iterative solvers should like L better (I.e., require feweriterations).

Remarks:

If Dun - gn is omitted from the RHS of (22), the results are disappointing in that (at least) a steady
pressurecannot be attained even when the velocity becomes steady.

Now comes the 'hard part'--analyzing the resulting algorithm to show that it is actually useful.
And we admit up front that we have not yet been totally successful. But, being more like engineers
than mathematicians(mathematicalengineers?), we tested it in the computational laboratory
anyway. (And it works. This happens often with engineers---but definitely,not always,) If we
study (21), (22), and (23) for At ---_0 we get, with Fn - fn + Kun -N(un)un-GPn,

=u,,+at u-' F,,+O(A:)

where Em I-DM-_LIGL -l and EnD= DgOan

(v) Thus At --) 0 _ fi = _OaM"q[f + Ku - N(u)u- GP] + MZIGL-Ig

(vO Off = D60aM -l F+ OM_LIGL-tg = EDM-'[f + Ku- N(u)u-OP]+(DMitG)L-Ig

and theproblem is to reconcile (iv) with (v0; the form_ =_ Dli = El, • lira (Pn+t - Pn) +
andthe two are only in accord if Pn+l - Pn "_ 0 as At _ 0, and if At-.,o

(nU-'G)P = DU-'[f + r,,, - N(u)u]- g. (27)
which is just the PPE that we'd l/ke the pressure to obey! And if this is true. then (v) above yields

a = M-l[f + Ku- GP- N(u)u] , (28)
alsothedesiredresult(NotethemysteriousdisappearanceoftheL-matrix.)But--wehavenot
beenabletoshowthatPn+l- Pn= O(fia0.Infact,somewhattheconverseseemstobetrue;viz,
startingfromtheinitialpressure,Po,obtainedfrom

LPo = DM-I[ f o + Kuo - N(uo)Uo]- go . (29)
proceedingthroughafewsteps,andgeneralizingvlainductionleadsto

+o(At)andto O0)



Thus, at least initially, Pn+! - Pn = O(1) in At and, for large n, we recover to
Pn+I - Pa = O(At) iff E a _ 0. But since that E has eigenvectors with unit eigenvalues

whenever the initial vector has any non-zero projection onto the null space of G, E n may not
-_ 0. It seems that only if LP o (and .'. Po) has no spurious pressure node components can we
assert that the algorithm can 'recover'--and even then the early (small n ) results are likely to be
poor...

But the resulting code seems to perform much better than these gloomy results would indicate--as
we shall show.

NUMERICAL RESULTS

We have successfully (for the most part)compared Q1Qt against our workhorse QIPo code for lid-

driven cavities and vortex shedding past circular cylinders. Here, we slaow a sample of results for
flow past an airfoil at Re = 10" (based on chord, c) at a small {1.2 ) angle of attack. The
particular airfoil, "a NACA 16 thickness form with maximum thickness to/C = 8.84% and
maximum camber 2.576% with a beveled anti-singing trailing edge"--E. H. Lurie (1993), was
tested in a water tunnel (incompressible flow!) at MIT's Ocean Engineering Department as part of a
Navy/ARPA program on unsteady fluid dynamics. But our laminar flow simulations were not
meant to be compared with their measured data at Re > 10" because we do not yet have a
believable turbulence model. Maybe later.

We designed a 'trutl]' mes4hof ,--_,0,000elements and a test mesh of --6400 elements. The fine mesh
was run at Re = 10 , 10 , 10_, and 10" using QlPo ar_ our 'projection 2' algorithm (Qresho
and Chart 1990). The results were not believable at Re y 10" (chaotic), semi-so at Re = 10"

(nearly periodic), and believable at Re < 104. Re = 10° (only) produced a steady-state result. The
coarse mesh for Re = 10 was then run with QI Po and the new QtQI; all three results were
acceptably close to each other.

We now focus on the Re = 104 case and compare QtPo on the two meshes with QtQI on the
coarse mesh. Qualitatively, the flow is one of periodic vortex formation and shedding of vortices at
the trailing edge. Nowhere else is there any interesting dynamics. Fig. I shows snapshots of
vectors, streamfunction, and vorticity from the coarse mesh (vectors are interpolated via a coarser-
yet mesh graphics package.). Fig. 2 shows time histories, startingfrompotential flow, of the x-
component of velocity at a node just above (- . 002c) the trailing edge,--and the pressurethere,as
well as the RMS-normof the discretedivergencefor QIQI. The agreement of QIQI with QiPo on the
coarse mesh is quite close--abe range of u' s during vortex shedding being - -.07 to +. 16 for
QiPo (2e) and - -.08 to +.15 for _Ql (2e). (The fine mesh results (2a) show
~ -. 10 to +. 20, somewhat stronger, but still reasonably close). The correspondingpressure

histories are(Dank Gott!) of a similar quality; the coarse mesh results ranged from
- -. 17 to -. 31 for QIPo (2d)and - -. 16 to -. 27 for QtQt (20, compared to the 'true'

results (2b) of ~ -. 15 to -. 33. (In all cases, the inlet velocity is 1.0, as is that on the top and
bottom boundaries (tow tank BC's). The OBC's were: 'natural'; i.e., otgu/t_x- P = O = t_c)v/tgx
for QI Po and o o3u/tgx = o o_v/o3),= P = 0 for Qt QI, the latter being imposed as an essential BC
in the PPE.).



CONCLUSIONS

While interesting and viable (apparently--in spite of the shortcomings in our analysis), the new
QIQI has not yet displaced 'old faithful' ( QIP0), largely because the PPE solution--via DSCG--
was little cheaper (10-15% fewer iterations). Perhaps it would look better using multi-grid.

For a simpler application of this QlQl stabilization technique using forward Euler time marching,
see Gresho and Chart (1994).

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48.
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